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ABSTRACT

In situ workflows are inescapable to fully leverage exascale architec-
tures. They can be complex to build, however, because simulation
and data analytics come from two different software ecosystems
with their own paradigms and programming models. This work
extends the deisa bridging model between MPI+X simulations
and distributed task-based analytics; it introduces the concept of
external tasks to support the description of analytics graphs span-
ning multiple timesteps ahead of time while improving scalability.
This new approach leads to a straightforward support for contracts
between the simulation and analytics graph to limit the data trans-
ferred to that actually analyzed in a given execution. We implement
this approach using Dask and MPI and evaluate it using an end-to-
end in-transit workflow that uses an unsupervised ML model for
dimensionality reduction. We compare our work with plain Dask
postprocessing and with the previous version of deisa. Our work
performs better, up to ×7 for the simulation and ×3 for the analytics
compared with deisa, and is ×18 less costly compared with plain
Dask—all of these with similar development efforts.
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1 INTRODUCTION

High-performance computing and data analytics (HPC/DA) work-
flows deal with two different types of applications and two dif-
ferent software ecosystems: MPI+X for the simulations and high-
productivity Pythonic frameworks for data analytics. In order to
fully leverage the exascale architectures, in situ workflows become
inescapable; however, most of the in situ tools are built on the
MPI+X model inherited from the host simulations, which makes
them complicated to set up. In this work we couple MPI simula-
tions with a data analytics tool to support in situ workflows rather
than writing the in situ analytics using the MPI+X models. An ear-
lier contribution already provided a method to couple MPI codes
with Dask analytics [13], which is an important step in making
in situ workflows easier to build and use. However, it has several
limitations, such as scalability issues due to overloading the Dask
scheduler with the quantity of metadata that has to be exchanged,
as well as difficulties in implementing incremental algorithms.

In this paper we propose an approach that natively couples
MPI+X codes and the Dask distributed task-based framework in
a producer/consumer configuration to fit HPC workflows where
simulation produces data and Dask consumes it. We introduce the
external tasks concept in Dask to natively integrate simulation data
into Dask task graphs. This approach associates an external task
with each block of data that will be produced by the simulation.
These tasks are not schedulable nor runnable by Dask; they are
run by an external environment, and their results are sent to the
workers. The data produced by the simulation is described as deisa
virtual arrays that protect the semantics of exchanged data and
give Dask enough information about external tasks output. This
approach leads to a straightforward implementation of contracts
that easily and efficiently filter data. The introduction of external
tasks in Dask improves performance and scalability of in-transit
workflows compared with deisa [13] because it reduces the amount
of metadata that has to be sent to the scheduler at each timestep.
Moreover, it makes abstraction of the time dimension and the fact
that the data arrives incrementally, which makes the implementa-
tion of incremental algorithms trivial.

We provide an implementation of this approach in an end-to-end
in-transit workflow and show how it easily resolves one of the com-
plex challenges in the HPC/DA community, namely, building in situ
workflows applying machine learning (ML) models. We have eval-
uated our work on the French TGCC Irene supercomputer using
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a Heat2D miniapp coupled with an unsupervised machine learn-
ing model consisting of incremental principal component analysis
(IPCA) used for dimensionality reduction. The evaluation has been
performed along two axes, performance, and ease of use, compared
with postprocessing with plain Dask and in transit with [13]. Our
work performs better than these versions (×7, ×2 for the simulation
part, and ×4, ×1.2 for the analytics, respectively) and is ×18 less
costly than plain Dask—all with the same coding efforts.

The rest of the paper is organized as follows. Section 2 introduces
our approach and its implementation. In Section 3 we evaluate our
work and compare it with deisa and plain postprocessing with
Dask. In Section 4 we discuss related work and compare it with
our work. In the final section, we summarize our conclusions and
briefly discuss future work.

2 APPROACH AND IMPLEMENTATION

Before introducing our contributions we summarize important
concepts about the Dask distributed and deisa operation. A Dask
distributed cluster has three main actors: client, scheduler, and
workers. The client is a Python script using the available Dask APIs
to create and submit task graphs to the scheduler. At the reception
of the task graph, the scheduler populates its data structures to
keep track of the state of the clients, tasks, and workers and then
sends the ready tasks to the available workers. The actual work is
done by these workers. The tasks created using the Dask APIs are
known and correctly defined for use by Dask. A task must include a
callable (the function the worker will execute) except for pure data
tasks, 1 which are data sent to Dask workers by the clients using
the scatter system. deisa [13] uses scatter to send simulation data
to a Dask worker. It can submit tasks dependent on that data only
when the data is sent to the workers. Lots of metadata has to be
sent to the scheduler at each timestep, and the incremental aspects
of in situ algorithms must be managed manually. To ensure the
coupling, each MPI process is associated with a bridge, and the Dask
analytics client that submits the task graph is associated with an
adaptor. The bridges and the adaptor ensure the communication
and control of data and metadata between the simulation and the
Dask cluster.

In this work, we extend the Dask distributed scheduler to support
our newly defined external tasks. We define an external task as
a task that runs in an external environment rather than in Dask. In
this work, the external environment is an MPI simulation. From
the Dask point of view, those tasks can be seen as pure data tasks
because the only known information about them is their output
data. In [13], where the task graph is only submitted to Dask once
data is sent to Dask via a scatter. In contrast, in this work, we
push this solution further to make Dask natively support external
tasks, which makes it possible to submit graphs dependent on those
external tasks in advance (before data is available in the workers’
memory).

2.1 Our End-to-End Workflow Architecture

With all the previously defined concepts, our workflow comprises
two components in a producer/consumer scheme, where the run-
ning MPI simulation represented by𝑀 +1 processes is the producer
and the Dask cluster is the consumer.
1https://docs.dask.org/en/latest/futures.html#move-data

At the beginning of the simulation, the bridge at rank 0 connects
to the Dask scheduler and sends the deisa virtual arrays description
to the adaptor. The analytics client, connected to the adaptor in
Dask, creates Dask arrays that correspond to the deisa arrays,
then makes data selections using the [] operator on the deisa
array selecting the pieces needed for analytics. The client then
sends the selections back to the bridges (Step 1, Sign contracts,
in Figure 1). This is done at the beginning of the workflow, and
there is no need to send any metadata to the scheduler at each
timestep, thus improving performance compared with work in [13].
All the bridges and the adaptor are synchronized at this step, and
they can proceed only when contracts are signed. In other words,
the adaptor submits the analytics (Step 2, Submit task graph, in
Figure 1) and the bridges know the data they must send for that.
Each bridge checks the contracts locally at each timestep. If its data
block is needed, the bridge sends it to the preselected worker (Step
3, Send data, in Figure 1). We assume in this work that the data
sizes, including the time dimension, are known in advance and the
contracts are signed once only at the beginning.

We improved the workflow operation by optimizing several as-
pects thanks to the newly introduced concepts. Compared with
the work in [13], the main changes in the architecture are meant
to minimize the load of the centralized scheduler and the way the
two components communicate. We have kept the implementation
of the bridge built in the Dask client class and set the heartbeat
intervals to ∞ since there is no need to keep informing the sched-
uler about the bridges thanks to external tasks. Moreover, we are
able to communicate small metadata, at the beginning of the work-
flow, with a minimum number of communications. Instead of send-
ing lots of metadata every timestep from all the bridges in the
order of 2 ∗ 𝑁𝑏𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 ∗ 𝑛𝑏𝑟_𝑟𝑎𝑛𝑘𝑠 + 2𝑠_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙_ℎ𝑒𝑎𝑟𝑡𝑏𝑒𝑎𝑡𝑠
messages, we now send only 1 + 𝑛𝑏𝑟_𝑟𝑎𝑛𝑘𝑠 messages at the begin-
ning of the workflow. Those communications correspond to setting
up the contract process. Alongside the external tasks and the deisa
arrays, there is no need for more metadata communication. We
still go through the scheduler for the communications between the
bridges and the analytics client, but this is not a big issue anymore
because the communications are done only once at the beginning
of the workflow. This is done via two Dask variables, instead of
𝑁𝑏𝑟_𝑟𝑎𝑛𝑘𝑠 distributed queues in [13].
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2.2 External Task Integration in Dask

We extended the Dask distributed scheduler with our newly defined
external task concept. A task in an external state is identified by
a unique key, and it is not schedulable nor runnable by Dask. Im-
plementing external tasks in the Dask distributed scheduler mainly
modifies the client and the scheduler’s classes and operations. The
future class in the client can be seen as a mirror of the tasks in
the scheduler. In other words, to create an external task (i.e., a task
in an external state), we need to create a future by specifying a
unique external_key and activating the deisa (in situ analytics
in Dask) mode by setting the external argument to true. This
will trigger a remote procedure call to the scheduler to create an
external task. The work in [13] uses a scatter system to send
data from the deisa bridges to Dask workers. In this work we have
updated its operation to support external tasks. We have added two
main parameters to the method: keys and external. Both are set
to none by default (to keep supporting the default operation). The
keys parameter is a list of keys associated with a list of data we
want to communicate; external is an argument that is forwarded
to the scheduler.update_data and Future.__init__ methods
that changes the default operation when the external mode is
activated.

We explain two main points to clarify the need for the modifi-
cations we have made to the scatter operation. First, let us recall
how the Dask scheduler manages the finished tasks. When data is
an output of a finished task in Dask, the worker sends a message
to the scheduler, including the key of the task and task-finished
stimulus. Depending on the stimulus, the scheduler triggers dif-
ferent handlers; in this case, it is handle_task_finished that is
called. This handler triggers the task transition process, unblocking
the dependent tasks, and the scheduling continues (waiting tasks
become ready, and the scheduler eventually sends them to available
resources). Now let us go back to the scatter. It has been intro-
duced in Dask to send external data to the cluster. By definition,
then, this data does not exist in Dask before it is sent. The associated
key with this data is created in the scatter function itself, so this
data can be used in a task graph only after the scatter is finished
and returned. The way the scheduler manages the data it gets from
a scatter is different from the way it manages data issued from
an ordinary computed task by a worker, even if both of them are
considered as tasks in the memory state (task result is finished and
its result is in the distributed memory). To support external tasks
in Dask, we have to make the scheduler handle them as any other
finished task. This means that the scheduler will not only update its
internal data structures but also trigger the task transition process
to unblock the depending tasks. When the deisa mode is activated,
we update the scheduler’s internal data structures and trigger the
transition process: starting by transitioning the current task state
from the external to the memory state, then making all underlying
transitions of depending tasks.

Natively supporting external tasks reduces metadata exchanges
between the deisa bridges and the deisa adaptor, and thus the load
on the scheduler. Moreover, it allows submitting graphs on external
data (not known by Dask) even before the external source generates
them. This approach makes it possible to submit a whole task graph
on simulation data generated over time without waiting for the

data to be available, eliminating the need to implement incremental
algorithms and manually manage time dependencies.

2.3 DEISA Plugin Configuration

To maintain the good separation of concerns proposed in [18] and
used in [13], we have used the PDI data interface to extract simula-
tion data independently from the data handling itself. Other tools
such as Conduit [14] could also be used. We have developed and
implemented a new PDI deisa plugin that handles the data facility
operation, including connection to Dask, data identification, and
communication. Listing 1 represents a complete configuration of
this plugin. The scheduler file generated by the scheduler at cre-
ation is expected as a value of the scheduler_info keyword to get
the scheduler’s address (Line 10). The init_on event corresponds
to when we initialize the coupling (Line 11). The time_step ex-
pects the variable’s name that corresponds to time progress in the
simulation; it is needed because it will correspond to the index in
the time dimension (Line 12). The deisa_arrays keyword expects
a list of deisa arrays descriptors, and the map_in is a mapping of
which local data corresponds to which deisa array.

2.4 Data Model

Both the simulation and Dask deal with distributed data in memory.
On the simulation side, the user (statically) manages the distribu-
tion of the data blocks over the MPI ranks. Hence the data can be
defined as the value of the corresponding buffer at a given timestep.
In Dask, data represents the inputs/outputs of tasks that are dy-
namically scheduled over the workers. Thus the data in the Dask
component can be seen as immutable. To maintain the coherence of
the communicated data over the bridging model without violating
the data definitions in the two ecosystems, we propose a naming
scheme that keeps all the needed information used in the delivery
facilities in both components. Instead of creating a new data format
jointly used by the simulation and Dask, we propose a virtual data
structure, deisa arrays (Section 2.4.2), to describe the simulation
data while maintaining its semantics; and we implement a protocol
to communicate this descriptor to Dask and get back data filters
called contracts (Section 2.4.3).

2.4.1 Naming Scheme. We use available information on the sim-
ulation side to create a unique key in Dask for each data block.
This key is used when performing the scatter operation. Each
key contains three main sections: the prefix deisa, the data’s name,
and the block’s position in the spatiotemporal decomposition. For
example, in (deisa-temp, (1,3,5)), temp is the name of the data,
and (1, 3, 5) is its position in the global decomposition, where the
first dimension is time. We use the same domain decomposition in
both components by sending to Dask all needed information: the
name of the generated array, its sizes, and its subsizes in all dimen-
sions (deisa virtual array). A single key per block is created on the
Dask side, associated with an array with the corresponding sizes,
and identified as explained above. An eventual new decomposition
is possible on the analytics side using the rechunking functionality
of Dask arrays.

2.4.2 DEISA Virtual Arrays. A deisa virtual array is a descriptor
of a distributed multidimensional array. This concept is similar to
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Dask arrays, HDF5 datasets, or ds-array in PyCOMPSs [4], but it is
used only for configuration aspects. A deisa virtual array describes
the decomposition of the spatiotemporal domain of a data array
generated by simulation. It contains the global sizes in each dimen-
sion, including the time dimension, the size of each block (size of
the data generated by each MPI process), and the starting indexes
of each block. Describing the data this way gives us a global view of
the generated data. On the Dask side, a dask.array is created from
a deisa array descriptor containing only external data. We create
an external task per MPI block per timestep. Technically, this is
achieved by creating, in deisamode, a futurewith a specific key, per
MPI block per timestep, and using the key to create a dask.array,
then gathering all the arrays to create a global dask.array. The
chunking of this last array corresponds to the spatiotemporal do-
main decomposition of the deisa array, matching the distribution
and evolution of data in the simulation.

The deisa virtual arrays have been added to the configuration file
of the deisa plugin. Listing 1 shows an example of a configuration
file of the deisa plugin. On Line 13 the list of the deisa virtual arrays
starts. For instance, here we have only the Gtemp array constructed
of blocks of the temp data. Each MPI process exposes its local 2D
temp data to the deisa plugin every timestep (without any copy).
This data is mapped to the global deisa array Gtemp. From the
subsize and start keywords, its position in the decomposition is
known and used to create a unique key corresponding to a waited
external task in Dask.

1 metadata: { step: int, cfg: config_t, rank: int}
2 data:
3 temp: # the main temperature field
4 type: array
5 subtype: double
6 size: [ '$cfg.loc[0]', '$cfg.loc[1]' ]
7 plugins:
8 mpi: # get MPI rand and size
9 PdiPluginDeisa:
10 scheduler_info: scheduler.json
11 init_on: init
12 time_step: $step
13 deisa_arrays: # Deisa Virtual arrays
14 G_temp: # Field name
15 type: array
16 subtype: double
17 size:
18 -'$cfg.maxTimeStep '
19 -'$cfg.loc[0] * ($rank % $cfg.proc [0])'
20 -'$cfg.loc[1] * ($rank / $cfg.proc [0])'
21 subsize: # Chunk size
22 -1
23 -'$cfg.loc[0]'
24 -'$cfg.loc[1]'
25 start: # Chunk start
26 -$step
27 -'$cfg.loc[0] * ($rank % $cfg.proc [0])'
28 -'$cfg.loc[1] * ($rank / $cfg.proc [0])'
29 +timedim: 0 # A tag for the time dimension
30 map_in: # Deisa array mapping
31 temp: G_temp

Listing 1: Data description in deisa YAML file.

2.4.3 Contracts. The concept of contracts was proposed in [17]
for automatic data filtering for in situ analysis. We implement a
similar protocol to communicate the deisa arrays to the adaptor

and return the data selection that the analytics client needs. We
have a double synchronization between the two components in the
contracts:

• The adaptor waits for the bridge in rank 0 to send the deisa
arrays, to check the data made available for sharing by the
simulation. It creates the corresponding Dask arrays with
the same naming scheme, makes a selection on needed data
using the [] operator, and sends back the filters to all the
bridges.

• All the bridges, including the bridge in rank 0, will be blocked
before sending data to the workers until the reception of the
filters. Each bridge checks whether its current data block
is included or includes a part of the needed data. If this is
the case, it will create a corresponding key to identify that
data (with the naming scheme) and send it to a predefined
worker.

The contract operation also checks whether the data needed for
analytics is made available by the simulation and whether the
selections are valid.

3 EVALUATION

We used the Irene supercomputer in the CEA TGCC center. We used
the skylake partition with 1,653 nodes, each with 2 CPUs: CPU:
2x24-cores Intel Skylake @ 2.7 GHz (AVX512), 180 GB memory
per node. Irene has a total of 79,344 cores. The compute nodes
are connected through an EDR InfiniBand network. This high-
throughput (100 Gb/s) and low-latency network is used for I/O
and communications among supercomputer nodes. Irene uses a
Lustre parallel distributed file system. We use a modified HeatPDE
miniapp to evaluate our work along with an unsupervised learning
model that consists of PCA.

Two factors motivate this choice. First, we show the ease of use
and performance of a representative HPC/DA workflow operation
with our newly developed system in general and HPC/ML inte-
gration in particular. Second, our choice is also motivated by the
real need for PCA models in HPC workflows such as the work
in [1], which uses this model to reduce the dimensionality of the
five-dimensional array produced by Gysela fusion simulation [15]
in a post hoc configuration.

3.1 Principal Component Analysis

The Dask-ML2 library provides scalable machine learning algo-
rithms in Python using the Dask framework and machine learning
libraries such as scikit-learn.3 Dask-ML provides a parallel im-
plementation of the PCA based on the singular value decomposition
(SVD) algorithm.4 The PCA needs all the data to be processed in
the main memory, which is impossible for large datasets or in situ
processing (since data comes as the simulation progresses). Incre-
mental PCA (IPCA) 5 responds to this limitation by processing the
data in a minibatch fashion. Furthermore, the IPCA algorithm has
a constant memory complexity.

2https://ml.dask.org/
3https://scikit-learn.org/stable/
4https://ml.dask.org/modules/generated/dask_ml.decomposition.PCA.html
5https://ml.dask.org/modules/generated/dask_ml.decomposition.IncrementalPCA.html
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3.2 Multidimensional Incremental PCA

We implemented a new version of IPCA that takes a multidimen-
sional array and computes its PCA incrementally. Thus it can be
used for both the post hoc and in situ versions. Moreover, we have
provided a similar interface to the sequential PCA by hiding the
incremental execution of IPCA.6

1 from dask_ml.decomposition import InSituIncrementalPCA
2 from dask_interface import Deisa
3 # Initialize the Deisa
4 Deisa = Deisa(scheduler_info , config_file)
5 client = Deisa.get_client ()
6 # Get data descriptor as a list of Deisa arrays object
7 arrays = Deisa.get_deisa_arrays ()
8 # Filter data
9 gt = arrays["global_t"][...]
10 arrays.validate_contract ()
11 ipca=InSituIncrementalPCA(n_components =2,copy=False ,

svd_solver='randomized ')
12 ipca = ipca.fit(gt, ["t", "X", "Y"], ["X"], ["Y"])
13 # Submit the task graph to the scheduler
14 explained_variance ,singular_values = client.persist ([

pca.explained_variance_ , pca.singular_values_ ])

Listing 2: In situ incremental PCA.

We have used the xarray library to stack the features’ dimen-
sions together and the samples’ dimensions together to get a 2D
array at the end and use the incremental PCA over the time di-
mensions. The fit(ndarray, label_list, feature_labels,
sample_labels) method takes the same parameters. Listing 2
shows the in situ version of IPCA. The creation and the submission
of the task-graph are the same for in-transit and post hoc versions.

3.3 Experiments

We evaluate our work compared with the previous prototype [13]
and post hoc analytics. In the different figures, the results for the
deisa prototype [13] are referenced with DEISA1, and the full
new version with a 60𝑠𝑒𝑐𝑜𝑛𝑑𝑠 heartbeat interval is DEISA2 and
a ∞ heartbeat interval in DEISA3. Those experiments have been
performed on the Irene supercomputer. We used the heat equation
solver miniapp for the three implementations of deisa. For each
experiment, we had three runs of 10 timesteps. We have fixed the
number of processes per node to two.

• Experiment I compares our work (DEISA3) performance
with DEISA1 and with parallel post hoc analysis with plain
Dask (DASK) using the old version of the incremental PCA
presented in Section 3.1 and using the newly developed ver-
sion presented in Section 3.2.

• Experiment II investigates the variability inDEISA1, DEISA2,
and DEISA3.

3.3.1 Experiment I. In this section we compare the performance of
DEISA3 and DEISA1 and post hoc performance using plain Dask.
We compare the results of the IPCA (named IPCA in the figures)
with the results we got with the multidimensional version of IPCA
presented in Section 3.1 (named new IPCA in the figures). We show
here results only for 128MiB block size because they are considered
as the optimal size for the Dask tasks.
6https://github.com/GueroudjiAmal/dask-ml
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Figure 2 summarizes weak-scaling performance for both the
simulation and analytics. The subfigure on the left shows results
for the simulation side. The x-axis represents the processes, and the
y-axis shows the maximum duration per iteration averaged over
ranks and runs. The error bar represents the standard deviation.
We noticed that the first iteration of the post hoc version was
longer than the others. We expect that it is due to file creation.
We have computed only the mean and the standard deviation over
the remaining iterations. The simulation (in green) weak scales
perfectly while we have different patterns in the I/O phases as
expected. The communication times for DEISA3 are better than for
DEISA1 because of all the metadata that needs to be sent to the
scheduler in DEISA1 that we have addressed in DEISA3 with our
newly introduced concepts. The in situ versions weak scale better
than the post hoc version, which gets limited by the PFS. In deisa
we take advantage of the aggregated bandwidth on compute nodes.

Subfigure 2b shows theweak-scaling results for the analytics part.
The first bar from the left of each scale (in red) represents analytics
time for the post hoc version with IPCA presented in Section 3.1.
The second bar from the left (in orange) shows analytics time for
the post hoc version with the new version of IPCA presented in
Section 3.2. The third bar from the left (in violet) shows analytics
time for the old version of deisa (DEISA1), and the last bar from the
left (purple) shows results for the new version of deisa (DEISA3)
The x-axis of each subfigure represents the variation of the Dask
workers from 2 to 32. The y-axis represents the duration in seconds
of the analytics. The deisa analytics time includes compute time
and waiting for the data from the next step. The post hoc time
includes reading the data from the disk and analysing the data. We
have chunked the HDF5 files and used the same chunking in the
analytics. The represented values are the mean duration over the
three runs. The bar errors are the standard deviation.

For the different chunk sizes, for small scales, deisa versions
are comparable to post hoc versions. Post hoc with our new IPCA
is even a bit more efficient than deisa when the number of Dask
workers is two (in the same node, though). When increasing the
problem size, deisa versions perform better than post hoc.

Our new version of IPCA scales better than the old version, both
in post hoc and in situ experiments. For post hoc cases, the new
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IPCA version is almost twice as fast in some cases. We expect this
is due to how we submit tasks to Dask in the new IPCA. Instead of
submitting the tasks for each partial_fit, in the new version of
IPCA, we create the graph of the partial_fit for all iterations and
submit a single task graph to Dask. Doing so lets Dask optimize the
execution of all the tasks over iterations and ovoids repetitive and
unnecessary computations. For instance, if a given data is needed by
two tasks submitted in two separate task graphs, Dask will perform
two disk accesses, one for each submission. If those two tasks are
in the same task graph, however, the data will be read only once
and used by all the tasks present in the graph needing it. This is
only one example, and Dask may perform more optimizations.

This is also beneficial for in situ analytics. However, it is less
visible because the time spent waiting for the simulation data is
included, and the time spent running tasks in situ is usually short
compared with the time spent reading data from disk. To check the
efficiency of the different methods over configurations, we have
fixed the number of processes and represented the efficiency in
mebibytes per second (MiB/s). The values represented are the mean
and the standard deviation while changing the size of the data
per MPI process, thus the size of the chunks in Dask analytics.
The results are shown in Figure 3. In Subfigure 3a we have the
bandwidth in MiB/s from the simulation side. The x-axis represents
the processes, and the y-axis is the bandwidth in MiB/s. The first
bar from the left for each scale (in red) represents the HDF5 write;
in the middle (in pink) is DEISA1 communications; and in the right
(in violet) is the DEISA3 communications. For the post hoc case, the
bandwidth gets twice lowerwhen doubling the number of processes,
and this corresponds to our observations regarding the efficiency
of post hoc while increasing the problem size. For the in situ cases,
the bandwidth is fairly stable until 64 processes. Remember that
for the in situ cases, we measure the scatter operation time that
performs both one communication to the worker (sending data) and
one communication to the scheduler (informing the scheduler about
the new data in the worker memory). Thus, we cannot achieve the
theoretical performance of the aggregated bandwidth.
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Figure 3: Bandwidth in MiB/s for both the simulation and

the analytics side

Subfigure 3b represents the computed bandwidth for the ana-
lytics part (MiB/s) when the number of the Dask workers varies
between 2 and 32. The x-axis represents the variation of Dask work-
ers, and the y-axis is the bandwidth in MiB/s. Here again, the post

hoc versions include reading data from the disk, and the in situ ver-
sions include waiting for simulation data to be computed. For each
scale, the first bar from the left represents the results of the post
hoc analytics with the old IPCA (red), the second bar represents the
results of the post hoc with the new version of the IPCA (orange),
the third bar represents the results of the DEISA1 with the old IPCA
(violet), and the last bar the results of DEISA3 with the new IPCA
(purple). In the first scale, the post hoc version with the new IPCA
has a slightly better performance than all the others; and starting
with 4 workers, the in situ versions become better. The new version
of the IPCA is more efficient than the old version in the post hoc
cases. This may be due to the optimizations in the task graph. For
in situ cases, the two versions are comparable until the last scale (32
workers), where we see a big difference between the two versions.
In this figure the post hoc with the old IPCA performance is almost
stable when increasing the size of the problem, which is not the
case for the new version of the IPCA in either the post hoc or the
in situ versions. But we can only affirm that the new IPCA in post
hoc performs better when increasing the problem size. The exact
reason for this behavior still is under investigation.
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Figure 4: Strong-scaling results represented in core-hours for

the simulation and the analytics

Figure 4 represents the strong-scaling results in core-hours for
the simulation and the analytics sides. we have fixed the problem
size to 8GiB and varied the processes from 16 to 64. Subfigure 4a
shows results for the simulation side. The simulation strong scales
perfectly. Post hoc writes are more costly than deisa communi-
cations, and the cost increases with the number of processes. In
the largest configuration, post hoc write per iteration is 18 times
more costly than DEISA3: in situ workflows are less costly than
post hoc workflows. DEISA3 is more efficient than DEISA1 and
strong scales better. Subfigure 4b shows results for the analytics
side. Post hoc versions are more costly compared with the in situ
configuration again. The cost of the post hoc analytics with the old
version of IPCA increases linearly with the number of processes.
For the new version of IPCA in the post hoc configuration, it strong
scales better and thus costs less than the old version. The in situ
versions have almost the same cost for a fixed number of workers.
The cost increases with the number of workers but is still better
than post hoc versions; we expect that this is due to communica-
tions and the worker placement over the supercomputer. In the
largest configuration, the post hoc with the old version of IPCA is
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almost 3.5 times more costly than DEISA3 with the new version of
IPCA.
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Figure 5: Average communication time per iteration for

DEISA3, DEISA2, and DEISA1 experiments. The number of

processes is fixed to 128, and the size of the data to 1GiB per

process. We show results for the 3 runs.

3.3.2 Experiment II. In these experiments, we were interested in
the communication time to study the variability aspect in the in situ
analytics. We investigated this variability by checking the mean
duration of the communications per rank for DEISA1, DEISA2, and
DEISA3 and show the results in Figure 5. We separated the results
from each run. We submitted the runs independently, so we do not
have control over the allocated nodes, but we may get the same al-
location multiple times because of the way Slum works. The x-axis
of each subfigure represents the MPI ranks, and the y-axis shows
the communication time per rank averaged over iterations (black
line). The standard deviation over iterations is represented as a
red band. We notice that there is variability over the 3 runs for all
versions, but overall we notice the red band more in DEISA1 and
less in DEISA2, and we do not see it in DEISA3. The variability over
ranks may be due to the node allocation of this experiment and to
the physical distance of simulation nodes from the workers and the
scheduler nodes, which may vary along allocations and affect the
performance. The Skylake partition’s compute nodes are connected
through an EDR InfiniBand network in a pruned fat-tree topology.
If the scheduler, which is always in the first node of our allocation, is
connected to a switch different from some of the simulation nodes,
the latency and hence the time to send the messages will increase
with the distance (the number of switches that a message has to go

through before getting to the workers and the scheduler), and the
bandwidth may get smaller when we go higher in the tree. In some
subfigures, we have the same pattern of variability (for instance
in Subfigures 5h and 5i and Subfigures 5b and 5c). This makes us
think that they may have the same allocations of at least nodes con-
nected to the same switches. We have checked the logs and found
that all four experiments in Subfigure 5h and Subfigure 5i have the
exact same allocation. The nodes of the previous experiments are
connected to two different switches, which may explain some of
the observed variability over processes. Note that the scheduler is
launched in the first node of the allocation and the client in the
second node; the workers are launched starting from the third node,
and then the simulation processes are launched in the rest of the
nodes. In this case, the scheduler, the client, the workers, and some
of the processes are connected to the same switch, while the rest
are connected to another one. The centralized scheduler worsens
the performance. Remember that in DEISA1 we have kept the heart-
beat interval of the bridges at default of 5 seconds. This frequency,
alongside the frequent metadata sent to the scheduler, causes more
variability per iteration due to the load on the scheduler in DEISA1.
Indeed the red band, which represents the standard deviation per it-
eration, is more visible in DEISA1 experiments, less in DEISA2, and
absent in DEISA3. This is thanks to the improvements, mainly the
external tasks in Dask. Less metadata and fewer heartbeat messages
coming from the bridges reduce the communication time variability.
The takeaway from those experiments is that we could improve
performance by minimizing the frequency of messages sent to the
scheduler from the bridges. Doing so does not affect the operation
of Dask, because the role of the bridges is to send data to the work-
ers only, without submitting any tasks to the scheduler. Thus the
scheduler does not need to know whether they still need results as
they do not wait for any. The only variability that we still encounter
is the one related to the placement of the process, scheduler, and
workers, which can be a subject of future contributions.

4 RELATEDWORK AND DISCUSSIONS

This work is at the intersection of three main backgrounds: HPC,
in situ, and big data analytics. Our goal is to bring big data produc-
tivity and HPC performance together in an in situ configuration for
exascale workflows [12]. In this paper we follow up on the work
proposed in [13] that already couples MPI simulations with Dask
analytics in transit. By integrating the external tasks in the Dask
philosophy, we overcome almost all the limitations found in deisa
and provide native support for simulation data in Dask task graphs.

In the literature, we find earlier attempts to couple MPI with big
data tools such as SMART [19] that uses a MapReduce and [21]
that uses Flink stream processing for in-transit analysis. However,
the model provides poor control of data partitioning that is not
well adapted to support efficient parallelization of patterns such as
stencil computations. In contrast to those works, our proposition is
built on a task-based model, which offers more flexibility and dy-
namicity in writing distributed algorithms. Distributed task-based
frameworks such as Ray or Parsl [2] are examples of tools that can
be used also.

The in situ/in-transit paradigm is related to the HPC community
rather than the big data one. It is considered a good alternative to
postprocessing in HPC workflows that bypasses the disk accesses
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and thus the I/O bottleneck. Visualization tools with in situ sup-
port such as ParaView Catalyst and Visit-libsim11 [11, 20] or more
generic tools [3, 6–9, 16] are all built on or use the MPI program-
ming model, usually inherited from the HPC simulation. While
MPI+X models are best suited for regular algorithms, which is usu-
ally the case for HPC simulations, using them to write irregular
algorithms is not trivial, which is usually the case for data analytics
pipelines.

Attempts to use task-based programming for in situ analytics
are restricted to shared memory using Intel TBB in TINS [5] and
OpenMP in Goldrush [22]. PyCOMPSs [10] couples MPI with dis-
tributed task programming; however, this is done by launching
an MPI executable from a task rather than considering the two
paradigms loosely coupled and running together in the same work-
flow.

5 CONCLUSION AND FUTUREWORK

In this work, we address the challenge of building in-transit HPC/ML
workflows while keeping MPI simulation performance and bring-
ing in the high productivity of data analytics tools such as Dask.
We have proposed a generalized approach that can be applied to
other task-based tools and have provided an end-to-end workflow
implementation with Dask. Our main contribution is the introduc-
tion of external tasks that natively integrate simulation data on a
Dask task graph. Our work outperforms postprocessing with plain
Dask and the original in-transit deisa work. Moreover, it allows
ahead-of-time task submission on simulation data, which makes
the implementation of incremental algorithms trivial. The next
step is to use our work to couple real HPC simulations alongside
other ML models. Note that the external tasks are more general and
could be used for any external environment such as in digital twins
workflows.
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