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Abstract: In the context of spectral unmixing, essential information corresponds to the most
linearly dissimilar rows and/or columns of a two-way data matrix which are indispensable to
reproduce the full data matrix in a convex linear way. Essential information has recently been
shown accessible on-the-fly via a decomposition of the measured spectra in the Fourier domain
and has opened new perspectives for fast Raman hyperspectral microimaging. In addition, when
some spatial prior is available about the sample, such as the existence of homogeneous objects
in the image, further acceleration for the data acquisition procedure can be achieved by using
superpixels. The expected gain in acquisition time is shown to be around three order of magnitude
on simulated and real data with very limited distortions of the estimated spectrum of each object
composing the images.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Raman microscopy [1] is an imaging modality suited for numerous uses in life imaging [2–4]
which requires both chemical and spatial information. A current limitation of the technique is the
acquisition time which is not systematically compatible with real-time imaging of in vivo samples.
This is intrinsically linked with the point-by-point raster-scanning of a laser spot which requires
long exposure when pointing at weakly scattering samples. The resulting acquisition times can
range from a few minutes to hours for extended samples. Consequently, an open research front of
science is to accelerate the data acquisition in Raman microscopy via computational approaches
[5–24]. These approaches differ by their method and by the informational tasks that they address.

Some accelerations can be achieved via the instrumentation itself, e.g., with the use of line
scanning [5–7,12] or digital micro-mirrors for compressive sensing in the spectral domain [16–21].
Other authors exploit the spatial redundancy of the sample itself to reduce the acquisition time
[13–15]. For a large family of samples, priors on the chemical content can be assumed such as
the knowledge that the acquired signals result from the linear mixture of only a few spectral
components. In such cases, compression can come from the selection of the few pixels carrying
the essential spectral information needed for the unmixing of the few chemical components
constituting the sample [22–24]. The current article lays on this foundation and exploits this
trend further.
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In earlier works, essential spectra were identified based on a principal component analysis
(PCA) [22–24]. Essential spectra form a convex hull of the data points in the reduced space.
Measuring only the spectra corresponding to these essential pixels for a longer time should enable
the reconstruction of the whole pixels first acquired quickly. While rich from a methodological
point of view, this approach has some practical limitations since, to be applied, the PCA needs
all the pixels to be first scanned. Very recently an extension of this work was proposed [25] to
solve this issue while building upon the idea of essential spectra for spectral unmixing. The
authors in [25] demonstrated the possibility of computing essential spectra on the fly by operating
the dimension reduction in the Fourier domain of the spectral data. This enables dynamic (i.e.,
performed during data acquisition) and chemometric-driven (i.e., based on spectral relevance
for unmixing) selective sampling. This approach was evaluated with the potential of a 50-fold
acceleration of Raman acquisition [25]. Further speed improvement should be possible by
considering the spatial redundancy of the components in samples.

To this aim, we consider samples constituted by objects with contrasted boundaries and
homogeneous chemical content. In such configurations, a common approach to compress the
spatial information is to use the concept of superpixels [26]. Images are segmented into areas
(called superpixels) that share common content. Superpixels are very basic tools in image
processing. For instance, they have been applied with a standard acquisition scheme in Raman
microscopy in [15]. In this article, we do not introduce a novel superpixel algorithm per se.
Instead, we propose to associate the standard concepts of superpixels with the one of essential
spectra to constitute a smart scanning protocol in Raman microscopy. The article describes
each step of this smart scanning process and then provides the details of the samples involved to
evaluate this process together with the metrics used to assess its performance. We present the
results and conclude about the gain in speed of this proposed scanning process.

2. Material and methods

2.1. Methods

We start with an overview of the proposed smart scanning protocol as schematically represented
in Fig. 1. It is composed of a two-pass scan. First, a fast acquisition, i.e. at a low signal-to-noise
ratio, of the whole sample is made with a Raman microscope at full spatial and spectral resolution
to produce the hyperspectral image Ilow(x, y, λ), e.g., made of X × Y pixels at position (x, y) and L
wavelengths. Then, a spectral dimension reduction of Ilow is performed to produce a grayscale
image Imono(x, y) which is further segmented into P superpixels to produce Iseg(x, y). Superpixels
are small groups of homogeneous neighboring pixels gathered in connected components. Once
all positioned, the superpixels cover entirely the image Iseg(x, y) like the pieces of a jigsaw. The
pixels of a superpixel in image Iseg(x, y) are labeled with a unique ID ranging from 1 to P. The
location of the superpixels and the low signal-to-noise ratio hyperspectral image Ilow(x, y, λ) are
fed to the innovative part of our protocol named unmixed superpixel centroid rescan (UnSCR).
This UnSCR produces, after a longer second scan, i.e. at a higher signal-to-noise ratio on a small
selection of pixels, a reconstructed hyperspectral image of the superpixels, Ioutput(x, y, λ).

Fig. 1. Pipeline representing the different steps of the proposed smart scanning protocol.
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We now detail the UnSCR step of our smart scanning protocol as depicted in Fig. 2. During
this step, a second scan with a longer exposure of only those specific pixels underlain by the
so-called essential spectra is performed. This second scan corresponds to the upper path in Fig. 2
and to the protocol recently proposed in [25] that we briefly recall here.

Fig. 2. Detailed view of the unmixed superpixel centroid rescan (UnSCR).

The Raman spectrum Ilow(x, y) captured at each pixel (x, y) is assumed to be approximated by
a linear mixture of K individual spectra sk = (sk1, . . . , skL)

Ilow(x, y) =
K∑︂

k=1
ck(x, y)sk + e(x, y) , (1)

where ck(x, y) stands for the k-th mixture component in the spectrum measured at location (x, y)
and e(x, y) is an error term accounting for measurement noise at location (x, y). The discrete
Fourier transform of Eq. (1) along the wavelength domain translates into

Ĩlow(x, y) =
K∑︂

k=1
ck(x, y)s̃k + ẽ(x, y) , (2)

with the r-th Fourier coefficient of s̃k and ẽ(x, y) given by:

s̃kr =

L∑︂
l=1

skl exp
(︃
−j

2π
L
(r − 1)(l − 1)

)︃
, (3)

and

ẽr(x, y) =
L∑︂

l=1
el(x, y) exp

(︃
−j

2π
L
(r − 1)(l − 1)

)︃
, (4)

where r = 1, . . . , L and j the imaginary number for which j2 = −1. The real and imaginary part
of Ĩlow(x, y) can then be rewritten as

Gr(x, y) =
K∑︂

k=1
ck(x, y)ℜ(s̃kr) +ℜ(ẽr(x, y)) , (5)

Qr(x, y) =
K∑︂

k=1
ck(x, y)ℑ(s̃kr) + ℑ(ẽr(x, y)) . (6)
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By the inverse DFT, the real numbers Gr(x, y) and Qr(x, y) can be seen as coordinates of the
r-th phasor involved in the Fourier representation of Ilow(x, y)

Ilow(x, y)l =
1
L

L∑︂
r=1

(Gr(x, y) + jQr(x, y)) exp
(︃
j
2π
L
(l − 1)(r − 1)

)︃
. (7)

Consequently the phasor coordinates Gr(x, y) and Qr(x, y) of Ilow(x, y)l can be approximated as
convex combinations of the spectra s̃kr with r = 1, . . . , L.

During UnSCR, the convex hull of the points cloud including all Gr(x, y) and Qr(x, y) for all
pixels (x, y) of Ilow is computed. The pixels located on this convex hull are associated to the most
linearly dissimilar spectrum. We designate them as essential spectra. It is to be noticed that
the essential spectra may not be those of pure chemical components but always contitutes the
minimum set of profiles from which all the measured ones can be estimated linearly. To provide
a better estimate of these essential spectra they are rescanned during a longer exposure which
leads to less noisy spectra. This constitutes a first gain in time in the UnSCR method.

Therefrom, one can in principle reconstruct the spectrum of each single pixel as a combination
of the less noisy spectra essential spectra. We propose here a second source of acceleration, not
included in the original work of [25], and compute only a single representative spectrum for each
superpixel. This corresponds to the lower path in the pipeline of Fig. 2. The computation of the
spectrum of each representative of the superpixels Ilow(xp, yp) can be described in the following
way

Ilow(xp, yp) = ST
lowclow(xp, yp) (8)

where Slow is a matrix containing the K essential spectra along the rows and L spectral bands along
columns and clow(xp, yp) a vector containing the K concentrations associate with the essential
spectra for the pixel located at (xp, yp).

Since Ilow(xp, yp) contains noise, there is no exact solution for Eq. (8). However, we can find
clow(xp, yp) so as to minimize the distance between Ilow(xp, yp) and ST

lowclow(xp, yp). A possibility
is to minimize the Euclidean norm

d =
∥︁∥︁Ilow(xp, yp) − ST

lowclow(xp, yp)
∥︁∥︁2

2 , (9)

and differentiate it with respect to clow(xp, yp) :

∇c(d) = 2SlowST
lowclow(xp, yp) − 2SlowIlow(xp, yp) . (10)

The minimum of d is obtained when ∇c(d) = 0, i.e. when

clow(xp, yp) = (SlowST
low)

−1SlowIlow(xp, yp) (11)

where (SlowST
low) is supposed to be a full-rank matrix.

Then, the pixels corresponding to the essential spectra only are scanned longer, namely Shigh.
The spectrum Ioutput(xp, yp) of the centroid of the superpixels are estimated from the estimated
mixture proportion clow(xp, yp) and Shigh:

Ioutput(xp, yp) = ST
highclow(xp, yp) . (12)

The produced output image is made of superpixels with homogeneous spectra as given in
Eq. (12).

The proposed smart scanning method of Figs. 1 and 2 necessitated some choices that need to
be further detailed. First, there are many ways of producing the spectral dimension reduction.
We tested several common state-of-the-art methods. We selected the one providing the best
result on the datasets used in this article. This comparison is provided in the Appendix. Second,
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there are many ways of performing superpixel segmentation. We arbitrarily selected the version
of simple linear iterative clustering (SLIC) provided in [27] but any alternative could be used
without any loss of generality. Many criteria could be proposed to select a single representative
pixel within each superpixel. Here, we selected the spatial centroid. Also, UnSCR includes some
hyperparameters. The first one is the acquisition time of the fast first scan. The second one is the
number of elementary spectra K which can depend on the number of harmonics r used in the
DFT representation. A larger number of essential spectra can be found using more harmonics
r. The last hyperparameter is the number of superpixels P in the image. We decided to set this
number P of superpixels to an arbitrarily fixed value high enough to segment at least all the
objects of interest in our images. Finally, we vary the remaining hyperparameter r and the time
of acquisition which is related to the signal to noise ratio. With these choices, the relevance of
UnSCR has been evaluated on various datasets of practical interest as detailed in the following
section.

2.2. Datasets

We have tested our smart sampling method (UnSCR), on three real types of samples that we
describe here.

1. D1 is a sample of biomedical interest. A piece of a femoral neck was collected during a hip
replacement surgery and placed immediately in formalin. This type of sample was obtained
with written informed consent from the donor. The bone sample was then dehydrated in a
graded series of ethanol before polymethylmethacrylate (PMMA) embedding at 4◦C. The
surface of the resin block was then grinded with sandpaper and polished with diamond
paste (Struers, Champ sur Marne, France). The bone sample was finally imaged with
a Renishaw InVia Qontor confocal Raman microscope using a 20× Olympus objective
(0.40 N.A.). The spectrometer was equipped with a 1200 g/mm gratting. For excitation, a
785 nm Diode laser operated at 3 mW power was used. Raman microscopy is a common
imaging technique for the investigation of bone mineral composition [28]. One can identify
three objects of interest in the D1 sample when gazed with Raman microscopy: (i) the
Haversian canal (ϕ 50-100 µm), which is surrounded by (ii) lamellae. These form elliptic
shapes named osteons (ϕ 150-250 µm). The osteons are included in a global matrix which
constitutes (iii) the third object, i.e. background here.

2. D2 is a calibration Raman sample made using Raman material standards, namely Naph-
thalene (CAS 91-20-3) and Polystyrene (9003-70-7). Naphthalene was deposited on a
coverslip and melted with a hotplate. Polystyrene was dissolved in chloroform and a
drop of the mixture was left to air dry over the Naphtalene. The Naphtalene-Polystyrene
sample was finally imaged with a Renishaw InVia Qontor confocal Raman microscope
using a 20× Olympus objective (0.40 N.A.). The spectrometer was equipped with a 1800
g/mm gratting. For excitation, a 532 nm Diode laser operated at 1 mW power was used.
Therefore, two objects basically compose the D2 sample and yield the contrast observed in
Raman microscopy: (i) the Naphtalene crystals (ϕ 100-150 µm) which serve as objects
scattered in the sample, and (ii) the Polystyrene region which serves as a background.

3. D3 was composed of three types of objects obtained by mixing (i) powders of calcium
carbonate (CaCO3), (ii) sodium nitrate (NaNO3) and (iii) sodium sulfate (Na2SO4) and
then pressing in a tablet. The objects in this mixture of powders have no typical fixed size.
Image acquisition was performed on a LabRAM HR micro spectrometer (Horiba France
SAS, Palaiseau, France) using a 50× Olympus objective (0.75 NA). The spectrometer was
equipped with a 600 g/mm grating. For excitation, a 632.8 nm HeNe laser was used (15
mW laser power at the sample) [28,29].
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Several replicated measurements at different acquisition times were performed for each dataset,
leading to different noise levels. To quantify the noise contained in the spectra of our hyperspectral
image (HSI), we used an estimate of the signal-to-noise ratio (SNR) similar to the one given in
[30],

SNR =
1

XY

X∑︂
x=1

Y∑︂
y=1

10 log10

(︄∑︁L
λ=1 ISλ(x, y)2∑︁L
λ=1 eλ(x, y)2

)︄
(13)

with IS the signal extracted from Ilow by the Savitzky-Golay algorithm [31], and e the noise
estimated by the difference of Ilow and IS. The SNR of an HSI is estimated by the average SNR
of the whole spectra comprised in the HSI.

To reduce acquisition time compared to a classical raster scanning approach where all pixels
are scanned at high SNR, the UnSCR scanning method necessitates that few essential spectra
are detected and that the segmentation of the image in superpixels is of good quality. This is
expected to happen with the chosen samples which can be viewed as composed of few chemical
components and spatially assembled in objects of uniform content as illustrated in Fig. 3.
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Fig. 3. Comparison between real and simulated data. The first two columns correspond to
real data and the last two correspond to simulated data. Each row refers to a sample of each
dataset. D1 and D3 are 20 dB HSI and D2 is a 13 dB HSI. The crosses are located in the
different objects of the samples. The Raman spectrum of the pixel pointed by the cross is
provided with the corresponding color.

2.3. Simulator

For further assessment of the UnSCR sampling method, we generated a simulated version of
the real samples D1, D2, and D3 described in the previous section. The simulation of D1, D2,
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and D3 were composed of images covering an SNR range from -20 dB to 25 dB with a step
of 1 image per dB. To provide an estimation of the noise-induced variance, we replicated the
simulated acquisition of the same image ten times for each SNR.

The generation of the simulated samples was done using the following steps to produce realistic
synthetic hyperspectral Raman images:

1. We first initialize an empty image of size X × Y where we randomly position objects that
represent different components of the sample. A label is associated with the objects for
each of these components.

2. We simulate spectra with Lorentzian peaks at characteristic wavenumbers. We then
associate these spectra to each respective label, thus we obtain a hyperspectral image I of
size X × Y × L. Here, we add thermal noise related to the acquisition time and thus obtain
a noisy image

IN = I + N, (14)

where N is a X × Y × L tensor containing random values following a normal distribution
with a zero mean and a standard deviation

σN =
1
√

L
10a, (15)

with

a =
∑︁X

x=1
∑︁Y

y=1 10 log10(
∑︁L

λ=1 ISλ(x, y)2) − SNR × XY
20XY

. (16)

3. We finally added random sensor gain to our synthetic hyperspectral image

IN+G = IN ⊙ G (17)

by calculating the Hadamard (element-wise) product, ⊙ [32], of IN and G where G is a
X × Y × L tensor filled with random values following a normal distribution of mean one
and standard deviation empirically set to 5.10−2.

Our simulator enables the generation of synthetic data from a given sample at different SNR
levels, allowing us to test the robustness of the compared algorithms in terms of sensitivity to
the noise level and computational times. Figure 3 illustrates the spatial and spectral realism of
the simulations via a comparison between real samples and their simulated counterparts. The
images are provided at high SNR in Fig. 3.

2.4. Metrics

To quantitatively evaluate the performance of the proposed UnSCR sampling protocol, we take
into consideration spatial and spectral reconstruction of the hyperspectral image. Among all
possible metrics described in [33–36], we decided to use the Boundary Recall (Rec) from [34]
and the Precision (Prec) as an extension to the previous metric. Both assess the quality of the
segmentation according to a given spatial ground truth by respectively emphasizing its capability
to avoid missing boundaries, and accurately identify positive boundaries while minimizing false
alarms. To evaluate spectral reconstruction, we used the Root Mean Square Error (RMSE) from
[33] which measures the spectral error between our reconstructed HSI and the spectral ground
truth. Let Iseg GT be the segmented image of the ground truth. In simulated samples, this ground
truth was natively generated in silico. In real samples, the ground truth was manually established
from a Reference image acquired at high SNR Iref(x, y, λ).



Research Article Vol. 32, No. 1 / 1 Jan 2024 / Optics Express 939

We compute the number of true positives TP(Iseg, Iseg GT), false positives FP(Iseg, Iseg GT) and
false negatives FN(Iseg, Iseg GT) boundary pixels in Iseg with respect to Iseg GT, and then define

Rec(Iseg, Iseg GT) =
TP(Iseg, Iseg GT)

TP(Iseg, Iseg GT) + FN(Iseg, Iseg GT)
, (18)

and
Prec(Iseg, Iseg GT) =

TP(Iseg, Iseg GT)

TP(Iseg, Iseg GT) + FP(Iseg, Iseg GT)
, (19)

the ratio of the well-predicted boundaries among ground truth.
The Root Mean Square Error metric (RMSE) is defined as

RMSE =
1

X × Y

X∑︂
x=1

Y∑︂
y=1

⌜⃓⎷
1
L

L∑︂
λ=1

[︁
Ioutput(x, y, λ) − Iref(x, y, λ)

]︁2 . (20)

In addition to these metrics, we assess the processing time taken by the full acquisition scheme.
This includes the acquisition time of the low SNR image, the computation time for the dimension
reduction and for the segmentation in superpixels, and the sampling time for the high SNR rescan
(see Figs. 1 and 2).

To provide a relative quantitative interpretation of the metrics of performance the proposed
UnSCR sampling methods will be compared to alternative scanning protocols. First, UnSCR
is compared with the current conventional scanning method which consists in acquiring all
pixels at high SNR. We call this method the Reference. Then, we can compare UnSCR with
alternative fast scanning approaches also operating with superpixels. A method, that we call
Baseline consists in a single scan at low SNR. This image is segmented in superpixels like in
the UnSCR. Then, no rescan is done and instead, the superpixels are filled with the average
spectrum of the pixel constituting each superpixel. With this Baseline, one can probe the added
value of the UnSCR scheme of Fig. 2. We expect the Baseline to be faster than UnSCR since
there is a single-pass scan but with lower quality in spectral estimation. As a second alternative,
we propose the superpixel centroid rescan (SCR). In this variant, we find every centroid of the
superpixels on the segmented image. Based on these centroid positions, we come back on the
sample to rescan the corresponding spectra with a longer acquisition time, which leads to a higher
SNR. Each of the rescan spectra is then assigned to every pixel of the corresponding superpixel.
The compression in time is here limited by the number of the superpixels by comparison with the
UnSCR where only the essential spectra are rescanned at higher SNR. The UnSCR is expected to
be faster than the SCR in every situation where the number of essential spectra is lower than the
number of superpixels in the image.

3. Results

We start with the assessment of the sampling method UnSCR on simulated data. The quality of
the reconstruction in the spectral domain is illustrated in Fig. 4. The baseline method has a much
larger RMSE than SCR which performs just slightly better than UnSCR. Also, the number of
harmonics r does not seem to impact significantly the error. This result is interesting since a
lower number of harmonics also means a lower number of essential pixels to be rescanned and
thus faster acquisition. The error of SCR and UnSCR tends towards the same value from 0 dB.

The assessment of UnSCR on the synthetic data sets in the spatial domain is depicted in Fig. 5
with the Boundary Recall plotted as a function of the noise level for the three different synthetic
datasets. The curves exhibit a consistent overall trend and the segmentation achieves at least 90%
of precision for a noise level close to 0 dB, which is a decent accuracy for the reconstruction.
Slight differences may be observed between D1, D2, and D3 due to their different spatial and
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Fig. 4. Evolution of the Root Mean Square Error of the reconstructed spectra as a function
of SNR on a logarithmic scale. The mean error stands for the dashed lines and standard
deviation (transparent area) of the whole synthetic datasets D1, D2, and D3 estimated on
10 repetitions of simulation of noise for each SNR. All curves should be compared to the
Reference (Ref) which is a constant line at 0 error.

spectral content. Boundary recall and precision of D2 tend to be lower than D1 and D3 due to the
size of the objects (see Fig. 3). This may be due to the fact that the same number of superpixels
was set for all the datasets while obviously, more objects need to be extracted from D2 than in the
other datasets.

Concerning processing time, Fig. 6 illustrates on synthetic data that we achieved up to 1000
times faster with the UnSCR using one DFT harmonic r = 1 when compared to the current
conventional acquisition where all pixels are acquired at high SNR. In more complex situation,
higher number of harmonics might be required, however the gain in time still exist. The baseline
method is obviously the fastest since it involves no rescan step. UnSCR method achieves a
comparable speed to the baseline around 0 dB while yielding lower error (Fig. 4). From this study
on synthetic data sets, one can consider, as a trade-off between the different metrics, scanning the
first pass at 0 dB (indicated in dashed line in Figs. 4–6) and use UnSCR method to reconstruct the
hyperspectral image. This is the SNR we used to test UnSCR on the real samples of our data sets.

To confirm the validity of the results obtained at the identified trade-off of 0 dB, we provide the
reconstructed images and spectra for the simulated and real datasets in Figs. 7 and 8, respectively.
A visual comparison between Ilow, Ioutput, the Baseline, and Iref shows that the quality of the
Baseline and the UnSCR appear much better than the low SNR. Also, as expected from the
results on synthetic data of Fig. 5, the images produced by the baseline and UnSCR appear to
be not far from the Reference. The main distortion is due to the limited number of superpixels
here (that we purposely kept fixed in this article). The quality of the reconstructed spectra in
simulated and real samples when operating at 0 dB is provided in Fig. 8 for the different objects
present in the samples. Agreement of the UnSCR spectra with the spectra of Reference is very
good with exact superimposing curves except for one object of the sample D3 where some errors
appear. This lower performance with a larger error on D3 can be interpreted in the following way.
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Fig. 5. Evolution of the boundary recall (Rec) and the precision (Prec) as a function of
SNR for the synthetic data sets D1, D2, and D3. The mean error stands for the dashed lines
and standard deviation (transparent area) of the whole synthetic datasets D1, D2, and D3
estimated on 10 repetitions of simulation of noise for each SNR. Curves should be compared
to the Reference (Ref) which is a constant line at 100%.
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Fig. 6. Average evolution of the processing time as a function of SNR on a synthetic version
of all data sets D1, D2, and D3. The mean error stands for the dashed lines and standard
deviation (transparent area) of the whole synthetic datasets D1, D2, and D3 estimated on 10
repetitions of simulation of noise for each SNR.

In the samples D1 and D2, the chemical content and the spatial content are highly intricated with
objects containing almost pure chemical components. By contrast, D3 is a mixture of scattered
powders with overlapping chemical content. Interestingly, the quantitative assessment of the
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Fig. 7. Spatial qualitative assessment of our smart sampling method on the three datasets
with the single spectral component Imono. Panel (a) stands for the simulated dataset and (b)
for the real dataset. Low SNR hyperspectral image (0 dB) on which are based the methods are
presented on the first (left) column. The Baseline and our proposed smart sampling method
respectively on the second and the third column. The reference high SNR hyperspectral
image (25 dB) is depicted on the right in the fourth column. To allow visualization, we
reduced the hyperspectral images to grayscale images by using the Fourier transform (see
2.1).
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Fig. 8. Qualitative assessment of the reconstructed spectra of the different objects imaged
in the three simulated (a) and real (b) samples. Left panels: spectra acquired at low SNR
(0 dB). Middle panels: spectra computed by means of Baseline. Right panels: spectra
reconstructed by means of UnSCR. Reference spectra are represented as solid gray lines.
All spectra are retrieved at the pixel locations indicated in Fig. 3.
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error on the simulated and the real samples when operating at 0 dB for the first scan are in good
agreement as illustrated in Table 1.

Table 1. Quantitative assessment of the images used in the Figs. 7 and 8.
Processing time is detailed as follows: first stands for the duration of the first

scan, i.e. the low SNR hyperspectral image acquisition time; Computing stands
for computation time of the dimension reduction; Second scan stands for the

segmentation and sampling method and rescanning time.

Dataset Rec RMSE
Processing time (s)

First scan Computing Second scan Total

Simulated
D1 0.98 0.015 501 13 190 704

D2 0.89 0.010 501 13 174 688

D3 0.95 0.022 501 13 254 758

Real
D1 0.97 0.016 501 13 238 752

D2 0.99 0.026 501 14 222 737

D3 0.98 0.012 501 14 206 712

4. Discussion

The result section demonstrated the efficiency of the UnSCR sampling method both in simulation
and with real data. The gain in time is remarkable especially for samples for which the Raman
signal is weak. This is for instance the case with the sample D1 of biomedical interest. For such
bone samples, the conventional Reference scanning where all pixels are scanned at high SNR is
11 hours. With UnSCR the process takes less than a second.

This work opens perspectives in several directions to further improve the images reconstructed
after our smart scanning protocol. On the spectral side, we used a basic mean square method.
There exist many alternatives to spectral unmixing that could be tested to further improve the
reconstruction [37]. Specifically, from a chemometric perspective [38], one could head toward
the decomposition in terms of pure chemical content instead of decomposition on the essential
spectra. On the spatial side we also used a basic superpixelization algorithm. Many variants
of this algorithm exist and could be tested such as multiscale superpixels [39] that would be
specifically adapted for complex samples made of objects of various sizes. Concerning the
scanning time, as visible in Table 1 the current limiting factor of the method remains the first scan.
We could select a lower SNR and head for an advanced denoising method before applying the
superpixelization. An alternative would be to use another imaging modality registered with our
Raman microscope which would be accessible at low cost and at faster speed. One could think of
RGB imaging, polarization imaging, or any alternative that would provide enough contrast to
allow a good superpixelization. The interest of UnSCR was demonstrated on real and simulated
samples made of homogeneous objects composed of few chemical components. The rescan
of the sole essential spectral and the segmentation in superpixel is found efficient under these
assumptions. After this proof of feasibility, it would be important to investigate what happens
when one departs from these assumptions. One could also investigate the impact of the number
of harmonics for various types of spectra. This is accessible with the simulator that we developed
and that we make accessible to the reader (supplementary material to be added after acceptance
of the manuscript). Last, the UnSCR could be performed jointly with other smart scanning
strategies proposed in the literature [5–14,16–21] to further increase the acquisition speed. More
specifically, the methods based on the use of filters with digital micro-mirror device (DMD) are
accelerating the acquisition of the spectral data but then rely on a single scan of all the pixels
of the sample at the same SNR. Our acceleration in the spectral domain is based, instead, on a
selective two-pass scan. Interestingly, the two methods are therefore completely compatible. As
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such, UnSCR could therefore be further accelerated coupling it with a DMD setup system. This
would be particularly suited for the protocol of spectral estimation described in [21].

One may wonder how our UnSCR relates to artificial intelligence (AI) approaches more and
more used for denoising and computational imaging [40,41] as well as for fast Raman microscopy
[42,43]. Modern AI is mostly based on supervised or self-supervised learning. This means that
examples of data annotated by humans or by the machines themselves have to be provided for
training purposes. Morever, the training process can be very long especially when considering
tensors of data such as hyperspectral images. High SNR images could always be generated in
real time, from low-SNR images but only after such a training process on a given set of sample.
Conversely, our scanning method can operate in real time, without the need of training at least
at the speed indicated in Table 1, speed that could be even further increased. Besides, another
limitation of AI methods is that they are data-driven. If the samples change, then the training has
to be performed again. Conversely, our method only required the knowledge of the typical size
of the objects in the scene and does not have to be further fine-tuned as demonstrated with the
three types of images used for illustration in this article. The latest advancements in AI head
toward reducing the need for annotation with few or zero-shot learning based on foundation
models [44]. With few-shot learning approaches, image annotation is still necessary as illustrated
recently for Raman microscopy [43]. In zero-shot learning, the methods require few prompts
(bounding boxes, pixels). An interesting approach combining the principles of UnSCR with
those of zero-shot learning methods could be to use the spatial features (superpixels, centroids
. . .) produced by UnSCR as prompts to generate an improved post-processed image.

5. Conclusion

We have introduced a smart-scanning method for Raman microscopy imaging which can speed up
the acquisition by a factor of 1000. This method is suited for samples constituted of objects with
homogeneous chemical content. The gain is larger than the one recently estimated in [25] because
we combined a compression in the spectral domain via essential spectral and compression in
the spatial domain via superpixels. The investigations have been carried out successfully on
simulated and real samples of biological and pharmacological interest which provided a good
match. We have discussed new directions to head toward further improvements in the speed and
quality of image reconstruction for this new fast scanning protocol.

Last but not least, it is worth noting that the UnSCR method could apply to any situation with
spatial scenes made of objects with homogeneous content and linear combination of components
mixed in the non spatial dimension. As such it is therefore not limited to Raman microscopy.
This non spatial dimension could be other spectral information but also temporal dimension. The
interest is when the scanning at low SNR is mandatory and long. It could for instance be of specific
value for fluorescence life time microscopy (FLIM) for which linear combination of signals
(exponential relaxations) can be assumed and low SNR is mandatory to avoid photobleaching.

6. Appendix

In this appendix, we report the comparison we conducted on various dimension reduction
techniques we tested for the production of the spectral mono-component grayscale image
Imono(x, y) from the original low SNR first scan image Ilow(x, y, λ) as depicted in Fig. 1. Our
algorithm is intended to operate on the fly, we cannot use a supervised method. Therefore, we
included only non-supervised methods in our comparison. As a disclaimer, we also stress that
this selection of methods was not intended to be an exhaustive benchmark since in principle
all methods would be appropriate provided that their computational cost is reasonable (i.e. no
appearing as a limiting factor in the UnSCR process) and the superpixel segmentation is judged
of sufficient quality. We included a simple mean, the standard PCA, t-SNE [45], UMAP [46],
ISOMAP [47] and the discrete Fourier transform along the first spectral harmonic as provided in
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Fig. 9. Visualization of Imono(x, y) reduced by different spectral dimension reduction
methods. Original low SNR hyperspectral image Ilow(x, y, λ) was simulated from the D1
data set.

Table 2. Precision of the segmentation obtained on the images depicted in
Fig. 9 with the tested dimension reduction methods and associated

computation times.

Method Mean PCA t-SNE UMAP ISOMAP DFT

Boundary Recall 0.961 0.996 0.931 0.939 0.977 0.989

Precision 0.952 0.994 0.930 0.929 0.970 0.983

Computation time (ms) 17 149 15803 12225 93607 221

Eq. (1) with r=1. We tested on a simulation of the data set D1 (i.e. bone sample) generated at
0 SNR (see Eq. (13)) to compare all these methods. The comparison with the superpixelized
version of the ground truth was measured with the boundary recall and precision of Eqs. (18)
and (19). The comparative visualization of the Imono(x, y) is provided in Fig. 9. The quantitative
comparison of the boundary recall is given in Table 2 together with the computation time. The
fastest method is of course the simple computation of the mean. The DFT appears second in both
boundary recall and precision, and third in computational time thanks to the fast Fourier transform
algorithm. Consequently, the discrete Fourier transform appears as an appropriate choice since
it is relatively fast and provides comparable results in terms of segmentation to the best-tested
method (PCA). On top of it all, the Discrete Fourier transform is already to be computed to select
the essential spectra. Therefore, we selected this method to produce Imono(x, y).

7. Supplementary material

The code for the essential spectra computing is available in our previous article [25]. We
provide as an exe file the simulator used in this article to allow reproducibility of the simulation.
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In addition, a video tutorial of how to use this simulator is accessible at https://uabox.univ-
angers.fr/index.php/s/06nv06docramS0V.
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