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Abstract 

Heatwave weather files are needed to assess building performance under future 10 

heatwaves. This paper presents a methodology for producing a minimum set of 

heatwave weather files, which should be representative of the diversity of heatwaves 

expected in a location of interest. It is a four-step methodology. Weather projections 

are first collected from the CORDEX project database. Then, heatwaves are identified 

in the weather data. A list of independent and significant indicators is constructed to 15 
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Abbreviations 

BPI  Building Performance Indicator 

CORDEX COordinate Regional Downscaling Experiment 

CMA  Correlation Matrix Analysis 

DMT  Daily Mean Temperature 

EHF  Excess Heat Factor 

GCM  Global Circulation Model 

HWMI  HeatWave Magnitude Index 

IBM  Indicator Biometeorological 

IWEC  International Weather for Energy Calculation 

PC  Principal Component 

PCA  Principal Component Analysis 

RCM  Regional Circulation Model 

RCP  Representative Concentration Pathway 

 

 



   

 

   

 

characterise the heatwaves. Samples of heatwaves are finally selected based on the list 

of indicators. The methodology was tested for the location of the Lyon-Saint Exupery 

Airport. A total of 2229 heatwaves were identified within 1260 years of weather 

projections. The heatwaves showed a high degree of diversity in terms of weather 

characteristics. The sampling process selected only 8 representative heatwaves. This 20 

number is sufficiently reduced to consider using the reduced set of heatwave weather 

files for assessing building performance. 

Keywords: Heatwaves, global warming, building simulations, weather data 

 

1. Introduction 25 

During the next decades, it is highly probable that a majority of the buildings on 

earth will experience several heatwaves. Additionally, the heatwaves to which each 

building may be exposed are likely to have different characteristics. Some of them will 

last longer, some of them will have higher temperatures, etc. The wide variety of 

heatwaves to which a building could potentially be exposed can be attributed to the 30 

stochastic nature of extreme meteorological phenomena. It is also due to the uncertainty 

in the evolution of the climate, which may be attributed to both the uncertainty in the 

evolution of greenhouse gas emissions and the limitations of the models used to predict 

future climate evolution [1]. Considering the diversity of the heatwaves that a building 

may have to face during the next decades, a question arises: is it relevant to assess the 35 

performance of the building during future heatwaves by simulating the building thermal 

behaviour under the conditions of a unique heatwave? To the authors’ point of view, 

most of the time it is not relevant. Instead, a set of heatwave weather files would be 

needed to assess the building performance, with the heatwaves being representative of 

the diversity of the future probable heatwaves at the building location. 40 

Some authors have developed and tested different methods to constitute such a set 

of heatwave weather files. [2] studied the thermal performance of buildings equipped 

with phase change material panels under heatwave conditions in Melbourne. They used 

the weather data of the 2009 heatwave as a base file. To consider the impacts of climate 



   

 

change, they constructed heatwave weather data for 2030 and 2050 by increasing the 45 

air temperature of the 2009 heatwave by 1 °C and 1.5 °C, respectively. They did not 

modify the other weather variables. This method does not produce heatwave datasets 

that are representative of the diversity of future heatwaves because the weather data are 

too similar. 

[3] studied resilient retrofitting strategies of buildings under future heatwave 50 

conditions. They used three heatwave weather files. Those weather files were produced 

by selecting the hottest summer week of the representative International Weather for 

Energy Calculation (IWEC) weather data of three Mediterranean cities located in 

different climate zones. The method relies on the assumption that the time variability 

of future heatwaves could be similar to the spatial variability of current heatwaves. 55 

[4] developed a method for defining reference summer weather year (RSWY) 

weather files from historical weather data over a period of 31 years. The method defines 

a heatwave as an event during which the t-Standard Effective Temperature (t-SET) 

comfort index, computed with weather data, remains over an arbitrary threshold for 

several consecutive days. The authors calculate three indicators for each heatwave: the 60 

duration, the severity (surface between the t-SET time evolution over the threshold) and 

the intensity (ratio between severity and duration). The RSWYs are the second most 

extreme years (over the 31 historical years) in terms of heatwave duration, intensity or 

severity. There can therefore be 3 RSWYs for a given period and location. It is also 

possible that the same year is the second most extreme on all 3 indicators. To the present 65 

authors’ knowledge, the method has only been applied to historical weather data. 

[5] built Future Typical Weather Year (FTWY) weather files from weather 

projection data for the location of Nantes, France. The authors compared the FTWYs 

obtained with weather data produced by three different climate projection models to the 

weather data of 2003, during which a deadly heatwave occurred in France. They 70 

observed that the heatwaves contained in their future typical weather data years were 

less extreme than the 2003 heatwave. This may be true for the heatwaves contained in 

typical weather files, but this may not be true for more extreme future heatwaves. In the 

authors' view, extreme weather files should only be compared with extreme files and 

not with typical weather files. 75 



   

 

   

 

None of the methodologies mentioned here can be used to produce a representative 

set of heatwave weather files for building assessment. The methods for producing 

representative meteorological years do not focus enough on the heatwave 

characteristics. Most of the methodologies are only based on an analysis of the air 

temperature evolution, but a building’s thermal behaviour strongly depends on other 80 

weather variables, such as solar radiation, wind speed, or sky temperature. Finally, none 

of the methodologies are able to assess the representativeness of the set of heatwave 

weather files regarding the possible diversity of future heatwave characteristics. 

The present paper describes a methodology that intends to construct a minimum 

representative set of heatwave weather files for building assessment. It is a four-step 85 

methodology. An overview of the methodology is proposed in the first section. A 

detailed description of each step is provided in the following sections. The description 

of the methodology is illustrated by an application for the location of the Lyon-Saint 

Exupéry Airport. 

2. Methodology overview 90 

Figure 1 summarizes the overall methodology. The first step consists of collecting 

weather projections for the locality of interest. Here, the term “weather projection” 

refers to a long-term weather prediction. The second step consists of identifying 

heatwaves in the weather projections. This data produces the extended heatwave 

dataset. The third and fourth steps intend to sample the extended heatwave dataset. The 95 

third step consists of building a heatwave characterization space in which each 

heatwave is located according to its characteristics. The fourth step consists of selecting 

heatwaves in the characterization space. 



   

 

 

Figure 1: Scheme of the methodology 100 

For the purpose of this paper, the four-step methodology has been applied to the case 

study of the Lyon_Saint Exupéry Airport, France. Table 1 provides general information 

about the case study. The Lyon-Saint  Exupery Airport is located in a rural area, 30 km 

away from the city of Lyon, France. The method is applied in rural areas and therefore 

does not consider urban heat island effects. Thus, the results of the method will not 105 

depend on assumptions about the evolution of cities, which will allow the set of 

heatwaves to be used later as a base to simulate the urban heat island effects during 

future heatwaves for different urbanisation. 

Table 1: General information on the case study 

Name Latitude Longitude Altitude Time Zone 

Lyon-Saint Exupéry 45.7261 

45° 43' 34'' North 

5.09083 

5° 5' 27'' East 

250 m UTC +1:00 (Europe/Paris) 

Summer time: UTC +2:00 

Winter time: UTC +1:00 

3. Detailed description of the methodology 110 

3.1. Step 1: Collecting climate projection data 

3.1.1. Objectives and method 



   

 

   

 

 

The first step consists of collecting weather projections. Weather projections 

produced with the morphing method are not suitable for the study of future heatwaves. 115 

The morphing method produces weather variable time series whose average value and 

amplitude are different. However, those time series evolve with a similar pattern, 

regardless of the climate evolution scenario. The method does not allow us to consider 

the variations in frequencies and time durations of extreme weather events such as 

heatwaves [6]. In contrast, dynamical downscaling models are able to reproduce 120 

random events. Weather projections that are produced with the dynamical downscaling 

method are more suitable. 

The COordinate Regional Downscaling Experiment (CORDEX) database contains 

weather projection data produced with the dynamical downscaling method. In the 

CORDEX database, each weather projection corresponds to one Representative 125 

Concentration Pathway (RCP) scenario and one projection model. Each model is the 

combination of a global circulation model (GCM), which produces climate projections, 

and a regional circulation model (RCM) for the dynamical downscaling process. The 

CORDEX database contains a great variety of climate projections. However, a large 

number of climate projections cannot be exploited in the present context. The 130 

projections must fulfil criteria to produce relevant weather data for building 

simulations. 

Building simulation weather files contain a fixed list of variables for which data must 

be provided with an hourly timestep. There is no weather projection in the CORDEX 

database that contains all the required variables. Moreover, the number of available 135 

variables may vary greatly between the different weather projections. There are 

techniques to compute missing weather variables, but to maximize the degree of 

confidence in the resulting data, a minimum list of available variables has been 

established. To be considered suitable, a CORDEX weather projection must contain 

data for all the variables contained in the minimum list of required variables given in 140 

Table 2. This list is a compromise between the list of commonly available variables in 

the CORDEX database and the list of variables required in the building simulation 

weather files. The present list contains three additional variables compared to the 



   

 

minimum list of required variables proposed by Machard et al. (2020): the incident 

infrared radiation and the two components of the wind velocity, which are used to 145 

compute the wind direction. The variable names in Table 2 follow the CF (Climate and 

Forecast) standard. The technique from [1] is used to compute the missing weather 

variables.  

Hourly data are not common in the CORDEX database. They are available on a 

three-hourly or longer time step. The CORDEX weather data must be interpolated to 150 

obtain hourly data. To minimize the degradation of the information due to interpolation, 

a maximum time step was fixed for each variable. The maximum timesteps are listed 

in the second column of Table 2. A CORDEX weather projection is suitable only if, for 

all the variables in Table 2, data are available at a timestep lower than or equal to the 

related maximum timestep. 155 

The future heatwave weather data are intended to be used for the evaluation of the 

absolute building performances during future heatwaves, as opposed to a comparative 

evaluation with a reference building behaviour evaluated during a reference historical 

period. In that context, there is general agreement on the fact that bias-corrected weather 

data should be used [5]. In the CORDEX database, bias-corrected data are available 160 

only for 3 variables: the air temperature, the wind speed and the global solar irradiation. 

Only the weather projections for which bias-corrected data are available for those 3 

variables are considered suitable. 

The first step of the methodology consists of identifying suitable weather projections 

according to the three criteria presented above, downloading the related weather data, 165 

computing the missing weather variables, and interpolating the data linearly to obtain 

the full list of data that is required in building performance simulation weather files. 

Table 2: Minimum requirements for a CORDEX weather projection to be considered suitable 

List of required variables  Maximum 

Timestep 

Bias-correction availability 

Dry air temperature [K] 3 hrs Yes 

Specific humidity [kg/kg] 3 hrs - 

Atmospheric pressure [Pa] 3 hrs - 

Cloud fraction [%] 3 hrs - 

Global horizontal radiation [W/m²] 3 hrs Yes 

Wind speed [m/s] 3 hrs Yes 



   

 

   

 

Precipitation [kg/m²/s] 3 hrs - 

Surface Downwelling Longwave Radiation [W/m²] 3 hrs - 

Eastwards wind speed [m/s] 6 hrs - 

Northwards wind speed [m/s] 6 hrs - 

3.1.2. Application 

Table 3 shows the result of the weather projection selection for the location of Lyon- 170 

St Exupery. The Lyon St-Exupery site is located in the EURO-CORDEX subdomain 

of the CORDEX project. The selection of weather projections (Table 3) is relevant for 

any location in this subdomain. 

Fourteen weather projections were selected. They correspond to 2 RCP scenarios, 

RCP4.5 and RCP8.5, and 7 different models. The 7 models are combinations of 5 175 

distinct GCMs and 2 distinct RCMs. Each weather projection runs from 2007 until 

2097. The whole weather projection dataset represents 1260 years of weather 

projection. 

Table 3: List of the weather projections collected from the CORDEX database. Crosses indicate data 

availability. 180 

GCM RCM Ensemble rcp45 rcp85 

CNRM-CERFACS-CNRM-CM5 RCA4 r1i1p1 X X 

ICHEC-EC-EARTH RAMCO22E r1i1p1 X X 

IPSL-IPSL-CM5A-MR RCA4 r1i1p1 X X 

MOHC-HadGEM2-ES RAMCO22E r1i1p1 X X 

MOHC-HadGEM2-ES RCA4 r1i1p1 X X 

MPI-M-MPI-ESM RCA4 r1i1p1 X X 

ICHEC-EC-EARTH RCA4 r12i1p1 X X 

3.2. Step 2: Identifying heatwaves 

3.2.1. Objectives and method 

The second step of the methodology consists of identifying heatwaves in the weather 

projections. There is no universal definition of a heatwave, but the literature frequently 

refers to four heatwave identification methods: the "Spic, Sdeb, Sint" method from [7], 185 

the "IBM" method from [8], the Excess Heat Factor ("EHF") method from [9] and the 

HeatWave Magnitude Index ("HWMI") method from [10]. 



   

 

To avoid inconsistencies in the heatwave dataset, a choice must be made between 

the four identification methods. It is not possible to base that choice on the description 

of the four identification mechanisms. Therefore, it was decided to perform heatwave 190 

identification with the four methods and to identify the most appropriate method from 

a comparison of the resulting heatwave datasets. 

3.2.2. Application 

Table 4 contains a statistical description of the four heatwave datasets for the location 

of Lyon-St Exupery. For each heatwave dataset, the first column contains the average 195 

number of identified heatwaves per year, the second column contains the average 

duration of the heatwaves, the third column contains the average value of the average 

temperatures during the heatwaves, and the fourth column contains the absolute number 

of identified heatwaves. 

The “EHF” and “HWMI” methods identified a considerably larger number of 200 

heatwaves than the first two methods. Their identification criteria are less restrictive, 

with lower threshold values. As a result, the average temperature during a considerable 

part of the heatwaves is mild. However, health and discomfort issues might be expected 

during more extreme events. For this reason, those two methods were not chosen. 

The distinction between the "Spic, Sdeb, Sint" method and the “IBM” method is 205 

more subtle. The two methods identified roughly the same number of heatwaves, and a 

deeper analysis of the datasets reveals that 90% of the heatwaves identified by the two 

methods correspond to the same extreme weather event: the same period of the same 

weather projection. The major difference between the 2 methods is the criterion used 

to locate the beginning and end of the heatwaves. This criterion is less restrictive for 210 

the "Spic, Sdeb, Sint" method in which the heatwaves start earlier and finish later. As a 

consequence, the heatwaves last for longer (8 days on average), with a lower average 

air temperature (2 °C on average). The "IBM" method only identifies the heart of 

heatwaves. Although those observations reveal some specificities of the two heatwave 

identification methods, they did not motivate the choice between the two methods. 215 

Finally, the “IBM” method was chosen. The main reason for that choice is that the 

method is used by France’s Heat Health Watch Warning System to trigger heatwave 

alerts [8]. 



   

 

   

 

The second step of the methodology, applied to the Lyon St Exupery, resulted in the 

construction of a dataset containing 2229 heatwaves (highlighted in green in Table 4). 220 

Table 4: Average annual number, air temperature and duration of heatwaves detected from each detection 

method. 

Detection 

methods 
 

  Average annual number of 

heatwaves 

Average air 

temperature 

Average 

duration 

Total number of 

heatwaves 

 

Spic, Sdeb, Sint    1.89 28.3 °C 14.5 d 2384  

IBMn, IBMx    1.77 30.3 °C 6.3 d 2229  

EHF    6.06 24.8 °C 11.1 d 7641  

HWMI    6.65 25.6 °C 6.9 d 8375  

3.3. Step 3: Heatwave characterisation 

3.3.1. Objectives and method 

The third step of the methodology consists of defining the heatwave characterisation 225 

space. The heatwave characterisation space is a space for which each dimension 

corresponds to one heatwave indicator. Each heatwave indicator quantifies one 

characteristic of the heatwaves. Thus, the third step consists of establishing a list of 

relevant heatwave indicators. 

[7] defined a heatwave charactersation space with three indicators: the duration, the 230 

maximum temperature and the severity (also named global intensity) of the heatwave. 

This three-dimensional characterisation space enables a graphical representation of a 

heatwave population, as shown in Figure 2. In this graph, the size of the bubbles 

indicates the global intensity of the heatwaves. The colour of the bubble depends on the 

year of the heatwave. This approach is limited: the three indicators are solely based on 235 

the evolution of the air temperature during the heatwaves. However, as mentioned in 

the introduction of the paper, the thermal behaviour of a building does not only result 

from the outside air temperature evolution. It also results from other weather 

parameters, such as solar radiation, sky temperature, wind speed, etc. A broader set of 

indicators based on those variables is needed to assess the diversity of heatwaves. 240 



   

 

 

Figure 2: Heatwave characterisation space proposed by Ouzeau et al. (2016) for the heatwave detected 

with the “IBM” method for the RCP 4.5 scenario in the location of Lyon-Sain-Exupéry Airport. The 

weather predictions of all the models are mixed in this figure. The colour bar indicates the year of each 

heatwave. The size of the bubble represents the global intensity of the heatwave. 245 

Given the amount of data that is available for each heatwave, there is almost an 

infinite number of possible heatwave indicators. To the authors’ knowledge, there was 

no other choice than starting the third step by the definition of an arbitrary list of 

indicators. 

The arbitrary list of indicators proposed in the present study is composed of 3 groups. 250 

The first group of indicators contains the heatwave duration, the day of the year 

corresponding to the first day of the heatwave, and some basic statistics computed from 

the values of the different weather variables. The basic statistics are the average value 

(avg), the maximum value (max), the average value of the daily maximums, the daily 

minima (dmin_avg/dmax_avg) and the daily amplitudes (dampl_avg), the average 255 

value during the night-time and the day-time periods (nighttime/daytime), and the 

average value during the week before the heatwave occurs. Here, the night-time is fixed 

between 10 pm and 9 am, and the daytime is fixed between 10 am and 9 pm. It is not 

relevant to compute all those statistics for all the weather variables. Indeed, some 



   

 

   

 

statistics would represent quantities that would not affect a building’s thermal 260 

behaviour. Table 5 summarizes all the statistics computed for each weather variable. 

Table 5: First group of the extended set of indicators, inventory of the statistics computed for each weather 

variable 

Weather variable avg max dampl_avg dmin_avg/dmax_avg nighttime/daytime 

Dry air temperature [°C] x x x x x 

Specific humidity [kg/kg] x     

Relative Humidity [%] x    x 

Sky temperature [°C] x    x 

Global horizontal radiation [W/m²] x     

Direct horizontal radiation [W/m²] x     

Cloud cover x     

Wind speed [m/s] x    x 

Precipitation [kg/m²/s] x x    

 

The second group of indicators is composed of cooling potential indicators. The 265 

cooling potential indicators quantify the opportunities offered by the weather conditions 

for a building to adopt passive cooling strategies. There are four “cooling potential” 

indicators for the four common passive bioclimatic strategies: radiative cooling 

(cp_rad), solar shading (cp_sol), evaporative cooling (cp_humid), and natural 

ventilation (cp_nv). Their definitions are represented schematically in Figure 3. The 270 

radiative cooling potential is the average value of the difference between the air 

temperature and the sky temperature during the nighttime periods. The solar shading 

cooling potential is the ratio between the total horizontal direct solar radiation 

(rsw_dirh) and the total global horizontal solar radiation (rsw_gh). The evaporating 

cooling potential is the average value difference between the relative humidity of 275 

saturated air (100%) and the relative humidity of the actual outdoor air. The natural 

ventilation cooling potential is the average positive difference between the daily mean 

air temperature (DMT) and the nighttime air temperature. 



   

 

 

Figure 3: Cooling potential (by evaporation top left, by direct radiation protection bottom left, by nighttime 280 

heat radiation top right and by natural ventilation bottom right) 

 

The third group of indicators is composed of global intensity (or severity) indicators. 

Global intensity indicators were produced together with heatwave identification 

methods. There are 3 heatwave intensity indicators: the intensity_spic defined by 285 

Ouzeau et al. (2016) associated with the “Spic, Sdeb, Sint” identification method, the 

intensity_ehf defined by Nairn et al. (2014) associated with the “EHF” identification 

method and the intensity_hwmi defined by Russo et al. (2014) and associated with the 

“HWMI” identification method. 

The union of the three groups of indicators constitutes the initial extended list of 33 290 

indicators. 

With an initial extended list of indicators established, an analysis of the correlation 

between the indicators’ values for the whole heatwave dataset is performed. The 

correlation analysis aims to meet two objectives. The first objective is to reduce the 

number of indicators by eliminating redundant ones. If the values of two indicators are 295 

strongly correlated, the way they differentiate heatwaves is similar, and there is no need 

to keep both indicators in the list. The second objective is to obtain information about 

the possible presence of trends in heatwave characteristics within the heatwave dataset. 

The number of independent indicators measures the level of independence between the 

different heatwave characteristics. The higher this level of independence is, the higher 300 



   

 

   

 

the number of heatwaves that would be needed to represent the diversity of the 

heatwave characteristics in the dataset. 

A graphical method is proposed to conduct the correlation analysis. It consists of 

drawing an arranged correlation matrix and identifying groups of highly correlated 

indicators within the matrix. This is the correlation matrix analysis (CMA). An arranged 305 

correlation matrix is a correlation matrix for which the position of the indicators is 

arranged to put the indicators that are highly correlated closer to each other. The matrix 

of correlation is computed with the absolute value of the Pearson correlation. The 

position of the indicators in the matrix is arranged with a hierarchical clustering 

technique. A hierarchical clustering technique is a combination of a metric between 310 

individual elements and a linkage method. The metric between individual elements is 

the absolute value of Pearson’s correlation. The present paper does not recommend any 

linkage method. The user is invited to test different methods and to select the method 

for which the resulting matrix allows the best visual identification of groups of highly 

correlated indicators. Once the groups of highly correlated indicators are identified, one 315 

indicator is retained within each group. The other indicators are removed from the list. 

They are redundant. 

The number of indicators is then further reduced by removing insignificant 

indicators. These insignificant indicator values are sufficiently narrow, so that 

variations in their values may not lead to significant changes in building performance. 320 

The identification of the insignificant indicators is based on the graphical representation 

of the distributions of indicator values. It is up to the user’s degree of experience in 

building thermal behaviour to determine which variable may be insignificant. 

3.3.2. Application/illustration 

The values of all the indicators were computed for all the heatwaves within the 325 

extended heatwave dataset. Different combinations of linkage methods (average, ward, 

single, complete, weighted, centroid, median) were tested to draw the arranged 

correlation matrix. All those combinations resulted in similar groups of highly 

correlated indicators. The arranged correlation matrix on Figure 4 was obtained with 

the “single” linkage method corresponding to the “neared neighbour” metric between 330 

groups. 



   

 

After a visual inspection of the matrix, ten groups of highly correlated indicators 

were arbitrarily delimited. These groups are identified with thick line rectangles in 

Figure 4. Two indicators are not correlated with each other and thus form two groups 

of one indicator: wind direction and average air temperature one week before the 335 

heatwave. 

There is no real need to compute several statistics for each weather variable because 

those statistics are redundant. Indeed, most of the groups contain all the statistics related 

to one or two weather variables. For convenience, each group of indicators is named 

according to one of its related weather variables. The names are displayed at the bottom 340 

of Figure 4. 

The heatwave duration (“duration”) and the global intensity (or severity) indicators 

(“intensity_hwmi” and “intensity_spic”) belong to the same group. This reveals that the 

global intensity indicators mostly measure the duration of the heatwaves and slightly 

modulate this duration with the air temperature. In other words, using one of the 345 

intensity indicators to describe heatwaves would not provide much additional 

information on the different heatwave characteristics if both the duration and the 

average air temperature indicators are already used. This correlation is visible in Figure 

2, where it is clear that all the heatwaves with the highest intensity (larger bubbles) 

correspond to the longest heatwaves (on the right side of the graph). 350 

The low correlation between solar global irradiation and solar direct irradiation was 

at first unexpected. It reveals the two distinct mechanisms that affect solar radiation. 

Global solar irradiation is related to the period of the year at which heatwaves occur. It 

is at maximum when a heatwave occurs in June. It decreases when a heatwave occurs 

in late summer because the sun position is lower at that time. The amount of direct solar 355 

radiation seems to be more affected by the presence of clouds in the sky. 

Each cooling potential indicator is based on one or two weather variables. The 

cooling potential indicators belong to the group of indicators related to one of their 

associated weather variables. The evaporative cooling potential (“cp_humid”) belongs 

to the relative humidity group. The solar shading cooling potential (“cp_sol”) is within 360 

the direct solar radiation group. The “cp_rad” indicator is highly correlated to the sky 

temperature group. However, it is also highly correlated with the humidity group. The 

correlation between the sky temperature group and the humidity group is explained by 



   

 

   

 

the fact that the sky vault temperature approaches the air temperature (higher values) 

when the humidity content in the air is high. 365 

For each group of indicators, one indicator was designated as the representative 

indicator of the group. The choice was made in an arbitrary way. The average value of 

the weather variable of the group was systematically chosen when this choice was made 

possible. The list of the independent indicators is provided in Table 6. 

 370 

 

Figure 4: Correlation matrix (in absolute values) between the different heatwave indicators. Strong 

correlations are shown in red, and weak ones in blue. Black rectangles represent the groups of highly 

correlated indicators. The names of the groups are given at the bottom of the figure. Dashed rectangles 

represent insignificant groups. 375 

Table 6: Minimum and maximum values of each independent indicator. 

Indicator Variable name Unity Q5 Q95 Significant 

Maximum precipitation pr_max mm/h 0 2.5  

Average air temperature ta_avg °C 28.36 32.99 X 



   

 

Duration duration Days 3 16 X 

Main wind direction wd_main ° - -  

Average wind speed ws_avg m/s 1.83 4.37 X 

Average horizontal global solar radiation rsw_gh_avg W/m² 207.03 321.33 X 

Cooling potential by solar protection cp_sol / 0.41 0.92 X 

Average sky temperature tsky_avg °C 10.14 18.6 X 

Average relative humidity rh_avg % 26.99 57.34 X 

Average temperature before the heatwave ta_avg_prior °C 22.24 30.37 X 

 

Figure 5 shows the distributions of the ten independent indicator values. The 5th and 

95th percentiles are given in the last two columns of Table 6. Two insignificant 

indicators are identified: the maximum precipitation and the main wind direction. 380 

The 95th percentile of the maximum precipitation values is 2.5 mm/h. According to 

Météo-France, precipitation can be considered light rain when its flow rate is below 3 

mm/h. Thus, during heatwaves, the maximum precipitation is very low, and only very 

little effect of rain on building behaviour is expected. 

The distribution of the main wind direction values reveals two major directions: from 385 

north to south and from south to north. These directions are opposite to each other. The 

wind direction mostly affects natural ventilation flow rates within cross-ventilated 

buildings. In most cases, the effect of the wind direction on the natural ventilation flow 

rate is nearly symmetrical according to the wind direction. Two opposite directions 

would result in a similar flow rate. 390 

Heatwaves can therefore be characterised by a space composed of eight dimensions, 

which correspond to the eight significant indicators in Table 6. 



   

 

   

 

 

Figure 5: Histograms of independent indicator values among the extended heatwave dataset 

3.3.3. Challenging the method with a principal component analysis 395 

 

The identification of the independent indicators was performed with a correlation 

matrix analysis (CMA). Instead, this identification could have been performed with a 

principal component analysis (PCA). CMA involves arbitrary decisions from the user, 

such as the delimitation of the groups of indicators. PCA is a more rational technique, 400 

and it is less sensitive to user decisions. Performing a PCA on the extended indicator 

dataset and comparing the PCA results to the CMA results may allow us to assess the 

relevance of the CMA results. 

The principal component of a dataset (PC) is the linear combination of variables for 

which the variance of the data is maximum. A PCA detects principal components 405 

iteratively in such a way that all the PCs are independent from each other (the 

correlation between the PC values is low). When detecting a new PC, the variance of 

the dataset that is explained by the list of PCs increases. The iterative process stops 

when this increase becomes negligible. 



   

 

PCA was performed on the dataset containing the values of all the indicators for all 410 

the heatwaves. The PCA provided a list of independent linear combinations of 

indicators. This list can be compared to the list of independent indicators produced by 

the CMA. 

The PCA was run until 89% of the total variance of the dataset was explained by the 

PCs. At this stage, eight PCs were selected. This confirms the high level of 415 

independence between the indicators. The number of PCs (8) is comparable to the 

number of independent indicators (10) selected with the CMA. 

Table 7 reveals the three major contributors of the eight PCs. For almost all the PCs, 

the three major contributors belong to the same group of independent indicators 

identified with the CMA. The names of the corresponding groups are given in the last 420 

column of the table. Each group appears only once. There is a direct link between the 

PCs and the independent indicators. The PCA confirms the relevance of the CMA 

results. 

Table 7: Major contributors of the PCs 

 1st  2nd  3rd  Clustering group 

PC1 ta_daytime ta_avg ta_dmax_avg Air temperature 

PC2 tsky_avg tsky_nighttime tsky_daytime Sky temperature 

PC3 ws_avg ws_nighttime ws_daytime Wind 

PC4 rsw_dirh_avg day_of_year rsw_gh_avg Solar radiation 

PC5 ta_dampl_avg rsw_gh_avg day_of_year - 

PC6 duration intensity_hwmi intensity_spic Duration and intensities 

PC7 pr_avg pr_max cp_sol Rain 

PC8 ta_avg_prior wd_main day_of_year - 

 425 

From the authors’ point of view, the advantage of CMA, compared to PCA, is that 

this technique allows a visual inspection of the heatwave dataset content and selects 

indicators that are easier to interpret than principal components. 

3.4. Step 4: Selecting heatwaves 

3.4.1. Objectives and method 430 



   

 

   

 

The sampling method presented in this section aims to construct a minimal 

representative set of heatwaves. The minimal representative set of heatwaves covers a 

maximum of the diversity of the heatwave characteristics, with a minimum number of 

heatwaves. The sampling method consists of grouping similar heatwaves with a 

clustering technique and then selecting a representative heatwave for each group. Those 435 

steps are performed in the heatwave characterisation space, with normalized indicator 

values along the dimensions. 

The grouping process is ensured by a hierarchical clustering technique. It starts with 

all the heatwaves being in distinct clusters. At each iteration, the two closest clusters 

are merged. The metric between elements for the clustering technique is the Euclidian 440 

distance in the characterization space. The linkage method is the “Ward” linkage 

method. This linkage method aims at producing compact, spherical clusters by selecting 

the clusters to be merged based on an increase in the cluster Ward variances. The two 

clusters that are merged are the two clusters for which the increase in the combined 

variance over the sum of the cluster-specific variances is the minimum. 445 

The distance between two clusters that have just been fused is called the dissimilarity 

distance. At the end of the linkage process, the cumulative dissimilarity distance is 

displayed as a function of the number of clusters. The optimal number of clusters is a 

compromise between a low number of clusters and a low dissimilarity distance. It is 

identified graphically with the elbow method, which is commonly used with the K-450 

means clustering method [11]. 

Then, a representative heatwave is selected in each cluster. To do so, the distance 𝐷𝑘 

is computed for each heatwave of the cluster. The distance 𝐷𝑘 is the sum of the 

Euclidean distances between the heatwave 𝑘 and the barycentre of the other clusters: 

𝐷𝑘 = ∑ 𝑑𝑖𝑠𝑡(𝑘, 𝑏𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟(𝑗))

𝑗≠𝑖 

 ∀ 𝑘 ∈ 𝑖 455 

The representative heatwave of a cluster is defined as the heatwave corresponding 

to the 85th percentile of the distribution of 𝐷𝑘. This technique allows us to emphasise 

the dissimilarities between the different clusters and to cover a majority of the portion 

of the characterisation space occupied by the heatwaves without necessarily selecting 

outliers (Figure 6). 460 



   

 

 

Figure 6: Representative heatwave selection and the space it covers on a 2D projection of the 

characterisation space. 

3.4.2. Application/illustration 

The result of the clustering process for Lyon-St Exupery is represented as a 465 

dendrogram in Figure 7 (left graph). In this graph, each junction between two branches 

represents the fusion between two clusters. The vertical distance between two 

consecutive junctions is the dissimilarity distance. 

Figure 7 (right graph) shows the evolution of the dissimilarity distance as a function 

of the number of clusters. The curve is strictly decreasing: the higher the number of 470 

clusters is, the more similar the heatwaves are in each cluster. The elbow of the curve 

occurs when the number of clusters is equal to eight. Onwards, the decrease in the 

dissimilarity distance is strongly reduced. Choosing a larger number of clusters would 

not significantly reduce the distance between clusters, but it would considerably 

increase the number of simulations for assessing building performances. The last 475 

column of Table 8 shows the number of heatwaves in each cluster. The size of the 

clusters is well balanced. Each cluster contains between 240 and 560 heatwaves, except 

the last cluster, which contains 65 heatwaves. 



   

 

   

 

 

Figure 7: Dendrogram of the heatwave dataset in the characterisation space (left graph). Euclidean 480 

distance as a function of the number of clusters (right graph). The red dashed lines show the selected 

number of clusters and the associated Euclidean distance. 

One representative heatwave was selected within each cluster. Table 8 shows the 

values of the heatwave indicators for the eight representative heatwaves. A colour scale 

was applied to each column of the table to distinguish indicator values corresponding 485 

to lower stress (white colour) and indicator values corresponding to higher stress (red 

colour). The boundaries of the colour scales are the 5th and 95th percentiles of each 

indicator. Those quantiles are given in the third line of Table 8. 

Each heatwave has a specific profile. The durations range between 3 days (short 

heatwave) and 30 days (exceptionally long heatwaves). The average air temperature 490 

oscillates between 28.8 °C and 34.3 °C. Some heatwaves have a lower average sky 

temperature (heatwaves 2 and 4) or a higher wind velocity value (heatwaves 2, 4 and 

5), which may enhance passive cooling performance. Heatwaves 3 and 4 are the 

heatwaves for which the average air temperature during the preceding week is lower, 

enabling the building to store freshness before the beginning of the heatwave. 495 

Heatwaves 1, 2 and 7 occur around the summer solstice, when there is plenty of solar 

radiation. In contrast, heatwaves 4 and 5 occur late in the summer, when there is 

considerably less sun. Heatwaves 3 and 6 are significantly more humid than the other 

heatwaves. Heatwave 5 is much drier. Finally, the sky is clear during most heatwaves, 

resulting in over 70% of direct solar radiation, except for heatwaves 4 and 5, where the 500 



   

 

proportion of direct radiation is 57% and 53%, respectively, and for heatwave 1, for 

which the direct solar radiation represents only 25% of the total solar radiation. 

The eight heatwaves depict a wide variety of weather characteristics, which may 

result in a wide variety of building responses. 

Table 8: Characteristics of the heatwaves contained in the minimum representative set of heatwaves 505 

  duration ta_avg tsky_avg ws_avg ta_avg_prior rsw_gh_avg rh_avg cp_sol 

nb heatwaves Unit  [𝒅] [°𝑪] [°𝑪] [𝒎/𝒔] [°𝑪] [𝑾/𝒎²] [%] [-] 

range [3; 16] [28.4; 33] [10.1; 18.6] [1.82; 4.37] [22.2; 30.4] [207; 321] [27; 57.3] [0.4; 0.9] 

1 3 31.16 17.68 3.65 25.18 307.88 41.4 0.25 250 

2 4 30.89 13.7 5.46 24.62 299.19 31.78 0.72 246 

3 5 29.00 17.35 1.90 23.14 280.1 59.76 0.88 297 

4 6 28.79 10.1 3.96 23.14 236.33 41.16 0.57 564 

5 6 33.73 14.62 3.96 26.45 220.03 22.6 0.53 253 

6 6 29.31 15.43 2.24 23.75 284.94 53.3 0.91 238 

7 10 34.31 17.17 3.42 24.82 300.13 27.24 0.8 316 

8 30 32.81 18.57 2.8 31.57 265.86 36.71 0.8 65 

3.4.3. Validity of the clustering selection 

The validity of the clustering selection is evaluated through a silhouette score 

analysis [12], as shown in Figure 8. The silhouette score 𝑠(𝑖) of a datapoint 𝑖 lies 

between -1 and 1. When 𝑠(𝑖) is large (close to 1), the datapoint 𝑖 is ‘well-clustered’; 

there is little doubt that 𝑖 has been assigned to a very appropriate cluster. When 𝑠(𝑖) is 510 

low (near zero), it is not clear whether 𝑖 should have been assigned to its cluster or to 

another cluster, and 𝑖 lies equally far away from both, so it can be considered an 

‘intermediate case’. The worst situation takes place when 𝑠(𝑖) is close to -1. In that 

case, it would have seemed much more natural to assign object 𝑖 to another cluster. The 

object 𝑖 has been ‘misclassified’ [12]. 515 

The mean value of the silhouette score for the heatwave clustering is 0.06 (red dashed 

vertical line in Figure 8). It is quite close to zero, which indicates that clusters are 

overlapping. 

For Clusters 1, 3, 4, 5 and 7, half of the heatwaves are ‘well clustered’ with a positive 

silhouette score, and half of the heatwaves are ‘slightly misclassified’, with a negative 520 

silhouette score. For Clusters 2, 6 and 8, most of the heatwaves are ‘well clustered’. 



   

 

   

 

Even if the silhouette score analysis reveals overlapping clusters, the representative 

heatwaves of each cluster seem to be quite different from each other, as represented in 

Table 8. It still allows a better representation of the meteorological diversity than using 

only one future heatwave. 525 

 

Figure 8: Silhouette score for each heatwave in the dataset. The red vertical dashed line indicates the mean 

of the silhouette score. The number on the right of each cluster indicates the mean value of the silhouette 

score for each cluster. 

4. Usage and beyond 530 

The minimum representative set of heatwaves should be the starting point of the 

evaluation of building performances under future heatwaves. Since the minimum 

representative set of heatwaves covers the whole diversity of future potential heatwave 



   

 

characteristics, the simulations performed with this set of weather files may reproduce 

the expected variety of building thermal behaviour during future heatwaves. Those 535 

simulations may also produce a first population of building performance indicator 

values (BPI) and allow us to have a first estimation of the amplitude of those values. 

After performing those initial simulations, there are two ways to go deeper into the 

investigation of future heatwave effects on buildings. These two methods are illustrated 

graphically in Figure 9. The first method consists of sampling more heatwaves and 540 

performing simulations until refined statistics of the BPI values can be computed 

(average, standard deviation, etc.). The second usage would consist of refining the 

localisation of the frontier between problematic and nonproblematic heatwaves in the 

characterisation space. This usage would require establishing a BPI threshold to 

distinguish problematic and nonproblematic heatwaves. 545 

Both ways of going further into the investigation of future heatwave effects on 

buildings would require a specific iterative algorithm to continue sampling heatwaves 

in the characterisation space. 

 

Figure 9: Dispersion of a building performance indicator due to the variability of heatwaves (left graph) 550 

and frontier between problematic and nonproblematic heatwaves in a 2-dimensional projection of the 

characterisation space (right graph). 



   

 

   

 

5. Conclusions 

The paper proposed a methodology for constructing a minimum representative set 

of future heatwave weather files dedicated to building performance evaluations. This 555 

methodology has been applied to the location of Lyon-St Exupery. 

The set of heatwaves is representative in the sense that the heatwaves are sufficiently 

different from each other to cover the large spectrum of heatwave characteristics that a 

building could face in the location of Lyon-St Exupery. It is a minimum set; eight 

heatwaves were proven to be sufficient to obtain a representative set of future 560 

heatwaves. 

Building simulations should be performed with the minimum representative set of 

heatwaves to obtain an order of magnitude of the BPI dispersion during future 

heatwaves and to identify to which weather characteristics the building is the most 

sensitive. Then, to obtain a more accurate description of the BPI value distribution or 565 

to refine the boundary between problematic and nonproblematic heatwaves, more 

weather files might be needed. 

The minimum representative set of heatwave weather files might become an 

essential tool to evaluate building performance during future extreme events. It will 

particularly be helpful for the most robust passive cooling strategies for the future. 570 
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