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ABSTRACT: In the context of multivariate curve resolution (MCR) and
spectral unmixing, essential information (EI) corresponds to the most linearly
dissimilar rows and/or columns of a two-way data matrix. In recent works, the
assessment of EI has been revealed to be a very useful practical tool to select the
most relevant spectral information before MCR analysis, key features being
speed and compression ability. However, the canonical approach relies on the
principal component analysis to evaluate the convex hull that encapsulates the
data structure in the normalized score space. This implies that the evaluation of
the essentiality of each spectrum can only be achieved after all the spectra have
been acquired by the instrument. This paper proposes a new approach to extract
EI in the Fourier domain (EIFD). Spectral information is transformed into
Fourier coefficients, and EI is assessed from a convex hull analysis of the data point cloud in the 2D phasor plots of a few selected
harmonics. Because the coordinate system of a phasor plot does not depend on the data themselves, the evaluation of the essentiality
of the information carried by each spectrum can be achieved individually and independently from the others. As a result, time-
consuming operations like Raman spectral imaging can be significantly accelerated exploiting a chemometric-driven (i.e., based on
the EI content of a spectral pixel) procedure for data acquisition and targeted sampling. The usefulness of EIFD is shown by
analyzing Raman hyperspectral microimaging data, demonstrating a potential 50-fold acceleration of Raman acquisition.

■ INTRODUCTION
Raman microimaging is a well-established technique and has
demonstrated great potential for many applications to be found
in pharmacology,1 geology,2 and life sciences3 to name a few.
However, the mapping process using point-by-point raster
scanning of a laser spot through the sample can be terribly slow
for spontaneous Raman of weakly scattering systems, with
acquisition time of seconds per pixel turning into hours or more
to scan a complete sample and get a full image. In contrast, fast
spectral mapping may be required in many applications such as
quality control,4 falsified medicine analysis,5 and biomedical
analysis,6 or to avoid damaging laser exposure time. Different
approaches can be used to speed up spontaneous Raman
microimaging acquisition. Some are based on instrumental
aspects such as line scanning,7−10 whereas others somehow
exploit the properties of the sample itself and notably the
presence of spatial features11−13 to speed up acquisition in the
region where little spatial information is observed. One recent
illustration of the potential of these approaches was provided by
a compressive sensing strategy using a context-aware image prior
to improve imaging speed.14 However, while the combination of
chemometrics and Raman spectroscopy is now mainstream in
most application fields,15,16 the use of the chemometric
information itself to adjust the acquisition time at each
individual pixel based on the observed spectral relevance has

not been exploited in the scientific literature to the best of the
authors’ knowledge.

These observations have motivated us to investigate the
possibility of speeding up Raman imaging taking advantage of
the so-called essential information (EI), a concept of deep
relevance in chemometrics since EI corresponds to the most
linearly dissimilar rows and/or columns of a data matrix.17 Such
rows/columns are called essential because they are indispen-
sable to reproduce the full data matrix in a convex linear way.
The conceptualization of EI dates back in both the geometric
construction of the inner polytope in the multivariate curve
resolution (MCR)18 and in the field of archetypal analysis19,20 in
statistics. On the application side, the selection of EI has proven
to be a very useful, significant, and reliable data reduction tool,
driven by the properties of linear spectral mixtures, to select the
most relevant spectral information before MCR analysis.21,22

The selection of EI brings advantages in terms of speed and
compression and allows to tackle challenging analytical
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issues.17,23−28 In practice, EI is found by computation of the
convex hull that encapsulates the data structure in the
normalized abstract scores space derived from a truncated
singular value decomposition.29 The score points supporting the
vertices of the convex hull correspond to essential rows/columns
of the original data matrix. They carry essential samples (ESs)
and essential variables, respectively. Note that with spectral
imaging data, ESs were originally called essential spectral
pixels;22 however, it should be clear that no information about
spatial features or the position in the image is used in their
selection. It should be added that the influence of noise on the
selection of EI and on the stability of the solutions provided by
MCR analysis has been discussed in very recent works.21,24,25

The calculation of EI requires dimensionality reduction. By
calculating the convex hull of a data matrix in a lower-
dimensional principal component analysis (PCA) subspace
(normalized scores space), one exploits geometrical properties
of convex polytopes.17 Nevertheless, the application of PCA
induces some limitations and prevents a more efficient use of EI
for practical purposes of fundamental analytical importance.
Most important of these limitations comes from the fact that the
PCA coordinate system within which to evaluate EI by convex
hull calculations can only be determined after all the spectral
data have been acquired by the instrument. This closes the door
to a per-spectral pixel evaluation of EI. However, not only
factorial representations such as PCA but any linear trans-
formation can be used to evaluate EI.17 We here propose to
utilize a ubiquitous technique in signal processing, namely the
discrete Fourier transform (DFT) to achieve this goal.

Fourier transform allows breaking a signal (a spectrum) into
its frequency components. Computations can be performed very
efficiently using the fast Fourier transform algorithm,30

providing signal representations characterized by sine and
cosine functions of varying frequencies. In the Fourier domain,
at a given frequency, the Fourier coefficients will carry
information about the linear mixture coefficients associated
with the spectra of the individual components (unless a
spectrum does not contribute at this frequency) and can be
represented in a so-called phasor plot.31−35 By performing
convex hull calculations on 2D phasor plots, we provide an
approach to estimate EI in the Fourier domain (EIFD) which,
we believe, has strong advantages for analytical purposes.
Indeed, there is neither the need to choose the dimensionality of
the PCA subspace to work with nor the requirement to estimate
the number of mixture components. And most importantly,
since DFT is performed spectrum-wise, the evaluation of EIFD
can be performed independently for each spectral pixel and,
thus, potentially as the data acquisition process is ongoing (e.g.,
for sequential or point-by-point scanning systems). This paves
the way to image acquisition processes that would be based on
the EI content of a spectral pixel (i.e., chemometrically driven),
speeding up the acquisition at those locations where information
is not essential and, subsequently, considerably accelerating the
imaging process.

In this paper, we aim to propose and illustrate the concept of
EIFD. We first work with simulations and then perform EIFD
analysis of Raman microimaging data of a ternary mixture tablet.
Finally, we emphasize the potential of the approach to drastically
reduce the Raman microimaging acquisition time.

■ MATERIALS AND METHODS
EI Evaluated on Fourier Coefficients . Let
= [ ] +

×D d d, ..., N
N L

1
T denotea the data matrix where

each row dn
L corresponds to the L-dimensional spectrum

collected at the n-th spatial position (n = 1, ..., N). According to
the linear mixture framework, each measured spectrum dn is
assumed to be approximated by the linear combination of K
e l e m e n t a r y s p e c t r a c o l l e c t e d i n t h e m a t r i x

= [ ] +
×S s s, ..., K

K LT
1

T , i.e.,

= +
=

cd s en
k

K

nk k n
1 (1)

where cnk is the mixture coefficient of the k-th mixture
component in the n-th measured spectrum and en is an error
term accounting for any mismodeling error and measurement
noise. In matrix notation, this model is written as

= +D CS ET (2)

with = +
×cC ( )nk

N K and = ×eE ( )n
N L. For the sake of

simplicity, we will assume for the moment that, for each n, the
nonnegative coefficients cnk satisfy ∑k=1

K cnk = 1, implying that dn
is (approximately) a convex combination of the spectra sk.

Thanks to the linearity property of the DFT, the linear model
in 1 easily translates into the Fourier (frequency) domain as

= +
=

cd s en
k

K

nk k n
1 (3)

where · ̃ denotes the DFT of the corresponding quantity, i.e.,

= [ ] = [ ]d dd d, ..., DFTn n nL n1
T (4)

= [ ] = [ ]s ss s, ..., DFTk k kL k1
T (5)

In particular, the coefficients of these DFT are defined as

=
=

d d enm

L

n
L m

1

j2 / ( 1)( 1)

(6)

=
=

s s emk

L

k
L m

1

j2 / ( 1)( 1)

(7)

with m = 1, ..., L harmonics and j is the imaginary number for
which j2 = −1.

Since such coefficients are complex-valued, by using 3 and
6−7, we can write their real and imaginary parts as

[ ] = [ ] + [ ]
=

G n d c s e( )m nm
k

K

nk mk nm
1 (8)

[ ] = [ ] + [ ]
=

S n d c s e( )m nm
k

K

nk mk nm
1 (9)

By the inverse DFT, the real numbersGm(n) and Sm(n) can be
seen as coordinates of the m-th phasor involved in the Fourier
representation of dn
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=
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The crux of our approach relies on the observation that
according to 8 and 9, the phasor coordinatesGm(n) and Sm(n) of
d̃nm are (approximately) convex combinations of those of the
spectra sk̃m, with m = 1, ..., M and M ≤ L.

Hence, one can retrieve the EI (i.e., the most linearly
dissimilar spectra) by computing the convex hull of the data
cloud comprising all points (Gm(n), Sm(n)), for n = 1, ..., N,
provided that at least one spectrum sk has nonzero (in practice,
significant) DFT coefficients. By repeating this reasoning for a
few harmonics, a set of candidate ESs can be determined (see,
e.g., Figure 1).

In practice, the nonnegative coefficients ckn do not necessarily
satisfy ∑k=1

K ckn = 1 as we have previously assumed. Nevertheless,
as detailed in the Supporting Information, this constraint36,37

can be (approximately) imposed by simply normalizing the data
as

=d
d

d
1

n
n

n
1 (12)

where ∥·∥1 denotes the 1-norm of a vector, that is the sum of the
absolue values of its components.
Datasets. Simulated Datasets. To illustrate the concept of

EIFD and the methodology described in the previous section, 5
datasets were simulated corresponding to different scenarios.
The first dataset (D1) was obtained by considering 3 Gaussian-
like pure spectra (FWHM = 35) sampled over L = 201 spectral
points and their associated mixture coefficients, comprising N =
53 spectra. Specifically, 50 linear mixture spectra were generated
by taking random coefficients distributed from a uniform
distribution in the interval [0, 1], and the 3 individual pure
spectra were added to complete the dataset. The second dataset
(D2) was built in the same fashion, but now considering 50
mixtures of 5 Gaussian-like pure spectra to which were added the
5 pure spectra. The third dataset (D3) consists of 50 mixture
spectra, the same as the one of D2, but without the pure spectra.

Figure 1. Results obtained applying EIFD to datasetsD1−5, distributed over columns A−E, respectively. Simulated spectra are represented along line 1
and phasor plots obtained for m = 1, 2, 3 along lines 2−4. Convex hulls are displayed in green; green dashed lines (column C) mark the location of the
convex hull obtained from B2. ESs are provided along line 5. The circled points correspond to the ESs not found in D5.
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The fourth dataset (D4) was built by considering the same
mixture coefficients as for D3, but the width of the Gaussians
used to build pure spectra was now broadened (FWHM = 58).
Finally, white Gaussian noise was added to the spectra ofD4 with
a noise power of 1 dBW to obtain the dataset D5.
Raman Hyperspectral Imaging Data. A three-component

system was obtained by mixing powders of calcium carbonate
(CaCO3), sodium nitrate (NaNO3), and sodium sulfate
(Na2SO4) and then pressing a tablet. Image acquisition was
performed on a LabRAM HR microspectrometer (Horiba
France SAS, Palaiseau, France) using a 50× Olympus objective
(0.75 NA). The spectrometer is equipped with a 600 g/mm
grating. For excitation, a 632.8 nm HeNe laser was used (15 mW
laser power at the sample). In order to speed up the acquisition
time, a narrow spectral range was considered, from 497.7 to
901.2 cm−1, which corresponds to the spectral zone where
bending and symmetric vibrations of SO4

2−, CO3
−, and NO3

−

groups occur. A 101 × 101 pixel image was mapped using point-
by-point raster scanning, with a spatial step of 1 μm. Two
different accumulation times were considered, 100 ms per pixel
(low-SNR spectra) and 5 s per pixel (high-SNR spectra). This
resulted in 2 datasets denoted as Dlow and Dhigh (of dimensions
101 × 101 × 343) for low- and high-SNR data, respectively. For
the sake of generality, data were also acquired for the spectral
range 71.6−496.5 cm−1 which contains information about
relative translations between cations and anions of the three
species under study.
Software. All computations were performed using MAT-

LAB 2016a (Mathworks, Natick, MA) and the PLS Toolbox/
MIA Toolbox (version 8.6.2, Eigenvector Research, Inc,
Wenatchee, USA). The in-house routine built for the
computation of EIFD is provided in the Supporting Information
code section along with the data used to construct all the figures.

■ RESULTS AND DISCUSSION
We first evaluated the proposed EIFD approach on simulated
data. Figure 1 shows the results obtained for the datasets D1−5.
For each dataset, the results obtained by evaluating the convex
hull on the data point cloud corresponding to the DFT
coefficients for m = 1, 2, 3 are reported, and the corresponding
ESs are provided. The results obtained for datasets D1−2 enable
highlighting situations for which pure spectra are available.
These data correspond to a three- and a five-component spectral
mixture, respectively. Focusing first on D1, the results obtained
are provided in the vertical panels of Figure 1A. The simulated
data are in Figure 1A(1), whereas the phasor plots of the data
cloud are provided in Figure 1A(2−4). The convex hull was
calculated for each of the corresponding data and then drawn
with a green line. As expected, 3 ESs (actual pure spectra�see
Figure 1A(5)) are identified supporting the convex hull. In the
absence of noise or sampling artifacts, and unless a pure
spectrum has no contribution at a given harmonic, this
interpretation does hold for every set of DFT coefficients.
Two comments should be made at this step. One is that any data
point of coordinates (Gm(n), Sm(n))�see 8 and 9�lying inside
the convex hull can be obtained by convex linear combinations
of the ESs identified by EIFD. Another is that with a three-
component system, the data geometry observed for each phasor
plot corresponds to a simplex.

Moving to the results obtained for the EIFD analysis of D2,
now a five-component mixture dataset with pure spectra present,
it is interesting to note that the discussion above still holds, that
is, the data geometry obtained in Figure 1B(2−4) is convex, and

ESs correspond to pure spectra, as shown in Figure 1A(5).
Whether there are 3, 5, or more components in the spectral
mixture, ESs can be identified in the phasor plots of the different
DFT coefficients considered. This is a key aspect: identifying EI
can be achieved without requiring any preconceived idea about
the number of components contributing to the mixture spectral
data. One could argue that when considering more than 3
components, the geometry found in the two-dimensional
representations of the data cloud is not simplicial (to be so a
K component system should be projected in aK− 1 dimensional
subspace), which is true, but this is not a condition required to
select EI�only convexity is.

We now investigate situations for which no pure spectrum is
available. The results obtained for dataset D3 are shown in the
vertical panels of Figure 1C. It is noticeable that the position of
the 50 data points in the phasor plots is the same as the one
observed for D2. This allows pointing at another key aspect of
EIFD: the coordinate system of a phasor plot does not depend
on the collected data, meaning that, in contrast to PCA, each
spectrum of a dataset can be processed individually and
independently of the others. Another point to highlight is that,
even in the absence of pure information, ESs are still to be found
at the vertices of the convex hull of the data cloud. Dataset D4
was built by considering the same mixture coefficients as for D3,
but now using broader spectra for pure signals. It can be
observed in the vertical panels of Figure 1D that the geometry of
the data cloud is unchanged and that the exact same 15 ESs are
identified. The data structure is indeed driven by the mixture
coefficients, unchanged, and the simulated spectra are smooth
enough to be well represented by low-frequency DFT
coefficients.

A significant amount of noise was then added to D4 to yield
the spectral data in D5 (see Figure 1E). Very similar outcomes
are obtained from the application of EI on the plots (G1, S1) and
(G2, S2)�see Figure 1E(2,3), as expected given the denoising
property of FT. Noise will affect the coefficients extracted for
higher-frequency Fourier coefficients, as can be seen from the
(G3, S3) plot (see Figure 1E(4)). A slight change is observed in
the positions of the points, which translates into the
identification of 14 ESs (spectra provided in Figure 1E(5)�
note the point circled in green in Figure 1E(5)). Both data
compression and denoising are achieved while maintaining the
geometry of the data point cloud, thus providing a very robust
approach for analytical studies. For the sake of comparison, we
discuss in the Supporting Information the results obtained by
calculating the convex hulls in the PCA normalized scores
subspaces22 of datasets D1−5 (see Figure S1). In ideal situations,
even if the two methods are underlain by different linear
transformations of the original data, both are capable of
returning EI. Although PCA yields the best subspace
representation of the handled signals, as emphasized in this
work EIFD exhibits an additional advantage: it enables the on-
the-fly evaluation of EI. We also compare the outcomes resulting
from the analysis of a challenging Raman hyperspectral dataset
conducted by means of both approaches (see Figures S2 and
S3).23 So far, only a few phasor plots were required for the
selection of EI. Nonetheless, more of them might be needed
given the specific features of the analyzed signals as illustrated
with further simulations (see Figure S4). This does not hamper
the applicability and the usefulness of our approach as we will
outline below.

In the second step, we applied EIFD to the Raman
microimaging data of a three-component synthetic mixture
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(CaCO3, NaNO3, and Na2SO4), considering two different
acquisition times, 100 ms (dataset Dlow) and 5 s (dataset Dhigh)
per pixel. To illustrate how a 50-time faster/slower spectral
acquisition time translates into a huge difference in terms of
SNR and spectral quality, we provide in Figure 2 a
representation of the raw spectra for the two datasets. As the
exact same field-of-view was sampled for the collection of both of
them, (i) a direct comparison can be carried out between the
quality of the spectra in Figure 2A,B and (ii) the same
information in terms of mixture coefficients is expected, so as to
echo the discussion made for the simulations’ results. We
provide in Figure 3 the phasor plots for m = 1, 2, 3 as well as the
results obtained by applying EIFD toDlow andDhigh. Overall, the
observed geometry does not indicate the existence of pure
spectral pixels over the scanned surface. A total number of 40
ESs were identified for Dlow, with the corresponding spectra
shown in Figure 3A(4). Since the mixture composition is known
and reference spectra are available for the 3 pure chemical
compounds concerned, we could identify the ESs most
correlated with CaCO3, NaNO3, and Na2SO4 (see Figure
3A(5)), pointing out that despite the low spectral quality
resulting from a fast acquisition, the selected ESs still embed the
most relevant spectral information. We repeated the same
analysis for Dhigh. From the phasor plots in Figure 3B(1−3), it is
noteworthy that the geometry of the data point cloud is now
more structured, way sharper, and somehow closer to the
geometry one would expect from the analysis of a three-
component mixture. However, a much longer acquisition time is
required in order to obtain such information. In this case, 28 ESs
were extracted by applying EIFD. The corresponding spectra
and, among these, the ones most correlated with the pure spectra
are shown in Figure 3B(4,5), respectively.

To make clear how striking the gain of information obtained
with Dhigh in comparison to Dlow, the convex hull obtained for
Dlow was superimposed to the plots in Figure 3B(1−3) (see the
yellow dashed lined). As discussed previously, because the axis
coordinates of the phasors are intrinsic to the method, their
direct comparison is possible. This provides a meaningful (and
potentially useful, as will be discussed in the next section)
representation of how the data points span a much wider area for
Dhigh, meaning that more selective information about the
mixture coefficients is available in Dhigh. Also interesting is the
comparison of the purest spectra extracted for Dlow and Dhigh
(see Figure 3A(5),B(5)). Obviously, the former, extracted from
fast acquisition data, are not only way noisier than the latter but
also provide a clear anticipation of the spectral information that
would be obtained at longer acquisition times.

The results provided in Figure 3 have highlighted the link
between the spectral information extracted applying EIFD on
low-SNR hyperspectral imaging data and the one extracted at
high SNR, which exhibit a much higher quality for further
processing and unmixing, but required a 50-time longer
acquisition. We have also shown how EIFD provides a way to
readily compare these two levels of information by drawing
convex hulls in phasor plots. We now introduce the concept of
an entirely new data acquisition approach to drastically
accelerate Raman microimaging.

The proposed approach encompasses the following two steps.
First, acquiring the data in Dlow, very rapidly (here, in 28 min).
As explained above, applying EIFD to those data would return
40 ESs corresponding to 40 pixel positions along x and y. We can
represent the corresponding convex hull in the phasor plots in
Figure 4A−C (see the yellow lines). Second, without moving the
sample from the stage, targeting data acquisition at these 40
positions only, now measuring high-SNR Raman spectra with a
longer acquisition time (here, 5 s per spectral pixel, for a total
time of 3.3 min). Note that we actually have these 40 high-SNR
spectra available inDhigh (we call this subset of 40 spectraDEIFD).
We now apply EIFD to DEIFD, identifying 16 ESs, and report the
results in Figure 4A−C (see the convex hull marked with the
green lines). As pointed out before, the surface spanned by the
convex hull of DEIFD is much wider and the structure of the data
is sharper than that for Dlow. However, what is really striking is
the comparison that can be made with the results obtained for
Dhigh, data acquired in 14 h of measurement (convex hull
represented as a blue dotted line�dotted lines emphasize the
fact that in the proposed rapid measurement scenario Dhigh
would not have been measured). The convex hull for DEIFD and
Dhigh is strikingly similar, meaning that both spectral datasets
carry almost the same information in terms of linear spectral
unmixing, but this information can be acquired 50 times faster
using the proposed approach than with the state-of-the-art
imaging strategy. Of course, there is a compromise to be found,
and the results cannot be exactly as good as for full data
acquisition, as illustrated in Figure 4D−F, but the price to pay is
very small considering the 50-fold improvement of the
measurement speed. As already pointed out in the discussion
on the simulation results, the choice of how many and which
harmonics to be considered might be user-dependent. However,
a cautious approach may always be taken: for example, by
considering 10 phasor plots (and, therefore, 113 ESs) in the
current example, the same results would have been obtained but
in 9.4 min. For the sake of comprehensiveness, we also provide
in Figure 4G−I the images (virtually indistinguishable) returned
when performing the linear unmixing of Dlow, Dhigh, and DEIFD.

Figure 2. Raman spectra in (A) Dlow and (B) Dhigh (only 1% of the data is shown�the same pixels were selected in both cases).
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Figure 3. Results obtained applying EIFD toDlow andDhigh, distributed over columns A and B, respectively. The phasor plots obtained are represented
along lines 1−3. The convex hulls estimated by EIFD are displayed in yellow for Dlow and blue for Dhigh. Yellow dashed lines (column B) mark the
location of the convex hull obtained from Dlow. ESs are provided along line 4. Along line 5, the spectra exhibiting the highest correlation with the pure
spectra of the three compounds under study (CaCO3, NaNO3, and Na2SO4) are graphed for Dlow and Dhigh, respectively.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.3c01383
Anal. Chem. 2023, 95, 15497−15504

15502

https://pubs.acs.org/doi/10.1021/acs.analchem.3c01383?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c01383?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c01383?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.3c01383?fig=fig3&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.3c01383?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Finally, the analysis was also repeated for a data acquisition
covering the spectral range from 71.6 to 496.5 cm−1,
corroborating the conclusions drawn below (see Supporting
Information).

■ CONCLUSIONS
In this paper, we have demonstrated that EIFD allows extracting
ESs from the convex hull analysis of the data clouds in the phasor
plots obtained by DFT of the original spectral data. The
compression and robustness to noise of EIFD enable a fantastic
gain in terms of speed with very low loss of information. The
proposed EIFD approach is chemometrics-driven (i.e., based on
the relevance of the processed spectra for unmixing) and broadly
applicable. We analyzed Raman hyperspectral imaging data and
could show the efficiency and robustness of the approach in the

context of MCR. We also proposed a new approach for data
acquisition with targeted sampling based on EIFD and showed
that raster scanning in Raman could be sped-up 50 times.

The method is nature generic, could be applied to different
types of data, and could employ other linear transforms than
DFT. When dealing with relatively smooth signals such as
Raman spectra, we have shown that it is sufficient to consider the
DFT coefficients of the first few harmonics in order to fully
recover the EIFD. However, we have also pointed out that, when
more harmonics are considered, the benefits of our approach are
preserved.

We provide the code to implement EIFD which offer the
possibility to perform active spectral subsampling identification
during the hyperspectral imaging analysis. In essence, the
measurement procedure does not need to be performed in two
steps. The assessment of EI could be carried out on-the-fly, and

Figure 4.Graphical representation of the geometry of the data inDlow (yellow),Dhigh (blue), andDEIFD (green). (A−C) Phasor plots obtained form =
1, 2, 3, respectively. (D) Spectral profiles in Dlow found to exhibit the highest correlation with the reference spectra of the three chemical compounds
constituting the analyzed mixture (CaCO3, NaNO3, and Na2SO4). (E) Spectral profiles in DEIFD found to exhibit the highest correlation with the
reference spectra of the three chemical compounds constituting the analyzed mixture (CaCO3, NaNO3, and Na2SO4). (F) Spectral profiles in Dhigh
found to exhibit the highest correlation with the reference spectra of the three chemical compounds constituting the analyzed mixture (CaCO3,
NaNO3, and Na2SO4). (G) False RGB image yielded by the superposition of the 3 individual distribution maps resulting from the linear unmixing26 of
Dlow (pure spectral estimates in D). (H) False RGB image yielded by the superposition of the 3 individual distribution maps resulting from the linear
unmixing of Dhigh (pure spectral estimates in E). (I) False RGB image yielded by the superposition of the 3 individual distribution maps resulting from
the linear unmixing of Dhigh (pure spectral estimates in F).
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for each spectral pixel, the decision on whether a longer spectral
acquisition is required or not can be taken as long as the imaging
experiments are ongoing. This way, EIFD would bring a
remarkable acceleration as mentioned above, and it would also
allow circumventing sample damaging due to long exposure,
opening the door to biological or sensitive sample analysis.
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