
HAL Id: hal-04409232
https://hal.science/hal-04409232v1

Preprint submitted on 22 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unveiling Derivatives in Deep and Convolutional Neural
Networks: A Guide to Understanding and Optimization

Areeg Fahad Rasheed, M. Zarkoosh

To cite this version:
Areeg Fahad Rasheed, M. Zarkoosh. Unveiling Derivatives in Deep and Convolutional Neural Net-
works: A Guide to Understanding and Optimization. 2024. �hal-04409232�

https://hal.science/hal-04409232v1
https://hal.archives-ouvertes.fr


Unveiling Derivatives in Deep and Convolutional Neural Networks: A
Guide to Understanding and Optimization

Areeg Fahad Rasheed and M. Zarkoosh

1 Al-Nahrain University, College of Information Engineering, Baghdad, Iraq

Email:areeg.fahad@coie-nahrain.edu.iq, fahedareeg@gmail.com

2 Software Engineering, Baghdad, Iraq

Email:m94zarkoosh@gmail.com

Abstract

The world of artificial intelligence and deep learning is constantly evolving, with many pioneers and
researchers utilizing frameworks such as TensorFlow and PyTorch to expedite their research. While these
pre-built frameworks offer a swift execution process and alleviate the burden of pure programming, they
may also result in a superficial grasp of the intricate mathematical mechanics involved in deep learning.
This lack of deep understanding can impede the optimization process and hinder the achievement of
optimal performance in developing deep networks. To overcome these challenges, the objective of this
paper is to simplify, clarify, and remove obstacles to the mechanics of deep learning networks, streamlining
the development process for researchers. In this paper, Our exploration of these networks will include
explaining the derivative of various methods and activation functions, providing a deeper insight into the topic.

Keywords: Deep learning, Convolutional neural network, PyTorch, TensorFlow

1. Introduction

Deep learning is a subfield of machine learning
that uses artificial neural networks to model com-
plex patterns and relationships in data [1]. It has
become increasingly popular in recent years due to
its ability to handle large and diverse datasets and
produce highly accurate predictions. Deep learning
has been applied to a wide range of fields, including
image and speech recognition [2], natural language
processing, security [3–5], drug discovery, and even
game playing [6]. It has also shown promise in
healthcare, where it has been used for tasks such
as medical image analysis and disease diagnosis
[7]..etc.

Deep learning and neural networks rely on two
important concepts: forward and backward propaga-
tion. During forward propagation, each layer of the
network applies a set of mathematical operations to
the input, transforming it into a new representation

that is passed to the next layer. The output of the
final layer is the prediction made by the neural
network [8]. While in the backpropagation the error
signal is propagated backwards through the network,
allowing the network to adjust its weights in re-
sponse to the error signal. This is done by computing
the gradients of the loss function with respect to
each weight in the network, and then adjusting the
weights in the direction that reduces the loss function
[9].

Building and developing a deep learning model
using a pure programming language can be a time-
consuming, complex, and error-prone task. This is
where the use of deep learning frameworks such as
TensorFlow, PyTorch, and many others can be im-
mensely beneficial. These frameworks offer a variety
of tools and resources that allow developers to build,
test, and deploy deep learning models with ease.
Many current researchers rely on these frameworks
to accelerate their work and improve their produc-



tivity [10].
However, while deep learning frameworks offer

many advantages, relying solely on them to build
models can also be insufficient. It is important to
have a solid understanding of the underlying prin-
ciples of deep learning to optimise and fine-tune
models. Additionally, there is a lack of research
and literature available that explains the details of
the forward and backward derivatives used in deep
learning. Therefore, this paper aims to bridge this
gap and provide a detailed explanation of the for-
ward and backward derivative processes in deep
learning, thus enabling researchers to gain a deeper
understanding of how deep learning works and ul-
timately improving their ability to optimise and im-
prove deep learning models.

In this paper, we will explain how the system
produces the predicted value during the propagation
process and adjusts the weights and bias during
backpropagation. We will also discuss the use of
multiple activation functions and network architec-
tures. before diving into the details of deep learning,
let’s define the main concepts and notations.

2. Deep Learning Notation and Termi-
nology

Before delving into the mathematical operations
of deep learning, it is essential to understand the var-
ious notations and terminologies used in this field. In
the following section, we provide brief definitions of
these terminologies and their main purpose in deep
learning technology.

2.1. The Deep Learning notation used in this
paper

Table 1 presents the main notations used
throughout this paper.

2.2. Deep learning terminologies

1) Weights: Weights, also known as parame-
ters, are referred to as W: it is used in most
of the deep learning and machine learn-
ing techniques. These weights determine
the strength of the connections and play
a critical role in the network’s ability to
accurately model the relationships between
inputs and outputs. During the training pro-
cess, the weights are updated based on the
error between the network’s predictions and
the actual outputs. The goal of training is
to adjust the weights to minimise this error

and improve the accuracy of the model’s
predictions [11].

2) Bias b: It is a constant value that is added to
the weighted sum of input before being fed
to the activation function [12]. By allowing
it to shift the output in the desired direction.
It allows the model to be more flexible and
accurate with the training data and prevents
the over-fitting problem.

3) Activation function (a): is a mathemati-
cal function that is applied to the sum of
weights of inputs and bias. Selecting the
proper activation function is an important
aspect of designing a deep learning model
because it can have a significant impact on
its performance. There are multiple activa-
tion functions used in deep learning models
such as [13].

• Sigmoid function: The sigmoid func-
tion takes an input and maps it to a
value between 0 and 1. It is com-
monly used in the last layer for bi-
nary classification tasks [14].

• ReLU (Rectified Linear Unit): ReLU
takes the input and returns 0 if the
input is negative or zero and the
input value if the input is positive.
It is popularly used in hidden layers
because it is simple and computa-
tionally efficient [15].

• Tanh (Hyperbolic tangent): Tanh is
also used in the hidden layer more
than the output layer. It takes the
input and maps it to a value between
-1 and 1 [16].

• Softmax: Softmax takes the input
and converts it to a vector between
0 and 1, where the total value of
the vector is 1. It is usually used
in the output layer and for multiple
classification tasks [17].

4) Hidden Layers : The construction of a deep
neural network consists of three types of
layers. The first layer is the input layer,
where the data is fed. The last layer is
the output layer, where the network con-
structs the prediction. Between the two lay-
ers, there are multiple hidden layers. The
hidden layers are called ”hidden” because
their output is not directly observed [18].
Instead, it is passed on to the next layer until
it reaches the output layer. The purpose of
the hidden layers is to transform the input
data in a way that allows the network to



Table 1. Notation used in deep learning.
Symbol Definition

A Activation value in a neural network
C Number of classes in a classification task

J(y, ŷ) Loss function
K Convolution filter
L The number of layers in a neural network
α Learning rate
W Weights of the model
X Input to the model

Ypool Output of Pooling Layer
Z Pre-activation values in a neural network

(x(i), y(i)) ∈ D i-th data point in dataset
∂A
∂Z

the partial derivative of the Activation value A with respect to the Pre-activation value Z
∂J
∂A

the partial derivative of the loss function J with respect to the predicted output A
∂J
∂b

the partial derivative of the loss function J with respect to the bias b
∂J
∂W

the partial derivative of the loss function J with respect to the weight parameter W
∂J

∂Ypool
the partial derivative of the loss function J with respect to the Output of Pooling Layer Ypool

∂J
∂Z

the partial derivative of the loss function J with respect to the Pre-activation values Z

learn a complex representation of the data
that can be used for classification, predic-
tion, or other tasks. The number of hidden
layers and the number of neurons in each
hidden layer are hyperparameters that can
be tuned to improve the neural network’s
performance.

5) Convolution layers: Convolutions layers are
a type of layer commonly used in deep
learning models for image recognition and
computer vision tasks [19]. The main pur-
pose of a convolution layer is to extract
features from the input image by perform-
ing convolutional operations on it [20]. In
a convolutions layer, the image is repre-
sented as a matrix of pixel values. The layer
consists of a set of filters (kernels), which
are small matrices that slide over the image
and perform dot products with the corre-
sponding input matrix. The dot product of
the filter and a portion of the input matrix
produces a scalar value, which is then used
to create a new output matrix [21].

6) Gradient descent: It is an optimization al-
gorithm used to minimize the cost function
by adjusting the weights and biases of the
neural network during the training process
[22]. The algorithm works by calculating
the gradient of the cost function concern-
ing the weights and biases, which gives
the direction of the steepest descent. The
weights and biases are then updated in the
opposite direction of the gradient, which
moves them closer to the optimal values
that minimize the cost function [23]. This
process is repeated iteratively until the cost

function is minimized.
7) Cost function: In deep learning, the method

used to compute and evaluate the error be-
tween the predicted output and the actual
output is known as the cost function. This
function measures the discrepancy between
the predicted output and the actual out-
put and provides a measure of how well
the neural network is performing [24]. The
choice of cost function can depend on the
specific problem being solved and the type
of output produced by the network. For ex-
ample, the mean squared error (MSE) cost
function is commonly used in regression
tasks, while the cross-entropy loss function
is often used in classification tasks [25].

8) Forward propagation is the process of pass-
ing input data through a neural network
to generate an output or prediction. During
forward propagation, the input data is mul-
tiplied by the weights and added to the bias
term at each layer [26]. Then, the activation
function is applied to the weighted sum,
producing the output for that layer. The
output of one layer is then passed as input
to the next layer until the output layer is
reached and a final prediction is generated.

9) Back-propagation is a mathematical tech-
nique used to train deep neural networks.
The purpose of back-propagation is to up-
date the weights and biases of the neural
network during training to minimize the
error between the predicted output and the
actual output. During backward propaga-
tion, the error between the predicted output
and the actual output is computed, and then



Figure 1. Chain rule example.

the error is propagated back through the
network, starting from the output layer and
working backward. As the error is propa-
gated backward, the weights and biases of
the network are updated using the gradient
of the error concerning each weight and bias
using the chain rule [27].

10) Regularization techniques play a crucial
role in preventing overfitting, a common
pitfall in machine learning that occurs when
a model becomes overly tailored to the
training data, compromising its ability to
generalize to new, unseen examples. [1] To
address this issue, regularization strategi-
cally introduces constraints or penalties dur-
ing the learning process, guiding the model
toward simpler and more generalizable so-
lutions [28–30].

3. Chain rule principle

The chain rule is a calculus rule used to com-
pute the derivative of a function composed of sev-
eral nested functions [31]. In the context of neural
networks, the chain rule is used to calculate the
gradient of the cost function concerning the weights
and biases of each layer in the network during back-
propagation. It does this by multiplying the gradients
of each layer together, starting from the output layer
and working backward toward the input layer. To
explain the concept of the chain rule, we will use a
network diagram in Figure 1, consisting of multiple
blocks, each representing a function. The output of
one block will serve as the input to the next block,
and so on.

The forward propagation process, as shown in
figure 1, is used to compute the value of the final
output, which in this case is J(W ). However, to
update the parameters of the model during training,
we need to compute the gradients of the loss function
with respect to the parameters, starting from the
output and working our way backward through the
layers of the network.

In this case, the value of J depends on W , which
is itself a function of G and C. Since C is a constant,

it does not affect the calculation of the derivative of
J with respect to W . Therefore, the chain rule can
be used to express the derivative of J with respect to
W as the product of the derivative of J with respect
to G and the derivative of G with respect to W , as
shown in equation (1):

∂J

∂W
=

∂J

∂G
· ∂G

∂W
(1)

To compute the derivative of J with respect to
G, we follow a similar process. In the forward prop-
agation, we see W depends on G and C. Therefore,
we can compute the derivative of J with respect to
G, as the product of the derivative of J with respect
to W multiplied by the derivative of W , with respect
to G, as shown in equation 2:

∂J

∂G
=

∂J

∂W
· ∂W
∂G

(2)

Since we have already computed ∂J
∂W in equation

1, we now need to compute ∂W
∂G . From equation 2,

we know that W depends on G, so we can write:
W = G+C Taking the derivative of both sides with
respect to G, we get: ∂W

∂G = 1 Substituting this result
back into equation 2, we get: ∂J

∂G = ∂J
∂W · 1 = ∂J

∂W

Therefore, we can conclude that: ∂J
∂G = ∂J

∂W

For the derivative of J with respect to C. Equa-
tion 3 is used.

∂J

∂C
=

∂J

∂W
· ∂W
∂C

(3)

Since C is a constant, its derivative is zero.
Therefore, the derivative of J with respect to C is
0.

To compute the derivatives of A and B with
respect to J , we need to take into account the
dependencies on W and G. We can calculate them
using equations (4) and (5):

∂J

∂A
=

∂J

∂G
· ∂G
∂A

(4)

∂J

∂B
=

∂J

∂G
· ∂G
∂B

(5)

We can compute ∂J
∂G using equation (2), which is

equal to ∂J
∂W · ∂W

∂G . The ∂G
∂A is equal to B; therefore,

the final equation of ∂J
∂A is ∂J

∂A = ∂J
∂W · ∂W

∂G · B.
Similarly, we can compute the ∂J

∂B , which is equal
to ∂J

∂B = ∂J
∂W · ∂W

∂G ·A.



4. Derivative Clarification

This section is divided into two parts. The first
part provides an in-depth explanation of the deriva-
tives in deep neural networks, covering multiple
network architectures and different activation func-
tions. The second part focuses on the derivatives of
convolutional neural networks.

4.1. Deep Neural Networks

Deep neural networks have a wide range of
architectures that can be used for various tasks. In
this section, we will focus on explaining the most
popular architectures used by researchers in the field.

1) Single-Layer Neural Network with Sigmoid
Activation: It is the simplest neural net-
work, using only one layer, the output layer,
which uses a sigmoid activation function.
In the forward process the input layer can
consist of either a single value or a vector
of values multiplied by weights and added
to the bias term to generate the output linear
value Z as shown in equation (7). The
resulting sum is then passed through a sig-
moid activation function, which generates
the predicted output value, denoted as ŷ or
A as in equation (8).

Z = WT ·X + b (7)

A or Ŷ =
1

1 + e−Z
(8)

In deep learning, the ultimate goal is to
train a model that can accurately predict the
desired output for a given input. To achieve
this, we need to update the model’s weights
based on the difference between the pre-
dicted output and the actual output. The cost
function, also known as the loss function,
is used to calculate this difference. The log
loss function also commonly referred to as
binary cross-entropy loss is used for this
architecture as in equation (9).

J(A, Y ) = Y log(A) + (1− Y )log(1−A)
(9)

In order to update the weights W in the
neural network during backpropagation, we
need to compute the gradient of the loss
function (J) with respect to the weights W .
In order to do this, we need to compute

the derivatives of J with respect to A, then
the derivative of Z with respect to A, and
finally the derivative of J with respect to
W using the chain rule.
Based on equation (9) and using calculus,
we can compute the derivative of ∂J

∂A as
shown in equation (10)

∂J

∂A
= −Y

A
+

1− Y

1−A
(10)

After computing ∂J
∂A , we need to compute

∂J
∂Z according to equation (11).

∂J

∂Z
=

∂J

∂A
· ∂A
∂Z

(11)

the ∂J
∂A is equal to (−Y

A + 1−Y
1−A ) while

∂A
∂Z is the derivative of sigmoid function in
equation (8) which is equal to A(1−A) as
illustrated in equation (12)

∂A

∂Z
σ(Z) =

∂A

∂Z

[
1

1 + e−Z

]
=

∂A

∂Z

(
1 + e−Z

)−1

= −(1 + e−Z)−2(−e−Z)

=
e−Z

(1 + e−Z)
2

=
1

1 + e−Z
· e−Z

1 + e−Z

=
1

1 + e−Z
· (1 + e−Z)− 1

1 + e−Z

=
1

1 + e−Z
·
(
1 + e−Z

1 + e−Z
− 1

1 + e−Z

)
=

1

1 + e−Z
·
(
1− 1

1 + e−Z

)
= σ(Z) · (1− σ(Z))

= A(1−A) (12)

Then the ∂J
∂Z is equal to −Y

A + 1−Y
1−A ·A(1−

A)
Once we have computed the derivative of
the loss function with respect to the output
of the linear transformation (i.e., ∂J

∂Z ), we
can use the chain rule of differentiation to
compute the derivatives of the loss function
with respect to the weight ∂J

∂W and biases
∂J
∂b of the neural network, according to equa-
tions (13) and (14) respectively.



∂J

∂W
=

∂J

∂Z
· ∂Z

∂W
(13)

∂J

∂b
=

∂J

∂Z
· ∂Z
∂b

(14)

the value of ∂Z
∂W is equal to ∂Z

∂W (WT ·X +
b) = X and the ∂Z

∂b is equal to ∂Z
∂b (W

T ·
X + b) = 1 therefore the final value of the
∂Z
∂W and ∂Z

∂b are

∂J

∂W
= −Y

A
+

1− Y

1−A
A(1−A)X

∂J

∂b
= −Y

A
+

1− Y

1−A
A(1−A)

After computing the gradients ∂J
∂W and ∂J

∂b ,
we can adjust the weights and biases using
equations (15) and (16) respectively. These
updates aim to decrease the cost error and
improve the predictive performance of the
system.

W = W − α
∂J

∂W
(15)

b = b− α
∂J

∂b
(16)

If ∂J
∂W is greater than zero, it means that in-

creasing the value of the weights W would
increase the value of the cost function J .
Therefore, the weights need to be decreased
to minimize the cost.
On the other hand, if ∂J

∂W is less than zero,
it means that decreasing the value of the
weights W would increase the value of the
cost function J . Therefore, the weights need
to be increased to minimize the cost.

2) Two-Layer Neural Network with Tanh and
Sigmoid Activations: The architecture of
this neural network differs from the first
one as it consists of two layers and utilizes
two activation functions. The first is the
hyperbolic tangent (Tanh) function (refer
to equation 17), while the second is the
sigmoid function (refer to equation 8), used
in the output layer. The forward equation
begins by computing Z and then applies
the activation function to calculate the value
(A) of the first layer A. This activation out-
put A then serves as the input for the second
layer. The loss function in this architecture
is the same as the one in equation (9). Ta-
ble 2 illustrates the forward and backward
equations of this architecture.

A
[l]
Tanh =

eZ
[l] − e−Z[l]

eZ[l] + e−Z[l]
(17)

It is important to know that the derivative
of activation function A with respect to Z
based on equation (17) is computed as in
equation (18):

∂A

∂Z
=

(eZ + e−Z)(eZ + e−Z)− (eZ − e−Z)(eZ − e−Z)

(eZ + e−Z)2

=
(e2Z + e−2Z)− (e2Z − e−2Z)

(e2Z + e−2Z)

=
(e2Z + e−2Z)

(e2Z + e−2Z)
− (e2Z − e−2Z)

(e2Z + e−2Z)

= 1− tanh(Z)2 = 1−A2 (18)

3) A Two-Layer Neural Network with ReLU
and Sigmoid Activations involves a process
of computing both forward and backward
propagation, similar to the previous archi-
tecture, as summarized in Table 3. The first
layer employs the ReLU activation func-
tion, and the second layer uses the sigmoid
activation function. However, the key dis-
tinction lies in the equations and derivatives
of the ReLU activation function with re-
spect to Z, which are presented in equations
(19) and (20), respectively.

A =

{
Z, if Z > 0

0, otherwise
(19)

∂A

∂Z
=

{
1, if Z > 0

0, otherwise
(20)

4) A Multi-Layer Neural Network with ReLU
and Sigmoid Activations. It is more appro-
priate for the complex tasks. In this ar-
chitecture, the ReLU activation function is
applied to the hidden layers of the network,
while the sigmoid function is used for the
output layer. The equations and derivatives
for both activation functions can be sum-
marized in Table 4.

5) Multi-Layer Neural Network with ReLU
and Softmax Activations. This architecture
is used for multiclass classification tasks.
In this architecture, the softmax equation in
(20) produces a vector, and the predicted
class is determined by selecting the index
of the highest value in the vector. The loss



Table 2. Forward and Backward Equations for a Two-Layer Perceptron with Tanh and Sigmoid Activation Functions
Layer Name Forward Equation Backward Equation

Layer 1
W

[1]
current W

[1]
new := W

[1]
current − α ∂J

∂W
[1]
current

∂J
∂W [1] = ∂J

∂Z[1] ·
∂Z[1]

∂W [1] = ∂J
∂Z[1] ·XT

b
[1]
current b

[1]
new := b

[1]
current − α ∂J

∂b
[1]
current

∂J
∂b[1]

= ∂J
∂Z[1] ·

∂Z[1]

∂b[1]
= ∂J

∂Z[1] · 1

Z[1] = XW [1] + b[1] ∂J
∂Z[1] = ∂J

∂A[1] ·
∂A[1]

∂Z[1] = ∂J
∂A[1] · (1− (A[1])2)

A[1] = eZ
[1]

−e−Z[1]

eZ
[1]

+e−Z[1]
∂J

∂A[1] = ∂J
∂Z[2] ·

∂Z[2]

∂A[1] = ∂J
∂Z[2] ·W [2]

Layer 2

W
[2]
current W

[2]
new := W

[2]
current − α ∂J

∂W
[2]
current

∂J

∂W
[2]
current

= ∂J
∂Z[2] ·

∂Z[2]

∂W
[2]
current

= ∂J
∂Z[2] ·A[2]

b
[2]
current b

[2]
new := b

[2]
current − α ∂J

∂b
[2]
current

∂J

∂b
[2]
current

= ∂J
∂Z[2] ·

∂Z[2]

∂b
[2]
current

= ∂J
∂Z[2] · 1

Z[2] = A[1]W [2] + b[2] ∂J
∂Z[2] = ∂J

∂A[2] ·
∂A[2]

∂Z[2] = ∂J
∂A[2] ·A[2](1−A[2])

A[2] = 1

1+e−Z[2]
∂J

∂A[2] = − Y
A[2] +

1−Y

1−A[2]

Loss Function J(A[2], Y ) = Y log(A[2]) + (1− Y ) log(1−A[2])

Table 3. Forward and Backward Equations for a Two-Layer Perceptron with RelU and Sigmoid Activation Functions
Layer Name Forward Equation Backward Equation

Layer 1
W

[1]
current W

[1]
new := W

[1]
current − α ∂J

∂W
[1]
current

∂J
∂W [1] = ∂J

∂Z[1] ·
∂Z[1]

∂W [1] = ∂J
∂Z[1] ·XT

b
[1]
current b

[1]
new := b

[1]
current − α ∂J

∂b
[1]
current

∂J
∂b[1]

= ∂J
∂Z[1] ·

∂Z[1]

∂b[1]
= ∂J

∂Z[1] · 1

Z[1] = XW [1] + b[1] ∂J
∂Z[1] = ∂J

∂A[1] ·
∂A[1]

∂Z[1] = ∂J
∂A[1] · (

{
1, if Z[1] > 0

0, otherwise
)

A[1] =

{
Z[1], if Z[1] ≥ 0

0, otherwise
∂J

∂A[1] = ∂J
∂Z[2] ·

∂Z[2]

∂A[1] = ∂J
∂Z[2] ·W [2]

Layer 2

W
[2]
current W

[2]
new := W

[2]
current − α ∂J

∂W
[2]
current

∂J

∂W
[2]
current

= ∂J
∂Z[2] ·

∂Z[2]

∂W
[2]
current

= ∂J
∂Z[2] ·A[2]

b
[2]
current b

[2]
new := b

[2]
current − α ∂J

∂b
[2]
current

∂J

∂b
[2]
current

= ∂J
∂Z[2] ·

∂Z[2]

∂b
[2]
current

= ∂J
∂Z[2] · 1

Z[2] = A[1]W [2] + b[2] ∂J
∂Z[2] = ∂J

∂A[2] ·
∂A[2]

∂Z[2] = ∂J
∂A[2] ·A[2](1−A[2])

A[2] = 1

1+e−Z[2]
∂J

∂A[2] = − Y
A[2] +

1−Y

1−A[2]

Loss Function J(A[2], Y ) = Y log(A[2]) + (1− Y ) log(1−A[2])

function for softmax is typically the cross-
entropy loss, which is given by equation
(21).

A =


eZ1∑C
i ezi

eZ2∑C
i ezi

...
eZC∑C
i ezi

 (20)

L(Y,A) = −
C∑
i=1

Yi log(Ai) (21)

In backpropagation, we need to compute the
gradients of the loss function with respect
to all the parameters of the model, including
A and Z. The gradient of the loss function
with respect to A can be computed using
equation 22, which represents the cross-
entropy loss for a multi-class classification



problem. The second important step is to
compute the derivative of A with respect to
Z. The equation for the softmax function
(A) yields a vector with multiple elements,
where each element corresponds to the pre-
dicted probability of belonging to a specific
class as in equation (20). The predicted
probability is obtained by taking the expo-
nential of the Z value for each class and
dividing it by the sum of the exponentials of
all Z values. Thus, to calculate the deriva-
tive of a specific class Ai, it is necessary
to sum the derivative of Ai with respect to
all Z. This is because every element of A
depends on all elements of Z, and a change
in any Z value will affect all the elements
of A. The Jacobian matrix in equation (23)
represents all the derivatives that need to be
computed to obtain the general derivative of
∂A
∂Z , which is important in back propagation

algorithms to update the model’s parameters
during training.

∂L

∂A
= −

C∑
i=1

yi log(ai) (22)

∂A

∂Z
=


∂a1

∂z1
∂a1

∂z2
. . . ∂a1

∂zc
∂a2

∂z1
∂a2

∂z2
. . . ∂a2

∂zc
...

...
. . .

...
∂ac

∂z1
∂ac

∂z2
. . . ∂ac

∂zc

 (23)

Each element in the Jacobian matrix, ∂A
∂Z ,

can be simplified. To illustrate this, we can
take the values of ∂a1

∂z1
, ∂a1

∂z2
, ∂a2

∂z1
, and ∂a2

∂z2
and simplify them as in equation (24, 25,
26, 27)

∂a1
∂z1

=
∂

∂z1

(
ez1

ez1 + ez2 + ez3 + ...+ ezn

)
=

ez1 · ∂
∂z1

(ez1)

(ez1 + ez2 + ez3 + ...+ ezn)2

=
ez1(ez1 + ez2 + ez3 + ...+ ezn)

(ez1 + ez2 + ez3 + ...+ ezn)2

=
ez1

ez1 + ez2 + ez3 + ...+ ezn
· e

z1 + ez2 + ez3 + ...+ ezn − ez1

ez1 + ez2 + ez3 + ...+ ezn

= a1(1− a1) (24)

¡

∂a1
∂z2

=
∂

∂z2

(
ez1

ez1 + ez2 + ez3 + ...+ ezn

)
=

ez1 · ∂
∂z2

(ez2)

(ez1 + ez2 + ez3 + ...+ ezn)2

=
−ez1ez2

(ez1 + ez2 + ez3 + ...+ ezn)2

= −a1a2 (25)

¡

∂a2
∂z1

=
∂

∂z1

(
ez2

ez1 + ez2 + ez3 + ...+ ezn

)
=

ez2 · ∂
∂z1

(ez1)

(ez1 + ez2 + ez3 + ...+ ezn)2

=
−ez1ez2

(ez1 + ez2 + ez3 + ...+ ezn)2

= −a1a2 (26)



∂a2
∂z2

=
∂

∂z2

(
ez2

ez1 + ez2 + ez3 + ...+ ezn

)
=

ez2 · ∂
∂z2

(ez2)

(ez1 + ez2 + ez3 + ...+ ezn)2

=
ez2(ez2 + ez1 + ez3 + ...+ ezn)

(ez1 + ez2 + ez3 + ...+ ezn)2

=
ez2

ez1 + ez2 + ez3 + ...+ ezn
· e

z1 + ez2 + ez3 + ...+ ezn − ez2

ez1 + ez2 + ez3 + ...+ ezn

= a2(1− a2) (27)

¡

∂ai
∂zj

=

{
−aiaj if i ̸= j

ai(1− aj) if i = j
(28)

¡

∂A

∂Z
=


∂a1

∂z1
∂a1

∂z2
· · · ∂a1

∂zn
∂a2

∂z1
∂a2

∂z2
· · · ∂a2

∂zn
...

...
. . .

...
∂ac

∂z1
∂ac

∂z2
· · · ∂ac

∂zc

 =


a1(1− a1) −a1a2 · · · −a1ac
−a1a2 a2(1− a2) · · · −a2ac

...
...

. . .
...

−aca1 −aca2 · · · ac(1− ac)

 (28)

¡

∂J

∂zj
=

∂J

∂A
· ∂A
∂zj

∂J

∂A
= −

C∑
i=1

yi
ai

−→ ∂A

∂zj
=

C∑
i=1

∂ai
∂zj

(22)

Therefore

= (−
C∑
i=1

yi
ai
) ·

C∑
i=1

∂ai
∂zj

Simplification

=

C∑
i=1

yi
ai
aiaji ̸= j − yi

ai
ai(1− ai)

=

C∑
i=1

yiaj + yiai − yi −→= aj

C∑
i=1

yi +

C∑
i=1

yiai −
C∑
i=1

yi

= aj

C∑
i=1

yi +

C∑
i=1

yiai − 1

= aj − yj (29)



Then, from equation (29), we can produce
the general equation for ∂J

∂Z as shown in
equation (30).

∂J

∂Z
= A− Y (30)

After computing the derivative of ∂J
∂Z , the

derivatives of ∂J
∂W and ∂J

∂b of softmax can be
computed similar to the previous architec-
tures as shown in equations (31) and (32).
These derivatives can then be used to update
the weights and biases as in equation (33),
(34) respectively.

∂J

∂W
=

∂J

∂Z
· ∂Z

∂W
= (A− Y ) ·A[L−1]

(31)

∂J

∂b[L]
=

∂J

∂Z
· ∂Z

∂b[L]
= (A− Y ) · 1 = A− Y

(32)

W [L]
new = W

[L]
current − α

∂J

∂W [L]
(33)

b[L]
new = b

[L]
current − α

∂J

∂b[L]
(34)

Table 5 summarizes the forward and back-
ward equations for multilayer ReLU and
softmax; the equations of layer 1 until layer
L-1 is the same as in Table 3 since both
use ReLU as activation function, while the
equations for layer L is different because
softmax is used instead of a sigmoid.

4.2. Convolution Neural Networks

A Convolutional Neural Network (CNN) is a
type of deep neural network that is specifically de-
signed for image processing and recognition tasks.
CNNs differ from traditional deep neural networks in
that they contain specialized layers that are specif-
ically designed for image processing. In a typical
CNN, there are two main types of layers:

1) Convolutional Layers: These layers perform
convolution operations between the input
image and a set of learnable filters (also
called kernels or weights) that slide over the
input image to extract features. The output
of each filter is a feature map that represents
a specific aspect of the input image. The
convolution operation preserves the spatial
relationship between pixels in the input im-
age and helps to extract local features.

2) Pooling Layers: These layers are typically
used after the convolutional layers to reduce
the size of the feature maps and to intro-
duce some form of translational invariance.
The most common type of pooling layer
is the MaxPooling layer, which selects the
maximum value from a local neighborhood
of the feature map. This operation helps
to reduce the spatial dimensionality of the
feature map and makes the network more
robust to small translations in the input
image.

In addition to these two types of layers, CNNs
can also include fully connected layers, similar to
those found in traditional deep neural networks.
These layers perform a linear transformation on the
output of the preceding layer and apply a non-linear
activation function (such as the sigmoid or ReLU
function) to introduce non-linearity into the model.
The output of the final fully connected layer is then
fed into an activation function, which produces a
probability distribution over the possible classes of
the input image.

For the derivative clarification, two different net-
work architectures will be used in this paper. The
first architecture consists of the following layers:
convolutional layer, max pooling layer, fully con-
nected layer with ReLU activation function, and sig-
moid output layer. The second architecture is similar
to the first one, but it uses softmax activation func-
tion in the last layer instead of sigmoid activation.

1) CNN with max pooling, ReLU and sig-
moid: During the forward propagation the
first step is to convolve a set of learnable
filters (also known as kernels (K)) over the
input sample (X) to generate the output
feature maps (Y ). This is the core operation
of the convolutional layer in a CNN, and it
is used to extract local features from the
input image. During the convolution opera-
tion, the kernel slides over the input sample,
multiplying the values of the kernel with the
corresponding values in the input sample
and summing the results to produce a single
output value as shown in the equation (35) .
This process is repeated for each position in
the input sample, resulting in a feature map
that highlights certain features or patterns
in the input.

z1[i,j] = B +

k−1∑
a=0

k−1∑
b=0

x(i+a,j+b) ∗K(a,b)

(35)



In this equation, the B is the bias, k is the
size of the kernel, xi,j is the value of the
input feature map at position (i, j), K(a,b)

is the value of the kernel at position (a, b),
and Z1[i,j] is the value of the output feature
map at position (i, j). The ReLU activation
function is applied to the output feature map
Y after the convolution equation (36), and
then the resulting feature map is passed to
the max pooling layer. to reduce the spatial
dimensionality of the feature map as in
equation (37).

A1[i,j] = Max(0, z1[i,j]) (36)

ypool(i, j) =
p−1
max
a=0

p−1
max
b=0

yrelu(i× s+ a, j × s+ b)

(37)

where Y is the input feature map, Ypool is
the output feature map after pooling, p is
the pooling size (e.g., 2 × 2 pooling), s is
the stride length, and (i, j) are the indices of
the output feature map. After applying the
max pooling layer, the resulting feature map
is typically flattened into a one-dimensional
vector, which serves as the input to the fully
connected layers. The flattening operation
reshapes the 2D or 3D tensor output of the
max pooling layer into a 1D vector. Then
the output vector will be fed to the deep
neural network, following the same process
as in the previous sections (i.e, the output
of the max pooling layer ypool is flattened
into a one-dimensional vector, denoted as
A, which is multiplied by the weights and
added to the bias term, and then fed into
the activation function). as in equation (38,
39, 40, 40)

Ypool = maxpool(Yrelu) (38)

Z2 = Ypool ·W + b2 (39)

A2 = sigmoid(Z2) (40)

J(A2, Y ) = −Y log(A2)− (1− Y ) log(1−A2)
(41)

During the back propagation, the derivatives
of the loss function and the fully connected
layer are the same as in a deep neural
network. The difference lies in the process
of computing the derivatives of the max

pooling and convolution layers. The first
derivative computed during backpropaga-
tion is the loss function with respect to the
predicted output ∂J

∂A2
as shown in equation

(42)

∂J

∂A2
= − Y

A2
+

1− Y

1−A2
(42)

Next, we need to compute the derivatives
of ∂A2

∂Z2
, ∂J
∂Z2

, ∂J
∂Z2

, ∂J
∂W , and ∂J

∂b2
in order to

complete the back propagation process for
the fully connected network. as shown in
equations (43, 44, 45, 46, 47)

∂A2

∂Z2
= A2(1−A2) (43)

∂A2

∂Z2
= A2(1−A2) (44)

∂J

∂Z2
=

∂J

∂A2
· ∂A2

∂Z2
=

∂J

∂A2
·A2(1−A2)

(45)

∂J

∂W
=

∂J

∂Z2
· ∂Z2

∂W
=

∂J

∂Z2
· Ypool (46)

∂J

∂b2
=

∂J

∂Z2
· ∂Z2

∂b2
=

∂J

∂Z2
· 1 (47)

To compute the derivatives of the convo-
lution and max pooling layers, we begin
by computing ∂J

∂Ypool
using equation (48),

which involves multiplying ∂J
∂Z2

by ∂Z2

∂Ypool

∂J

∂Ypool
=

∂J

∂Z2
· ∂Z2

∂Ypool
=

∂J

∂Z2
·W (48)

To compute the derivative of J with respect
to Yrelu, we need to evaluate the product
of ∂J

∂Ypool
and ∂Ypool

∂Yrelu
as shown in equation

(49). The value of ∂J
∂Ypool

is computed in the

previous step (eqaution 48), while ∂Ypool

∂Yrelu
is

a matrix that has the same shape as Yrelu

and each element of the matrix is either 0 or
1. The value 1 appears at the location of the
maximum value within each pooling region,
and 0s appear elsewhere see the equation
(50).

∂J

∂Yrelu
=

∂J

∂Ypool
· ∂Ypool

∂Yrelu
=

∂J

∂Ypool
·M

(49)

∂Ypool

∂Yrelu
= Mi,j,k =

{
1 if Yrelu(i, j, k) = maxp,q Yrelu(p, q, k)

0 otherwise
(50)



the indices (i, j, k) refer to the ith row,
jth column, and kth channel of the tensors.
The symbol maxp,q denotes the maximum
operation over the pooling region that cor-
responds to the output location (i, j, k) in
Ypool.
The ∂J

∂Z1
is computed using equation (51)

∂J

∂Z1
=

∂J

∂Yrelu
· ∂Yrelu

∂Z1
=

∂J

∂Yrelu
·

{
1 if z1i,j,k > 0

0 otherwise
(51)

After computing ∂J
∂Z1

, it is time to complete
the derivative of the remaining parameters,
which are ∂J

∂K , ∂J
∂b1

, and ∂J
∂X . The first one is

the simplest, which is ∂J
∂b1

. The bias value
is usually a single value that is broadcast
across all input pixels and used for all
depths. From the forward propagation equa-
tion (35), we can notice that the bias affects

only Z1 and has no effect on the input X
or kernel K. Since it is only one value, the
equation for computing the bias is shown in
equation (52).

∂J

∂b1
=

∂J

∂Z1
· ∂Z1

∂b1

=
∂J

∂Z1
· 1

=

nH∑
i=1

nW∑
j=1

∂J

∂Z1[i, j]
(52)

The second derivative required is the ∂J
∂K

let simplify the equation 35 to make the
general equation

z1[i,j] = b1 +

k−1∑
a=0

k−1∑
b=0

x(i+a,j+b) ∗K(a,b)

(35)

Z1[0,0] = x[0,0]k[0,0] + x[0,1]k[0,1] + · · ·+ x[0+k−1,0+k−1]k[k−1,k−1] + b1

Z1[0,1] = x[0,1]k[0,0] + x[0,2]k[0,1] + · · ·+ x[0+k−1,0+k−1]k[k−1,k−1] + b1

Z1[1,0] = x[1,0]k[0,0] + x[1,1]k[0,1] + · · ·+ x[1+K−1,2+k−1]k[k−1,k−1] + b1

Z1[1,1] = x[1,1]k[0,0] + x[1,2]k[0,1] + · · ·+ x[2+k−1,2+k−1]k[k−1,k−1] + b1
...

Z1[i,j] = x[i+0,j+0]k[0,0] + x[i+0,1+j]k[0,1] + · · ·+ x[i+k−1,j+k−1]k[k−1,k−1] + b1

¡

∂J

∂k[0,0]
=

∂J

∂z1[0,0]
.
∂z1[0,0]

∂x[0,0]
+

∂J

∂z1[0,1]
.
∂z1[0,1]

∂x[0,1]
+

∂J

∂z1[1,0]
.
∂z1[1,0]

∂x[1,0]
+ ...+

∂J

∂z1[nH−1,nW−1]
.

∂z1[nH−1,nW−1]

∂x[0+nH−1,0+nW−1]

(53)

¡

∂J

∂k[0,1]
=

∂J

∂z1[0,0]
.
∂z1[0,0]

∂x[0,1]
+

∂J

∂z1[0,1]
.
∂z1[0,1]

∂x[0,2]
+

∂J

∂z1[1,0]
.
∂z1[1,0]

∂x[1,1]
+ ...+

∂J

∂z1[nH−1,nW−1]
.

∂z1[nH−1,nW−1]

∂x[0+nH−1,1+nW−1]

(54)

Then, the general form to compute the
derivative of K with respect to the loss



∂J

∂K
=

∂J

∂Z1
· ∂Z1

∂K
where

∂Z1

∂K
= X

∂J

∂K
=

∂J

∂Z1
·X

=

∂J

∂k[p,q]
=

nH−1∑
i=0

nW−1∑
j=0

∂J

∂z1[i,j]
· x[i+p,j+q] (55)

¡

Z1[0,0] = x[0,0]k[0,0] + x[0,1]k[0,1] + · · ·+ x[0+k−1,0+k−1]k[k−1,k−1] + b1

Z1[0,1] = x[0,1]k[0,0] + x[0,2]k[0,1] + · · ·+ x[0+k−1,0+k−1]k[k−1,k−1] + b1

Z1[1,0] = x[1,0]k[0,0] + x[1,1]k[0,1] + · · ·+ x[1+K−1,2+k−1]k[k−1,k−1] + b1

Z1[1,1] = x[1,1]k[0,0] + x[1,2]k[0,1] + · · ·+ x[2+k−1,2+k−1]k[k−1,k−1] + b1
...

Z1[i,j] = x[i+0,j+0]k[0,0] + x[i+0,1+j]k[0,1] + · · ·+ x[i+k−1,j+k−1]k[k−1,k−1] + b1

¡

∂J

∂x[0,0]
=

∂J

∂z1[0,0]
·
∂z1[0,0]

∂x[0,0]
=

∂J

∂z1[0,0]
· k[0,0] (58)

¡

∂J

∂x[0,1]
=

∂J

z1[0,0]
·
∂z1[0,0]

x[0,1]
+

∂J

z1[0,1]
·
∂z1[0,1]

x[0,1]
=

∂J

z1[0,0]
· k[0,1] +

∂J

z1[0,1]
· k[0,0] (59)

¡

∂J

∂x[1,0]
=

∂J

∂z1[1,0]
·
∂z1[1,0]

∂x[1,0]
=

∂J

∂z1[1,0]
· k[0,0] (60)

¡

∂J

∂x[1,1]
=

∂J

∂z1[1,0]
·
∂z1[1,0]

∂x[1,0]
+

∂J

∂z1[1,1]
·
∂z1[1,1]

∂x[1,0]
=

∂J

∂z1[1,0]
k[0,1] +

∂J

∂z1[1,1]
k[0,0] (61)



Then the general form for compute ∂J
∂X is shown in equation (62)

∂J

∂X
=

∂J

∂Z1
· ∂Z1

∂X
→ ∂J

∂xi,j,k
=

M−1∑
p=0

N−1∑
q=0

kp,q
∂J

∂Z1,i−p,j−q
(62)

where kp,q is the weight parameter of the
convolutional filter at position (p, q), and
Z1,i−p,j−q is the output feature map of the
convolutional layer at position (i−p, j−q).

2) Multiple convolution layers, with ReLU and
softmax: This architecture will be illustrated
in Table 6

5. Conclusion

In conclusion, deep learning frameworks like
TensorFlow and PyTorch provide researchers with
a range of tools and resources that make it easier
to build, test, and deploy deep learning models.
However, relying solely on these frameworks can
result in a superficial understanding of the intricate
mathematical mechanics involved in deep learning,
which can impede the optimization process and
hinder the achievement of optimal performance in
developing deep networks. This paper aims to bridge
this gap by simplifying and clarifying the mechanics
of deep learning networks, providing a deeper in-
sight into the topic, and enabling researchers to gain
a deeper understanding of how deep learning works,
ultimately improving their ability to optimize and
improve deep learning models. Through explaining
the derivative of various methods and activation
functions, this paper aims to remove obstacles and
empower researchers to create their own frameworks
with enhanced speed and efficiency.

References

[1] D. Learning, “Deep learning,” High-
dimensional fuzzy clustering, 2020.

[2] A. F. Rasheed, M. Zarkoosh, and S. S. Al-
Azzawi, “Multi-cnn voting method for im-
proved arabic handwritten digits classification,”
in 2023 9th International Conference on Com-
puter and Communication Engineering (IC-
CCE). IEEE, 2023, pp. 205–210.

[3] ——, “The impact of feature selection on mal-
ware classification using chi-square and ma-
chine learning,” in 2023 9th International Con-
ference on Computer and Communication En-
gineering (ICCCE). IEEE, 2023, pp. 211–216.

[4] A. F. Rasheed, M. Zarkoosh, and F. Elia,
“Enhancing graphical password authentication
system with deep learning-based arabic digit
recognition,” International Journal of Informa-
tion Technology, pp. 1–9, 2023.

[5] A. F. Rasheed, M. Zarkoosh, S. F. Abbas, and
S. Sabah Al-Azzawi, “Arabic offensive lan-
guage classification: Leveraging transformer,
lstm, and svm,” in 2023 IEEE International
Conference on Machine Learning and Applied
Network Technologies (ICMLANT). IEEE,
2023, pp. 1–6.

[6] P. P. Shinde and S. Shah, “A review of machine
learning and deep learning applications,” in
2018 Fourth international conference on com-
puting communication control and automation
(ICCUBEA). IEEE, 2018, pp. 1–6.

[7] H. Bolhasani, M. Mohseni, and A. M. Rah-
mani, “Deep learning applications for iot in
health care: A systematic review,” Informat-
ics in Medicine Unlocked, vol. 23, p. 100550,
2021.

[8] Y. Bahri, J. Kadmon, J. Pennington, S. S.
Schoenholz, J. Sohl-Dickstein, and S. Gan-
guli, “Statistical mechanics of deep learning,”
Annual Review of Condensed Matter Physics,
vol. 11, pp. 501–528, 2020.

[9] A. S. Rajawat and S. Jain, “Fusion deep learn-
ing based on back propagation neural network
for personalization,” in 2nd International Con-
ference on Data, Engineering and Applications
(IDEA). IEEE, 2020, pp. 1–7.

[10] A. Parvat, J. Chavan, S. Kadam, S. Dev, and
V. Pathak, “A survey of deep-learning frame-
works,” in 2017 International Conference on
Inventive Systems and Control (ICISC). IEEE,
2017, pp. 1–7.

[11] H. Li, M. Krček, and G. Perin, “A comparison
of weight initializers in deep learning-based
side-channel analysis,” in Applied Cryptogra-
phy and Network Security Workshops: ACNS
2020 Satellite Workshops, AIBlock, AIHWS,
AIoTS, Cloud S&P, SCI, SecMT, and SiMLA,
Rome, Italy, October 19–22, 2020, Proceedings
18. Springer, 2020, pp. 126–143.

[12] Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and
Q. Gu, “Towards understanding the spec-



tral bias of deep learning,” arXiv preprint
arXiv:1912.01198, 2019.

[13] I. Garrido-Muñoz, A. Montejo-Ráez,
F. Martı́nez-Santiago, and L. A. Ureña-
López, “A survey on bias in deep nlp,”
Applied Sciences, vol. 11, no. 7, p. 3184,
2021.

[14] N. Papernot, A. Thakurta, S. Song, S. Chien,
and Ú. Erlingsson, “Tempered sigmoid activa-
tions for deep learning with differential pri-
vacy,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, no. 10, 2021,
pp. 9312–9321.

[15] A. F. Agarap, “Deep learning using rec-
tified linear units (relu),” arXiv preprint
arXiv:1803.08375, 2018.

[16] S. R. Dubey, S. K. Singh, and B. B. Chaud-
huri, “Activation functions in deep learning: A
comprehensive survey and benchmark,” Neuro-
computing, 2022.

[17] C. Nwankpa, W. Ijomah, A. Gachagan, and
S. Marshall, “Activation functions: Comparison
of trends in practice and research for deep
learning,” arXiv preprint arXiv:1811.03378,
2018.

[18] M. Uzair and N. Jamil, “Effects of hidden
layers on the efficiency of neural networks,”
in 2020 IEEE 23rd international multitopic
conference (INMIC). IEEE, 2020, pp. 1–6.

[19] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou,
“A survey of convolutional neural networks:
analysis, applications, and prospects,” IEEE
transactions on neural networks and learning
systems, 2021.

[20] S. Albawi, T. A. Mohammed, and S. Al-Zawi,
“Understanding of a convolutional neural net-
work,” in 2017 international conference on en-
gineering and technology (ICET). Ieee, 2017,
pp. 1–6.

[21] J. Wu, “Introduction to convolutional neural
networks,” National Key Lab for Novel Soft-
ware Technology. Nanjing University. China,
vol. 5, no. 23, p. 495, 2017.

[22] S. Ruder, “An overview of gradient de-
scent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[23] J. Zhang, “Gradient descent based optimization
algorithms for deep learning models training,”
arXiv preprint arXiv:1903.03614, 2019.

[24] N. Kriegeskorte and T. Golan, “Neural network
models and deep learning,” Current Biology,
vol. 29, no. 7, pp. R231–R236, 2019.

[25] Z. Zhang and M. Sabuncu, “Generalized cross
entropy loss for training deep neural networks
with noisy labels,” Advances in neural infor-

mation processing systems, vol. 31, 2018.
[26] M. H. Sazli, “A brief review of feed-forward

neural networks,” Communications Faculty of
Sciences University of Ankara Series A2-A3
Physical Sciences and Engineering, vol. 50,
no. 01, 2006.

[27] J. Li, J.-h. Cheng, J.-y. Shi, and F. Huang,
“Brief introduction of back propagation (bp)
neural network algorithm and its improve-
ment,” in Advances in Computer Science and
Information Engineering: Volume 2. Springer,
2012, pp. 553–558.

[28] I. Goodfellow, Y. Bengio, and A. Courville,
“Regularization for deep learning,” Deep learn-
ing, pp. 216–261, 2016.

[29] N. Srivastava, “Improving neural networks with
dropout,” University of Toronto, vol. 182, no.
566, p. 7, 2013.

[30] J. Ba and B. Frey, “Adaptive dropout for train-
ing deep neural networks,” Advances in neural
information processing systems, vol. 26, 2013.

[31] R. Courant, F. John, A. A. Blank, and
A. Solomon, Introduction to calculus and anal-
ysis. Springer, 1965, vol. 1.



Table 4. Forward and Backward Equations for a Multilayer Perceptron with RelU and Sigmoid Activation Functions
Layer Name Forward Equation Backward Equation

Layer 1

w
[1]
current W

[1]
new := W

[1]
current − α ∂J

∂W
[1]
current

∂J
∂W [1] = ∂J

∂Z[1] ·
∂Z[1]

∂W [1] = ∂J
∂Z[1] ·X

b
[1]
current b

[1]
new := b

[1]
current − α ∂J

∂b
[1]
current

∂J
∂b[1]

= ∂J
∂Z[1] ·

∂Z[1]

∂b[1]
= ∂J

∂Z[1] · 1

z[1] = XW [1] + b[1] ∂J
∂Z[1] = ∂J

∂A[1] ·
∂A[1]

∂Z[1] = ∂J
∂A[1] · (

{
1, if Z[1] > 0

0, otherwise
)

A[1] =

{
Z[1], if Z[1] > 0

0, otherwise
∂J

∂A[1] = ∂J
∂Z[2] ·

∂Z[2]

∂A[1] = ∂J
∂Z[2] ·W [2]

Layer 2

w
[2]
current W

[2]
new := W

[2]
current − α ∂J

∂W
[2]
current

∂J
∂W [2] = ∂J

∂Z[2] ·
∂Z[2]

∂W [2] = ∂J
∂Z[2] .(A

[2])T

b
[2]
current b

[2]
new := b

[2]
current − α ∂J

∂b
[2]
current

∂J
∂b[2]

= ∂J
∂Z[2] ·

∂Z[2]

∂b[2]
= ∂J

∂Z[2] · 1

Z[2] = A[1]W [2] + b[2] ∂J
∂Z[2] = ∂J

∂A[2] ·
∂A[2]

∂Z[2] = ∂J
∂A[2] · (

{
1, if Z[2] > 0

0, otherwise
)

A[2] =

{
Z[2], if Z[2] > 0

0, otherwise
∂J

∂A[2] = ∂J
∂Z[3] ·

∂Z[3]

∂A[2] = ∂J
∂Z[3] ·W [3]

· · · · · · · · ·

Layer L-1

w
[L−1]
current W

[L−1]
new := W

[L−1]
current − α ∂J

∂W
[L−1]
current

∂J
∂W [L−1] = ∂J

∂Z[L−1] ·
∂Z[L−1]

∂W [L−1] =
∂J

∂Z[L−1] .(A
[L−1])T

b
[L−1]
current b

[L−1]
new := b

[L−1]
current − α ∂J

∂b
[L−1]
current

∂J
∂b[L−1] = ∂J

∂Z[L−1] ·
∂Z[L−1]

∂b[L−1] = ∂J
∂Z[L−1] · 1

Z[L−1] = A[L−2]W [L−1] + b[L−1] ∂J
∂Z[L−1] = ∂J

∂A[L−1] ·
∂A[L−1]

∂Z[L−1] =

∂J
∂A[L−1] · (

{
1, if Z[L−1] > 0

0, otherwise
)

A[L−1] =

{
Z[L−1], if Z[L−1] > 0

0, otherwise
∂J

∂A[L−1] = ∂J
∂Z[L] ·

∂Z[L]

∂A[L−1] = ∂J
∂Z[L] ·W [L]

Layer L

w
[L]
current W

[L]
new := W

[L]
current − α ∂J

∂W
[L]
current

∂J

∂W
[L]
current

= ∂J
∂Z[L] ·

∂Z[L]

∂W
[L]
current

= ∂J
∂Z[L] ·A[L]

b
[L]
current b

[L]
new := b

[L]
current − α ∂J

∂b
[L]
current

∂J

∂b
[L]
current

= ∂J
∂Z[L] ·

∂Z[L]

∂b
[L]
current

= ∂J
∂Z[L] · 1

z[L] = XW [L] + b[L] ∂J
∂Z[L] = ∂J

∂A[L] ·
∂A[L]

∂Z[L] = ∂J
∂A[L] ·A[L](1−A[L])

A[L] = 1

1+e−ZL
∂J

∂A[L] = − Y
A[L] +

1−Y

1−A[L]

Loss Function J(A[L], Y ) = Y log(A[L]) + (1− Y ) log(1−A[L])



Table 5. Forward and Backward Equations for a Multilayer Perceptron with RelU and Softmax Activation Functions
Layer Name Forward Equation Backward Equation

Layer 1

w
[1]
current W

[1]
new := W

[1]
current − α ∂J

∂W
[1]
current

∂J
∂W [1] = ∂J

∂Z[1] ·
∂Z[1]

∂W [1] = ∂J
∂Z[1] ·X

b
[1]
current b

[1]
new := b

[1]
current − α ∂J

∂b
[1]
current

∂J
∂b[1]

= ∂J
∂Z[1] ·

∂Z[1]

∂b[1]
= ∂J

∂Z[1] · 1

z[1] = XW [1] + b[1] ∂J
∂Z[1] = ∂J

∂A[1] ·
∂A[1]

∂Z[1] = ∂J
∂A[1] · (

{
1, if Z[1] > 0

0, otherwise
)

A[1] =

{
Z[1], if Z[1] > 0

0, otherwise
∂J

∂A[1] = ∂J
∂Z[2] ·

∂Z[2]

∂A[1] = ∂J
∂Z[2] ·W [2]

· · · · · · · · ·

Layer L

w
[L]
current W

[L]
new := W

[L]
current − α ∂J

∂W
[L]
current

∂J

∂W
[L]
current

= ∂J
∂Z[L] ·

∂Z[L]

∂W
[L]
current

= ∂J
∂Z[L] ·A[L]

b
[L]
current b

[L]
new := b

[L]
current − α ∂J

∂b
[L]
current

∂J

∂b
[L]
current

= ∂J
∂Z[L] ·

∂Z[L]

∂b
[L]
current

= ∂J
∂Z[L] · 1

Z[L] = XW [L] + b[L] ∂J
∂Z[L] = ∂J

∂A[L] ·
∂A[L]

∂Z[L] = AL − Y

A =



ez
L
1∑C

i e
zLi

ez
L
2∑C

i e
zLi

...
ez

L
C∑C

i ezi


∂J

∂A[L] = −
∑C

i=1 yi log(a
L
i )

Loss Function L(Y,A[L]) = −
∑C

i=1 yi log(a
L
i )



Table 6. Multiple convolution layers, with ReLU and softmax
Layer Name Forward Equation Backward Equation

Convolution 1

K
[1]
current K

[1]
new := K

[1]
current − α ∂J

∂K
[1]
current

∂J
∂K[1] = ∂J

∂Z[1] ·
∂Z[1]

∂K[1] = ∂J
∂Z[1] ·X

b
[1]
current b

[1]
new := b

[1]
current − α ∂J

∂b
[1]
current

∂J
∂b[1]

= ∂J
∂Z[1] ·

∂Z[1]

∂b[1]
= ∂J

∂Z[1] · 1

Z[1] = X ∗K[1] + b[1] ∂J
∂Z[1] = ∂J

∂A[1] ·
∂A[1]

∂Z[1] =

∂J
∂A[1] · (

{
1, if Z[1] > 0

0, otherwise
)

A[1] =

{
Z[1], if Z[1] > 0

0, otherwise
∂J

∂A[1] = ∂J

∂Y
[1]
pool

·
∂Y

[1]
pool

∂A[1] = ∂J

∂Y
[1]
pool

·M [1]

Max pooling 1 Y 1
pool = Maxpooling(A1) ∂J

∂Y 1
pool

= ∂J
∂Z[2] ·

∂Z[2]

∂Y 1
pool

= ∂J
∂Z[2] ·K[2]

Convolution 2

K
[2]
current K

[2]
new := K

[2]
current − α ∂J

∂K
[2]
current

∂J
∂K[2] = ∂J

∂Z[2] ·
∂Z[2]

∂K[2] = ∂J
∂Z[2] · Y

[1]
pool

b
[2]
current b

[2]
new := b

[2]
current − α ∂J

∂b
[2]
current

∂J
∂b[2]

= ∂J
∂Z[2] ·

∂Z[2]

∂b[2]
= ∂J

∂Z[2] · 1

Z[2] = Y
[1]
pool ∗K[2] + b[2] ∂J

∂Z[2] = ∂J
∂A[2] ·

∂A[2]

∂Z[2] =

∂J
∂A[2] · (

{
1, if Z[2] > 0

0, otherwise
)

A[2] =

{
Z[2], if Z[2] > 0

0, otherwise
∂J

∂A[2] = ∂J

∂Y
[2]
pool

·
∂Y

[2]
pool

∂A[2] = ∂J

∂Y
[2]
pool

·M [2]

Max pooling 2 Y 2
pool = Maxpooling(A[2]) ∂J

∂Y 2
pool

= ∂J
∂Z[3] ·

∂Z3

∂Y 2
pool

= ∂J
∂Z[3] ·W [3]

· · · · · · · · ·

Layer L-1 Deep

W
[L−1]
current W

[L−1]
new := W

[L−1]
current − α ∂J

∂W
[L−1]
current

∂J
∂W [L−1] = ∂J

∂Z[L−1] ·
∂Z[L−1]

∂W [L−1] =
∂J

∂Z[L−1] · Y
[L−1]
pool

b
[L−1]
current b

[L−1]
new := b

[L−1]
current − α ∂J

∂b
[L−1]
current

∂J
∂b[L−1] = ∂J

∂Z[L−1] ·
∂Z[L−1]

∂b[L−1] = ∂J
∂Z[L−1] · 1

Z[L−1] = Y
[L−2]
pool W [L−1] + b[L−1] ∂J

∂Z[L−1] = ∂J
∂A[L−1] ·

∂A[L−1]

∂Z[L−1] =

∂J
∂A[L−1] · (

{
1, if Z[L−1] > 0

0, otherwise
)

A[L−1] =

{
Z[L−1], if Z[L−1] > 0

0, otherwise
∂J

∂A[L−1] = ∂J
∂Z[L] ·

∂Z[L]

∂A[L−1] = ∂J
∂Z[L] ·W [L]

Layer L

W
[L]
current W

[L]
new := W

[L]
current − α ∂J

∂W
[L]
current

∂J

∂W
[L]
current

= ∂J
∂Z[L] ·

∂Z[L]

∂W
[L]
current

= ∂J
∂Z[L] ·A[L]

b
[L]
current b

[L]
new := b

[L]
current − α ∂J

∂b
[L]
current

∂J

∂b
[L]
current

= ∂J
∂Z[L] ·

∂Z[L]

∂b
[L]
current

= ∂J
∂Z[L] · 1

Z[L] = A[L−1]W [L] + b[L] ∂J
∂Z[L] = ∂J

∂A[L] ·
∂A[L]

∂Z[L] = AL − Y

A[L] =



ez
L
1∑C

i e
zLi

ez
L
2∑C

i e
zLi

...
ez

L
C∑C

i ezi


∂J

∂A[L] = −
∑C

i=1 yi log(a
L
i )

Loss Function L(Y,A[L]) = −
∑C

i=1 yi log(a
L
i )


