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The red blood cell (RBC) membrane is composed of a lipid bilayer and a cytoskeleton
interconnected by protein junction complexes, allowing for potential sliding between the
lipid bilayer and the cytoskeleton. Despite this biological reality, it is most often modelled
as a single-layer model, a hyperelastic capsule or a fluid vesicle. Another approach involves
incorporating the membrane’s composite structure using double layers, where one layer
represents the lipid bilayer and the other represents the cytoskeleton. In this paper, we
computationally assess the various modelling strategies by analysing RBC behaviour in
extensional flow and four distinct regimes that simulate RBC dynamics in shear flow. The
proposed double-layer strategies, such as the vesicle–capsule and capsule–capsule models,
account for the fluidity and surface incompressibility of the lipid bilayer in different ways.
Our findings demonstrate that introducing sliding between the layers offers the cytoskeleton
a considerable degree of freedom to alleviate its elastic stresses, resulting in a significant
increase in RBC elongation. Surprisingly, our study reveals that the membrane modelling
strategy for RBCs holds greater importance than the choice of the cytoskeleton’s reference
shape. These results highlight the inadequacy of considering mechanical properties alone
and emphasise the need for careful integration of these properties. Furthermore, our findings
fortuitously uncover a novel indicator for determining the appropriate stress-free shape of
the cytoskeleton.
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1. Introduction
The red blood cell (RBC) is a unique cell that, during maturation, frees all typical internal

organisation (Mohandas & Gallagher 2008; Kim et al. 2012). Its impressive mechanical
performance is due to its membrane, which is made up of a lipid bilayer supported by a
cortical spectrin cytoskeleton (Evans & Skalak 1980; Mohandas & Evans 1994; Mohandas
& Gallagher 2008; Kim et al. 2012). This organisation gives the RBC a richness of dynamics
in flow, critical to understanding blood rheology. Numerical modelling of the RBC presents
a challenge in identifying the dominant features necessary to reproduce this richness.
Somemodels retain themainmembrane organisation into two structures of different nature,

likely to slide in relation to each other (Krishnaswamy 1996; Noguchi & Gompper 2005;
McWhirter et al. 2011; Peng et al. 2010, 2011; Peng & Zhu 2013; Peng et al. 2013; Li et al.
2014; Peng et al. 2014, 2015b; Salehyar & Zhu 2016; Pivkin et al. 2016; Chang et al. 2016,
2017; Zhu et al. 2017; Lu & Peng 2019). Each structure then has its own mesh, allowing
for different kinematics to be considered. However, although these models have provided
compelling arguments in their favour (Zhang et al. 2015; Peng et al. 2015a; Li et al. 2018),
they are not the most common approach.
In the quest for simplicity, a single-layer model is often preferred, despite the inevitable

compromise of sacrificing somemechanical properties.Whenmodelling the lipid bilayer as a
vesicle, it becomes challenging to consider the shear elasticity provided by the cytoskeleton,
as the focus shifts to favouring the fluidity and incompressibility of the bilayer. Conversely,
when modelling the cytoskeleton as a capsule, the fluid nature of the lipid bilayer is
compromised in favour of the elasticity of the cytoskeleton. In any case, a single-layer
model imposes the same kinematics on the cytoskeleton and the lipid bilayer. For the
out-of-plane kinematics, this assumption is limited only to the rare cases of cytoskeleton
detachment (Peng et al. 2013; Zhu et al. 2017). For the in-plane kinematics, the limitation
of prohibiting the sliding of the cytoskeleton is less clear. The lipid bilayer, being in direct
contact with the external environment, is susceptible to hydrodynamic stress and can, in turn,
only drive the cytoskeleton via frictional forces that the lipid medium exerts on the junction
proteins. Although the theoretical analysis of Fischer (1992) suggests that the kinematics
of the cytoskeleton and the lipid bilayer are identical in the tank-treading regime in shear
flow, and the surface incompressibility constraint is transmitted from the lipid bilayer to the
cytoskeleton, these findings cannot be generalised due to the lack of research in this area.
Vesicle modelling has proven useful in understanding the dynamics of flowing RBCs and

is still used to study ensemble behaviour and its extrapolation to the rheology of blood (Brust
et al. 2014;Kabacaoğlu&Biros 2019; Lu et al. 2019). However, the fundamental contribution
of shear elasticity provided by the cytoskeleton cannot be overlooked (Mendez & Abkarian
2018; Hoore et al. 2018). To account for this, the single-layer capsule representation has
emerged as the more prevalent modelling strategy.
While the various modelling strategies for RBCs contribute to our understanding of their

dynamics, a comparative study to assess the impact of each simplification has not yet been
undertaken, to our knowledge. Only the choice between a capsule represented by a network
of springs or a continuum model has been considered (Omori et al. 2011; Tsubota 2014).
However, this may lead to bias in the identification of mechanical properties necessary to
reproduce experimental observations. To be meaningful, a comparative study must minimise
the specificities of numerical implementation for each choice. This entails treating themethod
of flow solution and the geometric representation of surfaces with the same precision. The
numerical platform we have developed to investigate the fluid–structure interaction problem
of surfactant-coated drops, vesicles and capsules, enables such study (Boedec et al. 2017). In
the vesiclemodel, we employ distinct approaches to handle themovements of the bilayer in the
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normal and tangential directions. Specifically, we adopt a Lagrangian approach for the normal
movement, while we use an Eulerian description for the tangential movement. Consequently,
the tangential motion of mesh vertices (or nodes within a finite-element framework), which
does not alter the membrane’s shape, is entirely decoupled from the tangential movement of
the lipids. In fact, this decoupling allows us to conveniently prescribe the tangential velocities
of mesh vertices to maintain mesh quality in the context of vesicle simulations. Additionally,
in Lyu et al. (2018), we demonstrated that different in-plane kinematics of the cytoskeleton
and lipid bilayer can be considered without duplicating meshes. This is achieved by using
an Eulerian kinematic description for the fluid lipid bilayer and a Lagrangian one for the
solid cytoskeleton. The motion of the mesh coincides with that of the cytoskeleton, while the
Eulerian description allows for different tangential motions of the lipid bilayer. Using only
one mesh prohibits consideration of different out-of-plane kinematics but allows different
in-plane ones at a minimal cost.
We believe that a comparative study to characterise the impact of different RBCmodelling

strategies is justified for another important reason : the contribution of surface viscosity.
The origin of this viscosity can be explained by several mechanisms, but its inclusion in
simulations depends on the choice of membrane representation (Fedosov et al. 2014; Li et al.
2013; Vlahovska et al. 2013; Yazdani & Bagchi 2013; Freund 2014; Gounley & Peng 2015;
Peng et al. 2015a; Prado et al. 2015; Li et al. 2018; Guglietta et al. 2020; Tsubota 2021).
For instance, the friction of the junction proteins in the lipid bilayer can lead to significant
variation in the effective surface viscosity of the RBC. Therefore, we feel it is essential to
first assess the purely elastic aspects of RBC mechanics before considering the contribution
of surface viscosity.
The rest of this paper is organised as follows. In §2, we outline the implementation of

the different modelling strategies, which are then subjected to a comparative study of their
elastic properties under axisymmetric extensional flow in §3 and simple shear flow in §4,
respectively. The former, akin to laser tweezer stretching, is a widely used technique for
characterising the mechanical properties of cells, while the latter is the reference flow for
characterising the dynamics of RBCs. In §5, we discuss the results and their implications and
provide new insights into the dynamics of RBCs. Finally, in §6, we draw broader conclusions
that extend beyond the modelling framework.

2. Red blood cell modelling strategies
We have implemented the vesicle and capsule models in our platform, which have been

previously described in Boedec et al. (2017) and Lyu et al. (2021) for use in unbounded
and confined spaces, respectively. The vesicle model accounts for the fluid nature of the
membrane and enforces surface incompressibility by projecting the three-dimensional (3-D)
velocity field onto a space with zero surface divergence (Boedec et al. 2011). In addition,
the isogeoparametric representation of the geometry (Cottrell et al. 2009), which has at least
𝐶1 (i.e. continuous first derivatives) regularity, allows for the incorporation of the Helfrich
bending energy using a rigorous weak mathematical formulation. Meanwhile, the capsule
model can utilise several models of polymerised membrane behaviour and incorporate
bending elasticity through the Helfrich formulation developed for the vesicle model or
other common forms of thin-shell modelling. Although the vesicle and capsule models can
incorporate shear and dilatation surface viscosity developed for a surfactant drop (Gounley
et al. 2016), we will not be utilising this option for our objective of this paper, which is
to assess the purely elastic aspects of RBC mechanics. As the details of these models are
available elsewhere, we will focus solely on their key elements in this section.
Our isogeometric representation is obtained using the Loop subdivision method (Loop
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Figure 1 – Schematic representation of the RBC models illustrating the relevant surface force densities
on the respective layers. (a) Single-layer vesicle model with out-of-plane elasticity ( 𝒇 𝑒⊥) and surface
incompressibility ( 𝒇 𝛾). (b) Single-layer capsule model with in-plane ( 𝒇 𝑒 ‖) and out-of-plane elasticities
(surface incompressibility is approximatively considered). (c) Double-layer vesicle–capsule model with in-
plane and out-of-plane elasticities, along with surface incompressibility. (d) Double-layer capsule–capsule
model with in-plane and out-of-plane elasticities (surface incompressibility is approximatively considered).
All models employ a single mesh, with the distinction that, in double-layer models, 𝒗𝐵𝐿 ≠ 𝒗𝑆𝐶 due to the
differing assumed tangential kinematics of the two layers.

1987; Cirak et al. 2000; Cirak & Ortiz 2001). To generate the control mesh for a vesicle or
capsule, we start with an icosahedron and perform 𝑁 Loop subdivisions. The value 𝑁 = 0
corresponds to the initial icosahedron, which has 𝑁𝑒𝑙𝑒𝑚 = 20 equilateral triangular elements
that correspond to 20 Loop elements. With each refinement level, each element is subdivided
into four equivalent equilateral triangles, and a node is inserted at the centre of each edge. The
spatial position of all nodes in the refinedmesh is determined usingLoop’s rules,which ensure
zero geometric representation error. The level 𝑁 generates a mesh with 𝑁𝑒𝑙𝑒𝑚 = 20×4𝑁 . We
typically achieve satisfactory accuracy using 𝑁 = 3, resulting in 𝑁𝑒𝑙𝑒𝑚 = 1280. Note that the
twelve nodes of the 𝑁 = 0 level have fifth-order connectivity, while all other nodes introduced
afterwards have sixth-order connectivity. These twelve nodes are called singular, and they are
an inevitable trace of the icosahedron. The regularity of the Loop approximation is only 𝐶1
at these nodes, while it is 𝐶2 everywhere else. It is worth highlighting that our isogeometric
finite-element method, which relies on the Loop subdivision, diverges from traditional shell
modelling techniques commonly used in structuralmechanics. The advantage of our approach
is its ability to circumvent the shear-locking phenomenon typically observed in conventional
methods (Cirak et al. 2000; Cirak & Ortiz 2001).
The boundary element method (Pozrikidis 1992, 2002) is used with the surface mesh

described earlier to obtain the velocity of the lipid medium at each node. We can then
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determine the velocity at any point of an element using Loop’s interpolation functions.
The normal component of this velocity field determines the evolution of the surface position
between two time steps in the simulation.Meanwhile, the movement of the nodes tangentially
to themembrane is identifiedwith the kinematics of a cytoskeleton. This tangentialmovement
is determined by equilibrating the elastic forces exerted by the cytoskeleton with the viscous
friction forces of the points of attachment of the cytoskeleton in the lipid bilayer. The
viscous friction force is proportional to the velocity difference between the bilayer and the
cytoskeleton. For the unconfined case andwithout considering a viscosity contrast to simplify
the presentation, the system can be formulated as follows (Lyu et al. 2018) :

𝒗𝐵𝐿 = 𝒗3𝐷 = P
(
𝒗∞ + G 𝒇 𝑅𝐵𝐶

)
with 𝒇 𝑅𝐵𝐶 = 𝒇 𝐵𝐿 + 𝒇 𝑆𝐶 , (2.1)

𝒙(𝑡 + d𝑡) = 𝒙(𝑡) + 𝒗𝑆𝐶d𝑡 with 𝒗𝑆𝐶 = 𝒗𝐵𝐿 + 𝒗𝑆𝐶/𝐵𝐿 . (2.2)
Position and velocity fields of the RBC membrane are denoted by 𝒙 and 𝒗, respectively.

Superscripts BL and SC are used to distinguish between the lipid bilayer and the spectrin
cytoskeleton, respectively, while 3𝐷 is for the bulk flow and∞ for the imposed background
one. The velocity difference between the cytoskeleton and the lipid bilayer 𝒗𝑆𝐶/𝐵𝐿 = 𝒗𝑆𝐶 −
𝒗𝐵𝐿 is a tangential vector. The Green’s operator associated with the Stokeslet is represented
by G, and the projection operator on a subspace with zero surface divergence is denoted by
P. This operator ensures that the surface tension 𝛾, which is the Lagrange multiplier of the
surface incompressibility constraint, satisfies the condition that the surface divergence of the
velocity field 𝒗𝐵𝐿 is zero. The surface densities of force induced by the lipid bilayer and the
cytoskeleton correspond to 𝒇 𝐵𝐿 and 𝒇 𝑆𝐶 , respectively, and their sum 𝒇 𝑅𝐵𝐶 corresponds to
the surface force density exerted by the entire RBC membrane on the ambient fluids. The
matrix expression of the system (2.1)–(2.2) and the principle of the solution algorithms are
presented in detail in Boedec et al. (2017) and Lyu et al. (2018, 2021). While we encourage
interested readers to refer to these sources, we note that the rest of the paper is accessible
without prior knowledge of them.
Using this validated approach, which has been successfully applied in our previous studies

of vesicles and capsules, we have developed several strategies for modelling RBCs. These
strategies encompass single-layer vesicle and capsulemodels, as well as double-layer vesicle–
capsule and capsule–capsule models. To aid in visual comprehension, figure 1 presents a
schematic depiction of the surface densities relevant to the RBC models. In the subsequent
sections, we provide a detailed outline of the implementation for each of these models. To aid
in the comparison of the results across all the studies, the same colour coding is utilised in
all figures, where the vesicle is represented in black, the capsule in blue, the vesicle-capsule
in red and the capsule-capsule in green.
Throughout this paper, we use dimensionless variables, denoted by a star symbol. Lengths

are expressed in units of a volume-based radius 𝑅 ≡ [3𝑉/(4𝜋)]1/3, where 𝑉 ' 94 μm3
represents the enclosed volume of RBCs. The surface area 𝐴 is approximately 135 μm2,
giving a reduced volume 𝑣 ≡ 3

√
4𝜋𝑉𝐴−3/2 = 0.64 (Evans & Skalak 1980). Time is scaled

by 𝜂𝑒𝑥𝑡𝑅/𝜇𝑠, where 𝜂𝑒𝑥𝑡 is the viscosity of the suspending fluid and 𝜇𝑠 is the surface shear
modulus. A summary of the mechanical properties utilised in the simulations is provided in
table 1. These data are based on averages of recognised values for a healthy RBC (see, e.g.
table 1 in Levant & Steinberg (2016)). The table also displays the distribution of properties
between the cytoskeleton and the lipid bilayer in the modelling strategies that distinguish
them.
The reference shape, whether quasi-spherical or biconcave, represents the shape relative

to which in-plane and out-of-plane deformations are defined. In simpler terms, when the
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Property (units) Vesicle Capsule Vesicle– capsule Capsule– capsule
In-plane elasticity (2.6)

𝐺𝑠 (μN m−1) — 6.0 — 6.0 10−3 6.0
𝐶𝑆𝐾 | 𝑘𝑠 (μN m−1) — 80.0 | 103 — 2.0 | − 80.0 | 103 2.0 | −

Out-of-plane elasticity (2.4)
𝑘𝑏 (×10−19 J) 2.4 2.4 2.4 — 2.4 —

Cytoskeleton/bilayer friction (2.17)
𝐶 𝑓 (pN s μm−3) — — — 144.0 — 144.0

Inner viscosity
𝜂𝑖𝑛𝑡 (mPa s) 10.0 10.0 — 10.0 — 10.0

Table 1 – Mechanical properties.

cytoskeleton (Skalak capsule) adopts the reference shape, the in-plane deformations are zero.
It is important to clarify that all our simulations begin with an RBC already in the biconcave
shape (i.e. 𝑣 = 0.64), which we obtain directly from an analytical expression (Evans & Skalak
1980) and consistently used in our prior work, as outlined in Lyu et al. (2018). The reference
shapeswe consider include the biconcave shape itself, a quasi-spherical shape (𝑣 = 0.96) with
zero spontaneous curvature and a quasi-spherical shape (𝑣 = 0.96) with positive curvature
(𝐶∗
0 = 𝐶0/𝑅 = 4) (Peng et al. 2014). If not specified, we have used quasi-spherical with zero

spontaneous curvature. The quasi-spherical reference shape, achieved through a relaxation
process, corresponds to the deflated shape of a vesicle with a reduced volume of 𝑣 = 0.96.

2.1. Single-layer vesicle strategy (colour code = black)
The vesicle model does not consider a separate contribution of the cytoskeleton (i.e.

𝒇 𝑆𝐶 = 0), while

𝒇 𝐵𝐿 (𝒙) = 𝒇 𝛾 (𝒙) + 𝒇 𝑒⊥(𝒙) = −𝛿W𝐵𝐿

𝛿𝒙
= −𝛿(W𝛾 +W𝐻 )

𝛿𝒙
, (2.3)

W𝛾 =

∫
𝑆

𝛾 d𝑆, W𝐻 =

∫
𝑆

𝑤𝐻 d𝑆, 𝑤𝐻 =
𝑘𝑏

2
(2𝐻 + 𝐶0)2. (2.4)

The 𝒇 𝑒⊥ contribution represents the out-of-plane elastic forces, namely the bending forces
induced by the Helfrich surface energy density 𝑤𝐻 , which depend on the mean curvature 𝐻
and the spontaneous curvature 𝐶0. The spontaneous curvature 𝐶0 is defined as 𝐶0 = −2𝐻0,
where 𝐻0 is the mean curvature of the spontaneous or reference shape of the lipid bilayer.
For zero spontaneous curvature, the Helfrich energy reduces to the simple expression 𝑤𝐻 =

2𝑘𝑏𝐻2, where 𝑘𝑏 = 2.4 × 10−19 J is the bending modulus. We omit the contribution of
the Gaussian curvature, which can occur in 𝑤𝐻 but is not useful due to the Gauss–Bonnet
theorem, as we are not considering a change in surface topology. The contribution of 𝒇 𝛾

corresponds to the forces induced by the surface tension 𝛾. For a constant tension, it results
in an out-of-plane force contribution, but it can also produce in-plane forces if the tension
varies, as 𝒇 𝛾 = 2𝛾𝐻𝒏+∇𝑠𝛾, where 𝒏 is the normal vector to the surface and∇𝑠 = (I−𝒏𝒏) ·∇
is the surface gradient operator, with I being the identity in R3.
We want to emphasise that in the vesicle model, surface incompressibility, expressed

as ∇𝑠 · 𝒗𝐵𝐿 = 0, is enforced through a projection algorithm, specifically, the projection



Modelling strategy for red blood cell dynamics in flow 7

operator P as defined in (2.1). This projection introduces the surface tension parameter
𝛾, acting as a Lagrange multiplier for the surface incompressibility constraint. While this
method effectively ensures both local and global surface area conservation, it does come at
a significant computational cost, as previously discussed (Boedec et al. 2017).

2.2. Single-layer capsule strategy (colour code = blue)
The capsule model does not consider a separate contribution of the cytoskeleton (i.e.

𝒇 𝑆𝐶 = 0). While bending is still modelled using the Helfrich energy, the in-plane elasticity
of the cytoskeleton is nicely represented by a capsule. On the other hand, fluidity is lost and
surface incompressibility can only be approximated since the projector P is replaced by the
identity. Thus, we obtain the capsule model with

𝒇 𝐵𝐿 (𝒙) = 𝒇 𝑒 ‖ (𝒙) + 𝒇 𝑒⊥(𝒙) = −𝛿W𝐵𝐿

𝛿𝒙
= −𝛿(W𝑆𝐾 +W𝐻 )

𝛿𝒙
, (2.5)

where 𝒇 𝑒 ‖ represents the in-plane elastic forces deduced from a polymerisedmembrane strain
energy, which is usually defined on the reference configuration (𝑆0). Surface deformations are
computed relative to this reference configuration (Boedec et al. 2017, eq. 24). To model the
strain-hardening behaviour of the RBC membrane, we typically use the expression proposed
by Skalak (Skalak et al. 1973), which is given by

W𝑆𝐾 =

∫
𝑆0

𝑤𝑆𝐾 d𝑆0, 𝑤𝑆𝐾 =
𝐺𝑠

4
(𝐼21 + 2𝐼1 − 2𝐼2 + 𝐶𝑆𝐾 𝐼22 ), (2.6)

where the two invariants 𝐼1 and 𝐼2 are expressed as functions of the two main strains 𝜆1 and
𝜆2. The resistance to shear is controlled by the coefficient 𝐺𝑠, which is the surface shear
modulus 𝜇𝑠 = 6 μN m−1, and the resistance to local area variation is controlled by the
coefficient 𝐶𝑆𝐾 , which is the ratio of the area dilatation modulus to the shear modulus. The
limiting case of surface incompressibility is obtained by making 𝐶𝑆𝐾 tend towards infinity,
where 𝐼2 cancels. In practice, however, the numerical problem becomes too steep when 𝐶𝑆𝐾
exceeds a hundred (Dodson & Dimitrakopoulos 2010). For long-term simulations, we add a
global area conservation constraint to prevent a strong drift of the RBC surface area. This
constraint results in a contribution of the same type asW𝛾 , with the surface tension 𝛾 being
replaced by a constant tension 𝑘𝑠 (𝑆 − 𝑆0)/𝑆0. In all our simulations, we used 𝐶𝑆𝐾 = 80 in
combination with 𝑘𝑠 = 103 μNm−1(Sigüenza et al. 2017) when surface incompressibility has
to be considered. Our extensive investigation has revealed that the contribution of 𝑘𝑠 remains
negligible, as local area preservation is consistently maintained throughout our study.

2.3. Double-layer vesicle–capsule strategy (colour code = red)
The vesicle–capsule model is obtained by combining the expression (2.3) of 𝒇 𝐵𝐿 and

𝒇 𝑆𝐶 (𝒙) = 𝒇 𝑒 ‖ (𝒙) = −𝛿W𝑆𝐶

𝛿𝒙
= −𝛿W𝑆𝐾

𝛿𝒙
. (2.7)

In contrast to the vesicle model, the contribution from the cytoskeleton 𝒇 𝑆𝐶 is not set to zero.
The incompressibility constraint is still rigorously ensured by theP projector. The coefficient
𝐶𝑆𝐾 in Skalak’s law is then fixed to represent the contribution of the cytoskeleton only, which
is negligible compared with the resistance to expansion provided by the lipid bilayer. The
dilatation modulus of the cytoskeleton was determined experimentally to be within the range
of 1–10 μN m−1 (Lenormand et al. 2001, 2003; Kim et al. 2012), with a theoretical value
for a regular hexagonal lattice being twice the shear modulus (Discher et al. 1994; Hansen
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et al. 1996). Thus, we set the expansion rigidity of the capsule representing the cytoskeleton
to 𝐶𝑆𝐾 = 2 in our double-layer strategy simulations. In other words, the cytoskeleton only
provides resistance to shear deformation, with 𝐺𝑠 = 6 μN m−1 and 𝐶𝑆𝐾 = 2.

2.4. Double-layer capsule–capsule strategy (colour code = green)
The distinction between the vesicle–capsule model and the capsule–capsule model lies in

how the lipid bilayer is represented, with the former using a vesicle and the latter using a
capsule to mimic an incompressible fluid membrane. This disparity is particularly noticeable
in (2.5), which incorporates the necessary bending energy to represent the bilayer. In contrast,
(2.7) lacks a bending energy term, which is essential for modelling the cytoskeleton. These
variations in mechanical properties are outlined in detail in table 1.
To derive the capsule–capsule model, we combine (2.5) for 𝒇 𝐵𝐿 and (2.7) for 𝒇 𝑆𝐶 .

Similar to the vesicle–capsule model, Skalak’s law is used to represent the cytoskeleton,
employing the same parameter values (𝐺𝑠 = 6 μN m−1 and 𝐶𝑆𝐾 = 2). However, achieving
the behaviour of the lipid bilayer in 𝒇 𝑒 ‖ within 𝒇 𝐵𝐿 necessitates another capsule model
and a second application of Skalak’s law. To accomplish this, the elastic shear modulus
𝐺𝑠 is chosen to be sufficiently small to ensure that the shear strength contribution remains
negligible in comparison with the cytoskeleton. For this purpose, we have selected𝐺𝑠 = 10−3
μN m−1 (Zhu et al. 2017), alongside 𝐶𝑆𝐾 = 80 and 𝑘𝑠 = 103 μN m−1. While this approach
does not perfectly emulate the fluid nature of the lipid bilayer due to the non-zero shear
modulus, it enhances computational efficiency.

2.5. Membrane elastic force determination
The boundary conditions between the two-layer structure are implicit. Because of the

single mesh representation, the two structures are constrained to have the same motion
in the normal direction. In the tangent plane, sliding is permitted and limited exclusively
by tangential friction forces. Therefore, the double-layer models depend on the frictional
coupling between the lipid bilayer and cytoskeleton through junction protein complexes.
Let 𝒇 𝐵𝐿/𝑆𝐶 be the surface density of frictional force exerted by the lipid bilayer on the
cytoskeleton. By the action–reaction principle, 𝒇 𝑆𝐶/𝐵𝐿 = − 𝒇 𝐵𝐿/𝑆𝐶 . The static equilibrium
of the two structures can be expressed as

𝒇 𝑆𝐶 + 𝒇 𝐵𝐿/𝑆𝐶 = 0, 𝒇 𝐵𝐿 + 𝒇 𝑆𝐶/𝐵𝐿 + 𝒇 𝑒𝑥𝑡 = 0, (2.8)

where 𝒇 𝑒𝑥𝑡 represents the action of the ambient fluids on the RBC membrane, which is in
equilibrium with the forces induced by the deformation of the RBC, namely

𝒇 𝑒𝑥𝑡 = − 𝒇 𝑅𝐵𝐶 = −( 𝒇 𝐵𝐿 + 𝒇 𝑆𝐶), (2.9)

consistent with (2.1).
The finite-element method is used to determine the external forces through a weak

formulation using the virtual work principle, for a given membrane configuration

𝛿W𝑒𝑥𝑡 + 𝛿W𝑖𝑛𝑡 = 0, (2.10)
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𝛿W𝑒𝑥𝑡 =

∫
𝑆

𝒇 𝑒𝑥𝑡 · 𝛿𝒙 d𝑆 = −
∫
𝑆

𝒇 𝑅𝐵𝐶 · 𝛿𝒙 d𝑆, (2.11)

𝛿W𝑖𝑛𝑡 = −(𝛿W𝐵𝐿 + 𝛿W𝑆𝐶) =
∫
𝑆

−𝛿W𝐵𝐿

𝛿𝒙
· 𝛿𝒙 d𝑆 +

∫
𝑆

−𝛿W𝑆𝐶

𝛿𝒙
· 𝛿𝒙 d𝑆

=

∫
𝑆

𝒇 𝐵𝐿 · 𝛿𝒙 d𝑆 +
∫
𝑆

𝒇 𝑆𝐶 · 𝛿𝒙 d𝑆. (2.12)

The internal virtual work 𝛿W𝑖𝑛𝑡 depends on the surface stress and strain tensors, which
can be determined based on the membrane configuration, see Boedec et al. (2017) for details

𝛿W𝑖𝑛𝑡 = −
∫
𝑆

[
𝜎𝛼𝛽𝛿(𝐸𝛼𝛽) + 𝜇𝛼𝛽𝛿(𝐵𝛼𝛽)

]
d𝑆 =

∫
𝑆

[
1
2
𝜎𝛼𝛽𝛿(𝑎𝛼𝛽) + 𝜇𝛼𝛽𝛿(𝑏𝛼𝛽)

]
d𝑆.

(2.13)

Here, 𝜎𝛼𝛽 and 𝜇𝛼𝛽 correspond to the stresses induced by membrane and bending strains,
respectively. The tensor of components 𝐸𝛼𝛽 with 2𝐸𝛼𝛽 = 𝑎𝛼𝛽 − 𝑎0

𝛼𝛽
is the surface Green–

Lagrange strain tensor and the tensor of components 𝐵𝛼𝛽 = 𝑏𝛼𝛽 − 𝑏0
𝛼𝛽
is the bending

equivalent, where superscript 0 refers to the reference configuration. The 𝑎𝛼𝛽 are components
of the metric tensor a that correspond to the identity operator in the tangent plane I𝑆 = I−𝒏𝒏.
Its determinant 𝑎 = det(a) expresses the surface element as a function of the surface
parameterisation (𝑠1, 𝑠2) as d𝑆 =

√
𝑎 d𝑠1d𝑠2.

2.6. Cytoskeleton drag force determination
We define 𝐶 𝑓𝐽𝐶 as the mean friction coefficient of a protein junction complex in the lipid

bilayer. The frictional force generated by the movement of a single junction complex, on
average, can be expressed as

𝒇 𝐵𝐿/𝑆𝐶
𝐽𝐶

= 𝐶 𝑓𝐽𝐶

(
𝒗𝐵𝐿 (𝒙𝐽𝐶) − 𝒗𝑆𝐶 (𝒙𝐽𝐶)

)
= 𝐶 𝑓𝐽𝐶 𝒗

𝐵𝐿/𝑆𝐶 (𝒙𝐽𝐶) = −𝐶 𝑓𝐽𝐶 𝒗𝑆𝐶/𝐵𝐿 (𝒙𝐽𝐶). (2.14)

The equivalent friction coefficient per unit area of the membrane, denoted as 𝐶 𝑓 , is given by∫
4𝑆

𝐶 𝑓 𝒗
𝐵𝐿/𝑆𝐶 (𝒙) d𝑆 =

∑︁
𝒙𝐽𝐶 ∈4𝑆

𝐶 𝑓𝐽𝐶 𝒗
𝐵𝐿/𝑆𝐶 (𝒙𝐽𝐶). (2.15)

For a small patch of surface 4𝑆, where the velocity variations can be ignored (i.e. ∀𝒙 ∈ 4𝑆,
𝒗𝐵𝐿/𝑆𝐶 (𝒙) = 𝒗𝐵𝐿/𝑆𝐶 (𝒙𝐽𝐶) ≈ constant), we can simplify the expression to

𝐶 𝑓 4𝑆 = 𝐶 𝑓𝐽𝐶𝑁𝐽𝐶 , (2.16)
where 𝑁𝐽𝐶 is the number of junction complexes within the patch. We can also introduce the
areal density of the junction complex, denoted as 𝜌𝐽𝐶 , and obtain

𝐶 𝑓 =
𝑁𝐽𝐶

4𝑆 𝐶 𝑓𝐽𝐶 = 𝜌𝐽𝐶𝐶 𝑓𝐽𝐶 . (2.17)

For our study, we adopted 𝐶 𝑓 = 144 pN s μm−3 (Peng et al. 2011). The sensitivity of the
double-layer modelling strategies to this parameter is discussed in §5.
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2.7. Cytoskeleton kinematics
The velocity differential between the cytoskeleton and the lipid bilayer is defined by the

expression

𝒗𝑆𝐶/𝐵𝐿 (𝒙) = 𝒗𝑆𝐶 (𝒙) − 𝒗𝐵𝐿 (𝒙) = − 1
𝐶 𝑓

𝒇 𝐵𝐿/𝑆𝐶 (𝒙) = 1
𝐶 𝑓

I𝑆 𝒇 𝑆𝐶 (𝒙). (2.18)

To obtain the weak formulation of the problem, we employ the weighted residual method
with 𝛿𝒙 as the test function, leading to the expression∫

𝑆

𝒗𝑆𝐶/𝐵𝐿 (𝒙) · 𝛿𝒙 d𝑆 =
1
𝐶 𝑓

∫
𝑆

I𝑆 𝒇 𝑆𝐶 (𝒙) · 𝛿𝒙 d𝑆. (2.19)

The first member of this equation can be expressed as a function of the mass matrix in terms
of the Loop interpolation functions, as given in Boedec et al. (2017). Notably, the second
term in the equation, which represents the internal force density of the cytoskeleton, is similar
to the corresponding expression used to determine the elastic membrane forces of the RBC.

3. Comparison of RBC modelling strategies on extensional flow
Laser tweezer stretching is a widely used method to measure the mechanical properties of

cells. However, numerical studies have two major shortcomings. Firstly, there is variability
in how the opposing forces are applied in simulations (Sigüenza et al. 2017). Secondly, it
is not representative of the stretch that an RBC may experience in a flow since it does not
consider the interaction with the surrounding fluid. An alternative approach that avoids these
limitations is extensional flow, which has been used for studying vesicles in previous studies
(Kantsler et al. 2007, 2008; Zhao & Shaqfeh 2013; Narsimhan et al. 2014; Dahl et al. 2016).
In this method, the flow is defined by a single parameter, ¤𝜖 , which represents the stretching
rate. In a Cartesian coordinate system, the velocity component in the direction of stretching
(𝑧 coordinate) is given by 𝑣𝑧 = ¤𝜖𝑧. In its planar version, the other two velocity components
are 𝑣𝑥 = − ¤𝜖𝑥 and 𝑣𝑦 = 0. In its axisymmetric version, they are written as 𝑣𝑥 = − ¤𝜖𝑥/2 and
𝑣𝑦 = − ¤𝜖 𝑦/2. We considered both configurations, with the axis of symmetry of the RBC
along the 𝑦 axis and a value of ¤𝜖 = 55 s−1. The viscosity of the surrounding fluid was set at
𝜂𝑒𝑥𝑡 = 25 mPa s. As the behaviours were found to be similar, we only present the results for
the axisymmetric configuration.
We first checked that the double–layer models behave similarly to the single-layer capsule

model when the layers are prevented from sliding. This similarity is expected because all
models employ the same set of elastic properties, as outlined in table 1. The difference lies in
the distribution of these properties. In the capsule–capsule model, the outer capsule mimics
the lipid bilayer and assumes responsibility for bending resistance and area conservation. The
coefficient of shear elasticity for the outer capsule is considered negligible compared with
that of the inner capsule, which solely represents the cytoskeleton properties. The vesicle–
capsule model follows a similar approach. However, as the lipid bilayer is now represented
by a vesicle, surface incompressibility is treated more rigorously. Consequently, a slightly
reduced elongation compared with the other models is observed, reflecting the stiffening
effect caused by the surface incompressibility constraint.
When sliding is allowed, the double-layermodels deviate significantly from the single-layer

capsule model, with a much higher elongation. In dimensionless time 𝑡∗, the capsule model
reaches a state of permanent deformation at 𝑡∗ = 3, while the double-layer models continue
to stretch out to 𝑡∗ = 6. Despite the slightly lower elongation of the vesicle–capsule model
due to its better consideration of surface incompressibility, it remains close to that of the
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Figure 2 – Shape evolution in the (𝑥∗, 𝑦∗) plane perpendicular to the stretching direction for the axisymmetric
extensional flow (capsule = blue, vesicle–capsule = red, capsule–capsule = green), for 𝑡∗ = 0 [(a) initial
shape – plotted in green hereafter], 1 (b), 3 (c) and 6 (d).
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Figure 3 – Shape evolution in the (𝑥∗, 𝑧∗) stretch plane for the axisymmetric extensional flow (capsule =
blue, vesicle–capsule = red, capsule–capsule = green), for 𝑡∗ = 0 [(a) initial shape], 1 (b), 3 (c) and 6 (d).

capsule–capsule model. The evolution of the RBC’s shape is illustrated by the cross-sectional
profiles in the three planes of symmetry in figures 2, 3 and 4 at 𝑡∗ = 0 (initial biconcave
shape), 1, 3 and 6. In all models, the dimple is reduced under stretching, with complete
flattening observed in the capsule–capsule model, consistent with its higher elongation.
The mechanical properties of all models are identical, resulting in similar behaviour when

sliding is prohibited in the double-layer strategies. However, when sliding is allowed, the
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Figure 5 – Decrease of the sliding velocity 𝛿v∗ = 𝒗∗𝐵𝐿 − 𝒗∗𝑆𝐶 for 𝑡∗ = 1, 2 and 6 for the axisymmetric
extensional flow (vesicle-capsule = red, capsule-capsule = green), in function of 𝑥∗ in the (𝑥∗, 𝑦∗) plane (a)
and of 𝑧∗ in the (𝑦∗, 𝑧∗) plane (b).

observed variation in behaviour must be explained by this additional degree of freedom.
To quantify the intensity of sliding, figure 5 displays the dimensionless velocity difference
between the cytoskeleton and lipid bilayer, which shows that sliding is maximal in the initial
stages and disappears completely when the stationary state is reached. The sliding velocity
in the (𝑥∗, 𝑦∗) plane as a function of 𝑥∗ (figure 5a) and in the (𝑦∗, 𝑧∗) plane as a function of
𝑧∗ (figure 5b) is given for 𝑡∗ = 1, 2 and 6. The curves of sliding velocity as a function of 𝑧∗
in the (𝑥∗, 𝑧∗) plane (not shown here) are similar to those in the (𝑦∗, 𝑧∗) plane, the intensity
is slightly lower, with a maximum of approximately 0.04 instead of 0.06, and the sliding is
almost identical for both models at 𝑡∗ = 1.
One explanation for the observed behaviour concerns the degree to which the surface

incompressibility of the lipid bilayer is transmitted to the cytoskeleton. In the capsule model,
the transmission is total since it is not possible to uncouple the cytoskeleton from the lipid
bilayer. This is reflected by a value of the 𝐶𝑆𝐾 coefficient of the Skalak model as large
as possible, i.e. 80 in our simulations. On the other hand, in the double-layer models, the
cytoskeleton can relax this constraint, thanks to the possibility of sliding. For these two
models, 𝐶𝑆𝐾 = 2 for the capsule which represents the cytoskeleton. Figure 6 compares
the local relative area variation for the cytoskeleton between the three models. The local
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Figure 7 – Elastic deformation energy (W𝐵𝐿 +W𝑆𝐶 ) as a function of the RBC elongation, given by the
normalised position of the RBC’s tip 𝑧∗max at normalised time 𝑡∗ (capsule = blue, vesicle–capsule = red,
capsule–capsule = green). Solid lines : total elastic energy (lipid bilayer + cytoskeleton). Dashed lines :
bending energy contribution (W𝐻 ).

area variation is normalised by the total surface area of the RBC at rest, i.e. at the initial
time. Although the variations are stronger and very comparable for the vesicle–capsule and
capsule–capsule models, this explanation alone does not account for the observed behaviour.
The stress relaxation in the cytoskeleton offered by the possibility of sliding is more

general, as it is not just about the local variation in the area. Instead, the cytoskeleton can
better manage the whole deformation state imposed on it by the displacement of the RBC
surface to which it is subject. The possibility of sliding gives it complete freedom to optimise
its elastic stress state by the tangential movement to the surface. Moreover, there is a flow
amplification effect, since the intensity of the velocity component according to the direction
of the flow increases linearly in |𝑧∗ |. By reducing its deformation energy, the RBC can stretch
further, and its two tips venture into regions where the intensity of the stretching velocity is
greater, in accordance with the linear increase of the latter.
Figure 7 provides validation for this scenario, with a comparison of the elastic strain energy

evolution for the whole RBC membrane (lipid bilayer + cytoskeleton). The graph shows the
deformation energy as a function of elongation, which is characterised by the position of the
RBC tip in the stretching direction, denoted as 𝑧∗max. This position is a nonlinear function
of time, and the maximum elongation is reached when 𝑧∗max stabilises. When sliding is
not allowed, the three evolution curves coincide, as seen in the blue curve obtained for the
capsule model. In contrast, when sliding is allowed, the curves differ from each other, with the
deformation energy being highest for the capsule model and lowest for the capsule–capsule
model. The evolution curve for the vesicle–capsule model falls within the envelope formed by
the other two curves, illustrating the correlation between the growth of deformation energy
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Figure 8 – Schematic representation of the shear flow configuration ((𝑥, 𝑦, 𝑧) frame) with an RBC ((𝑋 , 𝑌 ,
𝑍) frame). The angle 𝜙 is the orbit angle, i.e. the angle between the vorticity axis of the flow (𝑧 axis) and
the symmetry axis of the particle (𝑍 axis). The angle 𝜃 is the inclination angle between the direction of the
velocity gradient (𝑦 axis) and the projection in the shear plane of the particle’s axis of symmetry (𝑍 axis).

and the intensity of elongation. The final 𝑧∗max value for the capsule model is lower than 1.7,
while it is higher for the vesicle–capsule and capsule–capsule models, reaching almost 1.9
for the latter. The bending contribution to the deformation energy is also plotted on the graph,
but its influence is found to be negligible, with the three dashed lines being nearly identical.
It is interesting to note that the three curves of the total deformation energy all show

a minimum for the same elongation value of 𝑧∗max ≈ 1.1, which is related to the chosen
reference shape for the cytoskeleton, namely quasi-spherical. The deformation energy of
the cytoskeleton decreases as the RBC comes closer to its reference shape, resulting in a
minimum value for the deformation energy. If the discocyte reference shape is chosen instead,
the curves no longer show a minimum. However, apart from this point, the evolution of the
deformation energy is similar for both reference shapes, and the conclusion drawn from
them is identical. The elastic strain energy curves are also found to be very close when a
spontaneous curvature is considered for the quasi-spherical reference shape. Overall, these
findings provide important insights into the relationship between deformation energy and
elongation for different RBC models.

4. Comparison of RBC modelling strategies for shear flow
The simple shear flow is the most commonly used configuration for characterising the

dynamics of a flowing RBC. By orienting the reference frame such that the 𝑥 axis corresponds
to the direction of flow and the 𝑦 axis corresponds to that of the velocity gradient, the velocity
field can be written as 𝒗 = 𝑣(𝑦)𝒆𝑥 , with 𝑣(𝑦) = ¤𝛾𝑦, as shown in figure 8. The (𝑥, 𝑦) plane
corresponds to the shear plane, and the 𝑧 axis corresponds to the vorticity axis. The intensity
of the shear rate ¤𝛾 is the single operating parameter that characterises this plane flow. For a
suspended particle, such as an RBC, ¤𝛾 is a hydrodynamic forcing characterised by a viscous
stress 𝜏 = 𝜂𝑒𝑥𝑡 ¤𝛾, where 𝜂𝑒𝑥𝑡 is the viscosity of the suspending fluid.
Characterising the dynamics of the RBC requires considering its properties as a soft

object, in addition to the characteristics of the flow. The first element determining its rigidity
is the viscosity contrast 𝜆 = 𝜂𝑖𝑛𝑡/𝜂𝑒𝑥𝑡 . Under physiological conditions, 𝜆 is typically greater
than unity because the viscosity of the cytosol of a healthy RBC can vary from 6 to 20
mPa s (Mohandas & Gallagher 2008; Williams & Morris 2009), whereas that of the plasma
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is only approximately 1.5 mPa s (between 1 and 1.3 at body temperature (Késmárky et al.
2008)). The value of 6 mPa s is generally considered to be characteristic of the cytosol
viscosity of a young and healthy RBC at body temperature. All simulations were carried out
with 𝜂𝑖𝑛𝑡 = 10 mPa s, the value at room temperature. However, most experimental studies
have been carried out with much more viscous outside fluids, resulting in characteristic
viscosity contrasts below unity.
The second characteristic of the RBC’s stiffness is related to the elastic properties of the

RBC membrane, via its shear modulus 𝜇𝑠. Its contribution must be compared with that of
the hydrodynamic strength, which gives rise to the introduction of the capillary number
𝐶𝑎( ¤𝛾, 𝜇𝑠) = 𝜂𝑒𝑥𝑡 ¤𝛾𝑅/𝜇𝑠 = 𝜏/𝜏ref , the ratio of the viscous stress 𝜏 = 𝜂𝑒𝑥𝑡 ¤𝛾 and 𝜏ref = 𝜇𝑠/𝑅,
which characterises the intensity of the elastic response of the cytoskeleton. Note that, with
our choice of time reference scale 𝑡ref = 𝜂𝑒𝑥𝑡𝑅/𝜇𝑠, the capillary number may also be defined
as 𝐶𝑎( ¤𝛾, 𝜇𝑠) = ¤𝛾𝑡ref .
The dynamic regimes of RBC, and more generally of a capsule, in shear flow can be

represented in the plane 𝜆, 𝐶𝑎( ¤𝛾, 𝜇𝑠). For a vesicle, the reference elastic property is the
bending modulus 𝑘𝑏. The capillary number used therefore is 𝐶𝑎( ¤𝛾, 𝑘𝑏) = 𝜂𝑒𝑥𝑡 ¤𝛾𝑅3/𝑘𝑏,
which is related to the capillary number for capsules by the dimensionless Von Karman
number K = 𝑘𝑏/𝑅2𝜇𝑠 = (𝑘𝑏/𝑅3)/𝜏ref , reflecting the relative importance of curvature
elasticity (out of plane) vs shear elasticity (in plane). For RBCs, the Von Karman number is
approximately 5 × 10−3 based on average values from table 1 of Levant & Steinberg (2016).
We use normalised quantities (indicated by a star) and dimensionless input data in our

simulations. All surface density of force quantities is normalised by the reference elastic
stress 𝜏ref . Hence, the actual values of 𝜇𝑠 and 𝑘𝑏 are not provided. Instead, the former is
specified using the capillary number 𝐶𝑎( ¤𝛾, 𝜇𝑠), while the latter is specified using the Von
Karmann number K.
Successive experimental studies have continued to enrich the RBC’s phase diagram, and a

synthesis of the experimental observations is proposed in Minetti et al. (2019). Studies often
assume the axis of symmetry of the RBC remains in the shear plane. Under these conditions,
the RBC’s dynamics can be characterised by the inclination angle 𝜃 (see figure 8) and the
Taylor deformation parameter 𝐷 = (𝐿 − 𝐵)/(𝐿 + 𝐵), in which 𝐿 and 𝐵 are the major and
minor axes of the ellipsoid having the same moment of inertia as the RBC. At low values
of 𝜏, the RBC exhibits a tumbling dynamics. As 𝜏 increases, the axis of symmetry moves
closer to the direction of the velocity and the deformation becomes more intense, resulting
in the transition from tumbling to tank-treading dynamics. The inclination angle and the
Taylor parameter take constant values in the tank-treading regime, with periodic variations
around their mean values (swinging) but with decreasing amplitude at higher 𝜏. However,
experimental studies indicate that an increase in the shear rate is more likely to cause the axis
of symmetry to drift out of the shear plane, leading to a rolling dynamics and the appearance
of new dynamic regimes showing RBCs with stomatocyte and then multilobe shapes (Mauer
et al. 2018). The critical transition capillary number curve 𝐶𝑎𝑐 ( ¤𝛾, 𝜇𝑠) reaches its minimum
when 𝜂𝑒𝑥𝑡 is greater than 20 mPa s (Fischer & Korzeniewski 2013), making it easier to reach
the tank-treading regime at high values of 𝜂𝑒𝑥𝑡 . As we move towards physiological values
of 𝜂𝑒𝑥𝑡 , i.e. at 𝜆 > 1, the curve 𝐶𝑎𝑐 ( ¤𝛾, 𝜇𝑠) sharply increases and the transition can only be
reached by imposing very high shear rates.
To simplify our analysis, we have assumed that the axis of symmetry of the RBC remains in

the shear plane. Although this assumption may not hold for all transition routes, it is sufficient
for our purpose, which is to compare modelling strategies at representative points of the
RBC dynamics. Moreover, as demonstrated in Levant & Steinberg (2016), the relationship
between simple shear flow and plane linear flow allows for this simplified configuration.
Another reason to restrict to this simpler configuration is that the characteristic drift time
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of the RBC symmetry axis out of the shear plane can be large relative to the time scale of
RBC dynamics for large 𝜂𝑒𝑥𝑡 and small ¤𝛾 (Levant & Steinberg 2016). In addition, under
physiological conditions, stable orbits widen as the shear rate decreases, and all orbits become
stable below a certain value of 𝜏, which is approximately 10−2 Pa [as shown in figure 14c in
Minetti et al. (2019)]. This trend is consistent at both low and high 𝜂𝑒𝑥𝑡 values, as long as
we consider equivalent viscous stress. Therefore, exploring the low 𝜏 region is easier when
𝜂𝑒𝑥𝑡 is small, as in physiological conditions.
To comprehensively explore the diverse dynamic regimes of an RBC in shear flow, our

comparative study focuses on four key points (𝜆, 𝐶𝑎( ¤𝛾, 𝜇𝑠)) of the phase diagram. The first
point corresponds to the tumbling regime, which is a stable regime for an RBC with its axis
of symmetry in the flow plane under physiological conditions. The second point corresponds
to the tank-treading regime, which is observed at 𝜂𝑒𝑥𝑡 values greater than 20 mPa s. We
consider both possible orientations of the axis of symmetry of the RBC, aligned with the
axis of vorticity or in the shear plane. The third point is located in the intermittency region,
where both tumbling and tank-treading dynamics coexist. Finally, the last point is selected
under physiological conditions but with a high shear rate to compare the modelling strategies
in the regime of very high deformations.

4.1. Effect of modelling strategy on tumbling dynamics
Our first investigation point considered a viscous stress of 0.01 Pa and an external viscosity

of 1.5 mPa s, corresponding to the characteristic dimensionless numbers 𝜆 = 6.67 and
𝐶𝑎( ¤𝛾, 𝜇𝑠) = 5× 10−3. We found that the inclination angle of the RBC (figure 9a) undergoes
a tumbling motion, with the spinning frequency around the vorticity axis varying based on
the model used. Interestingly, the capsule model exhibited the highest frequency, while the
vesicle model’s rotation frequency was almost half that of the other models.
Additionally, the Taylor deformation parameter 𝐷 (figure 9b) highlighted a direct relation-

ship between an object’s stiffness and its rotation frequency, with the effect being particularly
amplified in the vesicle model, which lacks shear elasticity. Further analysis showed that the
stiffening effect of the surface incompressibility constraint was clearly demonstrated in the
comparison between the capsule–capsule and vesicle–capsule models.
Since the RBC’s deformation is small, this dynamic regime is close to that of a rigid

particle, and Jeffery’s theory (Jeffery 1922)

𝑟 tan 𝜙 =
𝐶𝑜𝑟𝑏𝑖𝑡√︁

𝑟−2 cos2 𝜃 + sin2 𝜃
, 𝑟 tan 𝜃 = tan

¤𝛾𝑡
𝑟 + 𝑟−1

(4.1)

holds well, where 𝐶𝑜𝑟𝑏𝑖𝑡 = 𝑟 tan 𝜙0 is the orbit parameter and 𝑟 is the particle’s aspect ratio.
The prolate and oblate shapes are characterised by 𝑟 < 1 and 𝑟 > 1, respectively, with 𝑟
appearing in the equation 𝑋2 + 𝑌2 + 𝑟2𝑍2 = 1 for the surface of an ellipsoidal object. It
is important to note that, in this theory, all orbits are probable and determined solely by
the initial value 𝜙0 of the angle 𝜙. To verify Jeffery’s theory, we superimposed the curves
obtained for each modelling strategy using the second equation of 4.1 as solid lines (figure
9a), with the aspect ratio 𝑟 adjusted to reproduce the oscillation frequency of the model.

4.2. Effect of modelling strategy on tank-treading dynamics
In the second point, we investigated the effects of increased external viscosity (𝜂𝑒𝑥𝑡 = 25

mPa s) and high shear rate (𝜏 = 1.06 Pa) on RBCs, characterised by the dimensionless
numbers 𝜆 = 0.4 and 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5. When the RBC axis of symmetry is initially aligned
with the axis of vorticity, the transient phase during which it adapts its shape is longer. Figures
10 and 11 show the shape evolution during this phase in the (𝑥∗, 𝑦∗) and (𝑧∗, 𝑦∗) planes,
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Figure 9 – (a) Time evolution of the inclination angles 𝜃/𝜋 in tumbling regime at 𝜆 = 6.67, 𝐶𝑎( ¤𝛾, 𝜇𝑠) =
5 × 10−3. Points : simulations (vesicle = black, capsule = blue, vesicle–capsule = red, capsule–capsule =
green). Solid lines : Jeffery’s theory (second equation of 4.1) for fitted 𝑟 on frequency criteria (𝑟 = 2.25 for
capsule, 𝑟 = 2.35 for vesicle–capsule, 𝑟 = 2.46 for capsule–capsule, and 𝑟 = 4.15 for vesicle). (b) Time
evolution of the deformation parameter 𝐷.
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Figure 10 – Shape evolutions ((𝑥∗, 𝑦∗) plane sectional drawing) in tank-treading regime at 𝜆 =

0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5 in the transient phase at 𝑡∗ = 0 (a), 𝑡∗ = 6 (b), 𝑡∗ = 11 (c) and 𝑡∗ = 15 (d), for
the case when the RBC’s symmetry axis is initially aligned with the axis of vorticity (vesicle = black,
capsule = blue, vesicle–capsule = red, capsule–capsule = green).

respectively. All models follow a similar transition pattern with equivalent times, except
for the vesicle model, which undergoes a large deformation and then lengthens. However,
a difference in behaviour can be observed between single-layer and double-layer strategies.
While the capsule model still shows a curvature inversion at 𝑦∗ = 0 in the (𝑦∗, 𝑧∗) plane at
𝑡∗ = 11, the double-layer models do not. Figure 12 provides a 3-D view at that time.
When the RBC’s axis of symmetry is initially in the shear plane, it is already well oriented

relative to its final steady state. The transient phase of large deformations is, correspondingly,
reduced. The shape evolution during this phase in the (𝑥∗, 𝑦∗) and (𝑧∗, 𝑦∗) planes is shown
in figures 13 and 14, respectively. Figure 15 at 𝑡∗ = 15 provides a 3D view.
After the transient phase, the dynamics is identical, regardless of the initial orientation
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Figure 11 – Shape evolutions ((𝑦∗, 𝑧∗) plane sectional drawing) in tank-treading regime at 𝜆 =

0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5 in the transient phase at 𝑡∗ = 0 (a), 𝑡∗ = 6 (b), 𝑡∗ = 11 (c) and 𝑡∗ = 15 (d), for
the case when the RBC’s symmetry axis is initially aligned with the axis of vorticity (vesicle = black,
capsule = blue, vesicle–capsule = red, capsule–capsule = green).
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Figure 12 – Shapes (3D view) in tank-treading regime at 𝜆 = 0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5 in the transient phase at
𝑡∗ = 11, for the case when the RBC’s symmetry axis is initially aligned with the axis of vorticity. (a) vesicle,
(b) capsule, (c) vesicle–capsule, (d) capsule–capsule.

of the symmetry axis. The evolution curves in figure 16 are indistinguishable from those
obtained when the axis of symmetry is aligned with the axis of vorticity, with a normalised
time shift of 4𝑡∗ = 11.6. Thus, generalisation to any initial orientation is highly likely.
Once the steady state is reached, the inclination angle’s evolution (figure 16a) reveals

that the swinging is most pronounced for the capsule model and least pronounced for the
vesicle–capsule model. The capsule–capsule model is in between. As expected, the vesicle
model exhibits pure tank-treading motion, characterised by a constant value of the inclination
angle.
The evolution of deformation via the Taylor parameter 𝐷 (figure 16b) remains the most

effective way to distinguish between the different models. As expected, the vesicle model has
the most intense deformation and is completely separate from the other models. The double-
layer models produce mean deformations of the same order, with an almost sinusoidal
regularity of the Taylor parameter evolution. However, the stiffness provided by the surface
incompressibility is reflected in an oscillation amplitude half as large for the vesicle–capsule
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Figure 13 – Shape evolutions ((𝑥∗, 𝑦∗) plane sectional drawing) in tank-treading regime at 𝜆 =

0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5 in the transition phase at 𝑡∗ = 0 (a), 𝑡∗ = 6 (b), 𝑡∗ = 11 (c) and 𝑡∗ = 15 (d),
when the RBC’s symmetry axis is in the shear plane at the start (vesicle = black, capsule = blue, vesicle–
capsule = red, capsule–capsule = green).
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Figure 14 – Shape evolutions ((𝑦∗, 𝑧∗) plane sectional drawing) in tank-treading regime at 𝜆 =

0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5 in the transition phase at 𝑡∗ = 0 (a), 𝑡∗ = 6 (b), 𝑡∗ = 11 (c) and 𝑡∗ = 15 (d),
when the RBC’s symmetry axis is in the shear plane at the start (vesicle = black, capsule = blue, vesicle–
capsule = red, capsule–capsule = green).
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Figure 15 – Shapes (3-D view) in tank-treading regime at 𝜆 = 0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5 in the transition phase
at 𝑡∗ = 15, when the RBC’s symmetry axis is in the shear plane at the start (a) vesicle, (b) capsule, (c)
vesicle–capsule, (d) capsule–capsule.
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Figure 16 – Time evolution of the inclination angle 𝜃/𝜋 (a) and the deformation parameter 𝐷 (b) in tank-
treading regime at 𝜆 = 0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5, when the RBC’s symmetry axis is initially in the shear plane
(vesicle = black, capsule = blue, vesicle–capsule = red, capsule–capsule = green).

model as for the capsule–capsule model. Although the mean deformation intensity is lower
for the capsule model, its oscillation amplitude is two to three times greater than that of the
capsule–capsule model, with the oscillations appearing to be much less symmetrical. We
also note that there is an apparent increase in the rotation frequency when the lipid bilayer is
modelled as an incompressible fluid film rather than a solid shell. However, it is difficult to
conclude whether this increase is related to the consideration of the fluid nature of the lipid
bilayer or to the more rigorous treatment of the surface incompressibility constraint.
Figure 17 compares the shape evolutions in the established regime with the vesicle model

excluded due to its much larger deformation. The double-layer models produce very similar
shapes that are relatively stable, while the capsule model undergoes strong shape variations.
In cross-section in the shear plane, the evolution of the capsule model periodically changes
from an elliptical to an S-shape (breathing phenomenon).
A legitimate question is whether the transitional phase in the case where the axis of

symmetry is aligned with the axis of vorticity is only a shape adaptation or whether it is
accompanied by a general pivoting of the cytoskeleton. If the answer is negative, the final
state reached cannot be considered completely identical to the one reached starting from
the other orientation, at least from an energetic point of view. To answer this question, we
tracked the 𝑦∗ coordinate of two markers, one initially located on the dimple in the centre
of one of the two faces of the RBC and the other on the periphery. The answer is clearly
negative : when the axis of symmetry is initially in the shear plane, the dimple undergoes
the tank-treading movement, whereas when the axis of symmetry is initially aligned with the
axis of vorticity, the marker at the periphery performs the rotation.

4.3. Effect of modelling strategy on the transition to tank treading
Our third point of investigation lies at the upper limit of the intermittency region. For an

external viscosity 𝜂𝑒𝑥𝑡 = 24mPa s, Fischer & Korzeniewski (2013) identified a critical shear
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Figure 17 – Shape evolution in the established tank-treading regime at 𝜆 = 0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5, when the
RBC’s symmetry axis is initially in the shear plane. Left panel : (𝑥∗, 𝑦∗) plane sectional drawing at 𝑡∗ = 7
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Figure 18 – Time evolution of the inclination angle 𝜃/𝜋 (a) and the deformation parameter 𝐷 (b) in the
tumbling to tank-treading transition region at 𝜆 = 0.417, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.113 (vesicle = black, capsule = blue,
vesicle–capsule = red, capsule–capsule = green).

rate of 10 s−1 for the transition, corresponding to a critical viscous stress of 0.24 Pa. The
corresponding dimensionless numbers are 𝜆 = 0.417 and 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.113.
Since this point is located in the transition zone, it is expected that the models’ behaviour

is particularly sensitive to the modelling strategy. This sensitivity is clearly demonstrated in
figure 18. The vesicle model exhibits pure tank treading with a constant inclination angle.
The capsule model, on the other hand, stays in the tumbling regime. The double-layer models
initially exhibit tumbling, but after one or two periods, they adopt a permanent tank-treading
dynamic. Their inclination angle oscillates around a mean value similar to that of the vesicle
model, with a slightly larger amplitude for the capsule–capsule model.
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Figure 19 – Time evolution of the inclination angle 𝜃/𝜋 (a) and the deformation parameter 𝐷 (b) in the
multilobe region at 𝜆 = 6.67, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 1.5 (capsule = blue, vesicle–capsule = red, capsule–capsule
= green). Inserted in (b) are 𝑥 and 𝑦 shape views for the capsule and vesicle–capsule models when 𝐷 is
minimal and maximal.

4.4. Effect of modelling strategy in very high deformation regime
Mauer et al. (2018) reported a wide range of RBC shapes and dynamics observed in their

microfluidic experiments and through simulations using two distinct techniques. Notably, the
multilobe regime represents conditions closely resembling the physiological environment,
characterised by an external viscosity of 𝜂𝑒𝑥𝑡 = 1.5 mPa s, at very high shear rates with
𝜏 = 3.19 Pa. This corresponds to dimensionless numbers 𝜆 = 6.67 and 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 1.5.
We use these simulation parameters to align with the phase diagram presented by Mauer
et al. (2018), pinpointing a specific point within this multilobe regime. As anticipated, our
simulations effectively yielded multilobe shapes, indicating a strong alignment between our
modelling approaches and experimental observations. It is worth noting that multilobe shapes
have also been observed in a study using a 2-D vesicle model (Abbasi et al. 2022), suggesting
that the cytoskeleton may not be necessary for the multilobe manifestation.
The evolution of the inclination angle and the Taylor deformation parameter is shown

in figure 19. The deformation parameter varies between a minimum 𝐷min and a maximum
𝐷max, resulting in different shapes depending on the modelling strategy.

4.5. Comparison with experimental data
In §4.1–§4.4, we intentionally selected four points within the phase diagram of an RBC

in shear flow. These points were chosen to comprehensively cover the spectrum of the RBC
dynamics. Across each of these chosen points, our simulations consistently replicated the
anticipated shapes and dynamic responses, including the characteristic multilobe shape.
These consistent agreements between our simulation results and experimental observations
serve as compelling validation, affirming the effectiveness and reliability of our modelling
approaches.
In this subsection, we directly compare our numerical results with existing experimental

data. Specifically, we analyse the relationship between the tank-treading frequency ( 𝑓 ) and
the shear rate ( ¤𝛾). Fischer (2007) previously reported that the frequency scales with shear
rate as 𝑓 ∼ ¤𝛾𝛽 , with the scaling exponent 𝛽 in the range of 0.85 to 0.95.
Employing the same viscosity value for the suspending medium (𝜂𝑒𝑥𝑡 = 28.9 mPa s) as

reported in Fischer (2007), which leads to 𝜆 = 0.346, we conducted a series of simulations
using both single-layer and double-layer models to investigate the tank-treading frequency as
a function of shear rate. Figure 20 displays a comparison between our simulation results and
experimental data. The results show that both single-layer and double-layer models indeed
exhibit a power-law relationship with 𝛽 around 0.92. We note that our numerical results
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Figure 20 – The frequency ( 𝑓 ) of the tank-treading motion of an RBC in shear flow plotted against the shear
rate ( ¤𝛾). Simulated results using various models are denoted by filled symbols, while experimental data
from Fischer (2007) are represented by open circles. An exponential fit to the numerical results ( 𝑓 ∼ ¤𝛾0.92)
is shown as a dashed line, and a linear fit ( 𝑓 ∼ ¤𝛾) is depicted by the solid line.

are also consistent with the results obtained by Peng et al. (2013), where they reported a
value of approximately 0.91 for both their one-component and two-component models. In
our simulations, we assumed a quasi-spherical reference shape with non-zero spontaneous
curvature.We also explored scenarioswith zero spontaneous curvature, resulting in negligible
deviations from the primary results.

5. Discussion
The choice ofmodelling strategy, either single or double layers, appears to have a significant

impact on the dynamics of the RBC in shear flow. One way to assess the significance of this
impact is to compare the influence of the cytoskeleton’s reference shape. Figure 21 provides
such a comparison for the study point 𝜆 = 0.417, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.113, located in the transition
from tumbling to tank treading. The capsule and capsule–capsule models are compared with
two alternatives of reference shape : discocyte or quasi-spherical (sphericity of 0.96, which
has already been used). For both modelling strategies, switching to the discocyte reference
shape has a slight effect of reducing the oscillation frequency. Additionally, for the capsule–
capsulemodel, a slight increase in the amplitude of the oscillations can be observed. However,
for neither strategy does the influence go so far as to alter the nature of the dynamics. The
capsule model remains in tumbling dynamics, while the capsule–capsule model remains in
tank treading. In other words, distinguishing the cytoskeleton from the bilayer appears to
have a greater impact.
Pushing the comparison in the tank-treading regime (𝜆 = 0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5), we

observe a greater influence of the cytoskeleton’s reference shape. The evolution curves of
the inclination angle and the Taylor deformation parameter are shown in figures 22 and 23
for the two initial orientations of the RBC symmetry axis, i.e. in the shear plane or along its
vorticity axis. Furthermore, the RBC shapes at 𝑡∗ = 48 and 𝑡∗ = 52 are compared in figure
24. Switching to the discocyte reference shape has a significant impact, inducing undeniable
discrimination between the two cases of the orientation of the RBC symmetry axis. This effect



24 V. Puthumana, P.G. Chen, M. Leonetti, R. Lasserre and M. Jaeger

-0.5

-0.25

 0

 0.25

 0.5

 0  100  200  300  400  500

t∗

θ/
π

Figure 21 – Time evolution of the inclination angle 𝜃/𝜋 in the tumbling to tank-treading transition region
at 𝜆 = 0.417, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.113, for capsule (blue) and capsule–capsule (green), using the quasi-spherical
(solid line) and discocyte (dotted line) reference shapes for the cytoskeleton.

is evident for both the capsule and the capsule–capsule models, but it is more pronounced for
the latter. When the axis of symmetry of the RBC is initially in the shear plane, an increase
in the amplitude of the oscillations of the inclination angle and the deformation parameter
is observed for both models. This result is consistent with the interpretation in terms of the
energy barrier required to allow tank-treading movement, which is greater for the discocyte
reference shape than for the quasi-spherical one. However, when the axis of symmetry of
the RBC is aligned with the axis of vorticity, this energy barrier is reduced. For the capsule
model, this results in a smaller oscillation amplitude for both the angle and the deformation,
with a lower average deformation intensity. However, the most significant consequence is
the doubling of the oscillation frequency. In contrast, for the capsule-capsule model, the
barrier effect seems to disappear completely. The inclination angle and the deformation
parameter take a constant value, and the RBC switches to pure tank-treading dynamics.
However, the intensity of the deformation increases, unlike the capsule model, because of a
greater influence of the dimple from the axis of symmetry towards the periphery for the more
rigid capsule model. Here, the difference in modelling strategy between one or two layers
still has a strong impact, but its influence combines with that of the reference shape for the
cytoskeleton.
We conducted simulations with a non-zero spontaneous curvature for the quasi-spherical

reference shape. However, we do not present the corresponding curves as they are very similar
to those obtained with zero spontaneous curvature.
We emphasise the significance of conducting a comparative study that minimises the

discrepancies arising from specific numerical implementations, such as the method for
solving flows and the geometric representation of surfaces. It is crucial for these numerical
aspects to share the same level of precision.While the choice of our modellingmay be subject
to debate, including the numerical method and solution algorithms, our approach, built upon
the relatively recent finite-element method, known as isogeometric analysis, provides a
coherent and consistent numerical framework. However, the dissipative contribution of the
coupling between the cytoskeleton and the lipid bilayer is not present in single-layer models.
Although our study does not consider the relaxation dynamics, it is still legitimate to question
the sensitivity of double-layer models to the friction coefficient 𝐶 𝑓 . To investigate this, we
repeated simulations by varying 𝐶 𝑓 by a factor of ten, but the impact was almost negligible.
While it may seem surprising at first glance, the intensity of dissipation cannot be directly
linked to the friction between the cytoskeleton and the lipid bilayer, since increasing the
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Figure 22 – Impact of switching from the quasi-spherical (a,c) to the discocyte (b,d) reference shape on
inclination angle in tank-treading regime at 𝜆 = 0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5, for capsule (blue) and capsule–capsule
(green). The RBC’s axis of symmetry is initially in the shear plane (solid line) or aligned with the axis of
vorticity (dotted line).
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Figure 23 – Impact of switching from the quasi-spherical (a) to the discocyte (b) reference shape on
deformation in tank-treading regime at 𝜆 = 0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5, for capsule (blue) and capsule–capsule
(green). The RBC’s axis of symmetry is initially in the shear plane (solid line) or aligned with the axis of
vorticity (dotted line).

friction intensity decreases the velocity differential between the cytoskeleton and the lipid
bilayer.
The double-layer models used in our study clearly differ from the single-layer capsule

model. However, beyond the surface incompressibility constraint that our study has revealed,
what are the fundamental differences between the capsule–capsule and vesicle–capsule
models, and why is it important to model the lipid bilayer as a fluid film?A fluid nature would
allow the lipid bilayer to more easily adapt to ambient fluid flow, and even exhibit vortices
in the surface velocity field if the energy balance is improved. In contrast, modelling the
lipid bilayer as a solid shell would make such a scenario impossible. While the tank-treading
dynamics is compatible with a solid membrane and has been observed experimentally for
capsules, it is unclearwhether all the dynamics adopted by anRBC in a shear flow exhibits this
behaviour. To investigate this further, we extended our comparison between capsule–capsule
and vesicle–capsule models to multilobe dynamics (𝜆 = 6.67, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 1.5). Figure 25
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Figure 24 – Shape evolution ((𝑥∗, 𝑦∗) plane sectional drawing) with the discocyte reference shape in tank
treading regime at 𝜆 = 0.4, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 0.5, for capsule (blue) and capsule–capsule (green), at 𝑡∗ = 48
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(a) (b)

(c) (d)

Figure 25 – Surface velocity fields in the multilobe region at 𝜆 = 6.67, 𝐶𝑎( ¤𝛾, 𝜇𝑠) = 1.5, for the capsule–
capsule (a) and vesicle–capsule (c) models, when 𝐷 = 𝐷min. (b,d) The corresponding surface velocity field
inside the concavity projected on a plane perpendicular to the concavity.

illustrates this comparison, showing comparable shapes obtained with both models when the
Taylor parameter passes through its minimum. However, the vesicle–capsule model exhibits
two counter-rotating vortices in the concavity, unlike the capsule–capsule model, which
widens the concavity. This difference in surface flow topology may have a more significant
effect on other aspects, including frictional dissipation between the cytoskeleton and lipid
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bilayer and the physiological role of the plasma membrane, which relies on its fluidity for
proteins to diffuse widely and be easily mobilised to fulfil biological functions.

6. Conclusions
The RBC is a commonly studied area in the field of biomechanics, and it is traditionally

modelled as a single-layer capsule or vesicle. While a few double-layer models exist, they
often require two separatemeshes – one for the lipid bilayer and the other for the cytoskeleton.
In this paper, we have presented an alternative double-layer membrane model that utilises
a single mesh, significantly reducing computational complexity. Through computational
assessment of different modelling strategies, including both single-layer and double-layer
models, we have examined their respective effects on RBC dynamics and their potential
implications in understanding the biomechanics of RBCs.
By analysing extensional flow, we have gained insight into the behaviour of the RBC

membrane and why single-layer models like the capsule model and double-layer models like
the capsule–capsule and vesicle–capsule models are not equivalent. The capsule model fails
to distinguish the tangential kinematics of the cytoskeleton and the lipid bilayer, while in
reality the latter only drives the former through the action of frictional forces of the lipids
on the junction proteins. The cytoskeleton has a degree of freedom of tangential sliding,
allowing it to relax its elastic stresses to an imposed surface shape, which is effective in
double-layer modelling strategies but prohibited in the single-layer capsule model. As a
result, our findings show that the elastic strain energy of the cytoskeleton and the RBC
membrane as a whole increase more slowly in the double-layer modelling strategies during
extensional flow, resulting in a non-negligible increase in the elongation of the RBC.
We aimed to investigate the influence of the interaction between the lipid bilayer and

cytoskeleton layers of the RBC membrane on its dynamics in simple shear flow. To achieve
this, we considered four points (𝜆, 𝐶𝑎( ¤𝛾, 𝜇𝑠)) of the phase diagram that corresponded to the
dynamic regimes of tumbling, tank treading, transition to tank treading andmultilobe-shaped
RBCs under very high shear. These points were chosen because they represent the richness
of RBC behaviour in shear flow while keeping the RBC symmetry axis in the shear plane.
For the tank-treading dynamics, we also considered the alternative where the symmetry axis
remains aligned with the vorticity axis. The modelling strategies were compared using the
usual indicators of inclination angle and the Taylor deformation parameter, along with other
indicators such as the shape of the RBC or the velocity field on its surface.
Our results show that modelling the RBC membrane as a single material surface or as two

structures that can slide relative to each other is not equivalent. For all the study points, this
difference in behaviour is always present, although it may be more or less marked depending
on the nature of the dynamics considered. Our numerical methods were accurate, and any
criticism of our choices would affect all RBCmodelling strategies compared. Themechanical
properties we considered were those recognised for a healthy RBC, but their assignment to
one of the modelled components may vary depending on the strategy adopted. The sliding
degree of freedom between the two layers in the double-layer models induced a dissipative
phenomenon not considered in simpler models where the membrane is modelled as a block.
However, we have shown that the sensitivity to the value of the surface friction coefficient
is negligible, while the existence of this sliding degree of freedom is an important factor.
Moreover, none of the cases we have considered involves the relaxation dynamics.
Our study has yielded a surprising finding, emphasising the significance of the membrane

modelling strategy for RBCs compared with the choice of the cytoskeleton’s reference shape.
Our results suggest that the combination of mechanical properties alone is insufficient,
and careful consideration must be given to how these properties are incorporated. While
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the numerical efficiency favours a single-layer capsule approach, a double-layer model
aligns more closely with biological reality. Fortunately, the additional computational cost
of the double-layer model is minimal when utilising a single mesh, as demonstrated in our
continuum-mechanical approach. Based on all the aspects considered, we conclude that the
optimal sequence ofRBCmodelling strategies is as follows : double-layer vesicle–capsule and
capsule–capsule models, followed by single-layer capsule and vesicle models if a particular
model would be preferred.

However, an open question remains : is it necessary, useful or avoidable to model the lipid
bilayer as a vesicle rather than a capsule? To date, no such model has been widely adopted
in the community. Our study identifies two mechanical properties contributed by the lipid
bilayer : its surface incompressibility and its fluid nature.We show that the former consistently
provides a marked stiffening effect compared with a quasi-incompressible capsule model,
reducing up to 50% of swinging oscillations in the tank-treading dynamics. The importance
of fluidity is less clear but becomes noticeable at very high shear rates, where contra-rotating
vortices appear that cannot be reproduced with a capsule model. While the physiological
significance of these complex flows within the plasma membrane remains uncertain, our
study suggests that considering the fluidity of the lipid bilayer is still important. However, it
is not the consideration of fluidity that is expensive in a vesicle model, but rather the rigorous
consideration of the incompressibility constraint through a projection method in a space of
surface divergence-free velocity fields. An alternative approach that would represent a good
strategy and is already widely adopted in the vesicle community is to take into account the
surface incompressibility constraint using a penalty method.

Our initial motivation for conducting this study was rooted in numerical modelling
concerns. However, our research has unexpectedly yielded insights that could advance our
understanding of the biophysics of RBCs. One such insight is the unresolved question of
the reference shape of the cytoskeleton. Our study on tank-treading dynamics has revealed
a new phenomenon that could serve as an indicator in resolving this issue. Experimental
research by Minetti et al. (2019) suggests that, in this regime, the RBC symmetry axis can
be oriented in two ways – aligned with the vorticity axis or in the shear plane. We have
investigated both configurations, and our findings indicate that a reference shape close to
a sphere results in indistinguishable steady-state dynamics for both orientations. However,
with a discocyte reference shape, the effect is considerably different and accentuated in
a double-layer model compared with a simple capsule model. The oscillation amplitude
increases when the symmetry axis is in the shear plane and decreases when aligned with the
vorticity axis. Notably, the oscillation frequency is halved in the latter case for the capsule
model, whereas the capsule–capsule model eliminates the oscillations, leading to a pure
tank-treading dynamics. These observations suggest that the influence of reference shape on
oscillation frequency is significant enough to warrant experimental verification.

Another point of interest is the fluidity of the lipid bilayer,which justifies the notion of a flow
of its constituents and the associated friction on proteins linked to the cytoskeleton. Recent
research has called into question the Singer and Nicolson model, particularly regarding the
extent to which bilayer fluidity is constrained by the aggregation kinetics of its constituents
and the corralling phenomenon (Kusumi et al. 2005; Krapf 2015). Surface viscosity and
the possibility of vortices must be considered in this context. However, the limitation on
the degree of sliding freedom of the cytoskeleton may not be immediately evident, since it
involves the sliding of the corrals themselves, which warrants further investigation.
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