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Influence of viscoelasticity on the response of rubber under tensile wave propagation

Numerical simulation of experiments done by

. As a wide range of strain rate is encountered in the case of propagating waves, and as rubber is strongly strain rate dependent, this influence could explain the differences of wavefront as well as of wave speed. Our numerical results show that the global response of the rubber is recovered: simple waves for small prescribed velocities and shock waves for high prescribed velocities. Furthermore, the wave speeds are well-predicted. These results demonstrate the major influence of viscoelasticity for high speed dynamic loading conditions. propagate in the material differs depending on the kind of loading conditions.

PHYSICS OF THE WAVE PROPAGATION IN RUBBER

In this context, Knowles (2002) theoretically studied the propagation of tensile waves in rubbers.

, a wave will propagate in the material.

INTRODUCTION

Elastomers are widely used for their ability to undergo large deformations without breaking. Moreover, their low stiffness explains why they are widely used for interface parts, as example for the suspension mounts used to limit shocks received by the vibrating equipment aboard submarines subjected to underwater explosions. In this context, it is important to predict the response of rubbers for shock loading conditions, and then the occurrence of propagating waves in these materials.

In a one-dimensional medium, the wave speed c can be expressed as:

c = ∂/ P ∂ε ρ ( 1 
)
where P is the engineering stress, ρ is the specific mass and ε is the engineering strain. For small strain, it reduces to the classical relation: cE =/ E ρ , with E the Young's modulus. But, as the typical stress-strain curves of rubbers are first concave and then convex as shown in Figure 1a, the wave speed depends on the strain as depicted in Figure 1b. More precisely, there is a minimum of the wave speed, c m , for a strain, ε 0 , related to the inflexion point of the stress-strain curve. Finally, as the wave speed is not monotonically increasing or decreasing with strain, the type of waves that 1

Compression

In this case we impose a compressive velocity, the author determines that as the wave speed increases, the strain increases, and that large strain will propagate faster than small strain and will finally end up with a shock wave. In fact, a discontinuity of strain will propagate in the material separating a deformed and an undeformed domain.

Tension

The case of tensile waves is more complex.

• For small prescribed speed, the strain is small; if it is smaller than ε 0 , as the wave speed decreases the strain increases, and it leads to a simple wave traveling in the material. Indeed, as small strain travel faster than larger strain, the wave front is not abrupt and becomes less and less steep as it propagates in the sample as shown in Figure 4a. In fact, Figure 3a shows that there is a transition zone between the deformed and undeformed domains as small strain travel with a speed c 0 and larger strain propagate at speed 10 c < . • For large prescribed speed, a shock wave propagates in the sample with speed ɺ s . This shock wave splits the domain into an area with a nonzero level of strain and an undeformed area as shown in Figures 4b and3b.

• For intermediate prescribed speed, the solution of the problem is no more unique and depends on the dissipation that takes place in the material inside the wave front. However, one can always identify a simple wave followed by a shock wave.

According to the equations, several wavefronts can be predicted as depictd in Figures 4c and4d.

As for simple waves, a transition zone takes place between the deformed and undeformed domains as shown in Figure 3c. The smallest strain travel with a velocity c 0 and the larges strain propagates with a velocity ɺ sc < 0 corresponding to the shock wavefront propagation speed.

Remark: In the following, the different propagation modes will be presented in two different ways. First, we present the particle velocity as a function of time for different points in the specimen as in Figure 4; it permits the visualization of the wavefront shape. Second, one can show how things evolve in the sample using (t,x) diagrams as proposed in Figure 3. The origin of this diagram is the time when loading begins and the position of sample extremity at time = 0. Hence, at t = 0, there is no strain in the sample for every abscissa x; then for t > 0, the region close to the loaded extremity is stretched and the region on the right is undeformed since the wavefront has not reached it.

Knowles defines the prescribed speeds that delineate these three states: V 1 , V 2 and V 3 . For every speed less than V 1 , only simple waves take place in the sample. Above V 2 , it is possible to have shock wave. And above V 3 , the travelling waves are necessarily shock waves. The gap between V 2 and V 3 can be explained by the non-unicity of the solution that depends on the dissipation. However the considered constitutive equation is elastic and does not take into account the strain rate dependency of the material nor the hysteretic response under loading-unloading conditions. Nevertheless, using a simple model enables to highlight the different phenomena that can occurs during experimental investigations on an elastomer bar.

WAVE PROPAGATION EXPERIMENTS

Using the work of Knowles on wave propagation in elastomers, Niemczura and Ravi-Chandar performed dynamic experiments on rubber bands. These tests are designed to exhibit the three states defined by Knowles. The method and results are presented in a remarkable series of three articles Niemczura & Ravi-Chandar (2011a, 2011b, 2011c). In the first article, the authors gathered the results with simple waves, i.e. the waves which propagate for tension at low prescribed speed. The second one concerns results for larger speeds which induce shock waves. The third one refers to the unloading of rubber strips and the resulting hysteresis. Here, we briefly recall the main results that were obtained.

Preliminary tests in quasi-static uniaxial tension were performed on the material to determine the stress-strain curve. All tests are then carried out on the same device: a projectile, which is attached to one end of the rubber strip is thrown with a certain initial velocity. The mass of the projectile is high enough to consider that the projectile speed remains almost the same during the test. The other end of the strip is held fix with a grip. These tests are performed on a rubber latex and nitrile rubber. Only the results corresponding to latex are presented here. However, the authors' conclusions are the same for the nitrile. During tests, the rubber strip is marked with evenly spaced lines. Thus, filming the sample over time, the propagation of the wave can be observed. the trajectories of these points are presented in Figures 5a and5b. In these figures, the pulling end is on the left side of the picture.

Simple waves

According to Knowles, for small prescribed speeds, a simple wave should travel in the sample. This wave is characterized by a wave front that becomes less and less steep as it propagates. In Figure 5a, one can see the transitionzone between regions where rubber is undeformed and where it attained the maximum strain. The further of the pulling end, the larger is this transition zone as the wave spreads. This observation is in good agreement with the work of Knowles.

Figure 6, which shows the evolution of velocity for several points of the sample over time, demonstrates that the wavefront becomes less and less steep as it propagates. Using a cubic function fitted on the stress-strain curve issued from quasistatic experiments, and considering the equations derived by Knowles, the authors manage to draw the trajectory of several points (corresponding to the blue line in Figure 5a). Nevertheless, there is important discrepancies between these results and experimental data; it can be explain by the dependency of the material response to the propagation speed. Hence, the authors choose a power law:

PP n + P 00 + P P µ () 0 - ( 2 
)
where P 0 is the initial stiffness (determined using quasi-static data) for a strain ε 0 that is prescribed before throwing the projectile. n and µ are the two material parameters, which can be determined by an optimization method based on the expressions determined by Knowles and the results of the experiments. Finally, good agreement between theory and experiments is achieved: the dynamic stress-strain curve is stiffer than the one obtained during quasi-static tests. 

Shock waves

In order to produce shock wave in the sample, the authors observed that the sample must be largely pre-stretched (λ > 2) and then stretched with high velocity. Otherwise, only simple waves propagates. As defined by Knowles, Figure 5b show that there is an abrupt jump from the initial stretch to the one behind the wavefront. The particle velocity of several points are shown in Figure 6, and revealed that all fronts are very steep and nearly the same.

Stress and strain before and after the shock wavefront have been determined. For the data before the wavefront, the value of pre-stretching and the corresponding quasi-static stress are taken. The strain after the wavefront is directly measured from the videos, and the stress is computed using the following expression PP s

-+ P ++ P . () + () + - - s - ) + ( ρs s 2 (3)
where the superscripts ⋅ -and ⋅ + indicate what is respectively before and after the wavefront. Using the points (P + , ε + ε ) for several tests performed at different speed and pre-stretching level, and invoking experimental data issued from the simple wave experiments, Figure 7 can be drawn. The corresponding stress is revealed larger than the one obtained during quasi-static experiments.

SIMULATION

Intuitively, we think that the discrepancy between the experimental data and the theoretical predictions is mainly due to viscoelasticity. Indeed, the over-stress obtained by Niemczura and Ravi-Chandar might be due to the strain rate dependency of the material that was not taken into account: while during quasi-static experiments, the viscoelastic nature of the material is not activated, it is not the case for propagating waves which can lead to additional stiffness.

Large strain viscoelastic model

In order to simulate the propagation of waves, we consider a finite strain viscoelastic model based on the K-BKZ constitutive equation [START_REF] Kaye | Non-Newtonian Flow in Incompressible Fluids[END_REF][START_REF] Bernstein | A study of Stress Relaxation with Finite Strain[END_REF]. This model has been recently detailed elsewhere [START_REF] Petiteau | Large strain rate-dependent response of elastomers at different strain rates: convolution integral vs. internal variable formulations[END_REF], and is only briefly recalled here.

The model is based on the convolution integral approach whose key mechanical quantity is the relative deformation gradient F t F F () ) ), i.e. the deformation gradient at the current time τ in the current configuration () τ with respect to the final deformed configuration () at time t, as described in Figure 8:

FF F t F F () () () t F ) () ) . F ) () t F() -1 (4)
In a similar way, we define F τ (), the deformation gradient in () with respect to the deformation gradient at the current time τ : 
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Where U 1 U U is a strain energy density associated to the viscoelastic part of the material response. In our model, we add a hyperelastic contribution in order to consider a solid and not a fluid. The general constitutive equation is then: 
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Where U 0 U U is the strain energy density associated with the elastic part of the material response, B the left Cauchy-Green tensor, and I B I I and II B I I are its first and second invariants. In order to accurately represent the quasi-static experimental data, we adopt a classical Rivlin series as proposed by [START_REF] Biderman | Calculations of rubber parts[END_REF]:
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For the viscoelastic part, we adopt the simplest form of the strain energy, i.e. a viscoelastic counterpart of the neo-Hookean model:
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Finally, our model reduces to
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Materials parameters for the hyperelastic part are determined by fitting the quasi-static stressstrain curve from Niemczura and Ravi-Chandar. Then, assuming that the stress-strain curve made of the points issued from shock wave experiments is the infinitely fast loading response, we compute the stiffness parameter associated with the viscoelastic part of the model. As shown in Figure 7, the stress-strain response for quasi-static loading conditions is in good agreement with experimental data, but for high strain rate the predictions are not so accurate, because only one material parameter (g 1 ) is considered in the viscoelastic part of the model. To determine the relaxation time τ R τ , the particle trajectory shown in Figure 9a is used. It is to note that the precision of strain measurement in the figure is questionable. However, knowing that for x = 64 mm the stretch increases from λ =. 00 . 3 to λ =. 27 . in only 2.45 ms, and that the wave speed for small strain is c 0 52 5 =. 52 m/s and c 1 44 =. 4 m/s for the largest strain, we can build a "strain over time" curve assuming a fitting equation of the form

λ = 1 + t() + 1 Bt (10)
where A and B are parameters to be determined.

Using the previously fitted values and minimizing the difference between computed and measured wave speed, the relaxation parameter can be determined. The complete set of material parameters is presented in Table 1. For the DL-B test, a simple wave travelling in the rubber strip is exhibited as shown in Figure 10. The particle trajectory does not match with experiments at the beginning, as shown in Figure 5a. Indeed, the wave speed is higher than the one observed during tests. Thus, the spreading of the wave is less important. However, as the wave propagates, the discrepancy between simulation and experiments decreases. This is due to the fact that the relaxation time is determined for only one point trajectory (at the abscissa x = 64 mm). Similarly, the particle velocity curves depicted in Figure 9a are less and less steep proving the propagation of a simple wave. We can also notice that, even for small strain, the wave speed is higher than the one predicted using quasi-static data, emphasizing that the viscoelastic nature of the material is important for this type of loading conditions.

For the SL-C experiment, in which a shock wave propagates in the sample, Figure 5b shows that there is nearly no spreading of the wave as it propagates, and thus there is no transition zone between the deformed and undeformed regions. In a similar way, Figure 9b shows that profiles of particle velocity issued from FEM simulation are steep and also nearly identical. It demonstrates that it is possible to model a shock wave in rubbers with a viscoelastic model. However, the wave speed obtained in the FEM simulation is lower than the one measured during the experiments of Niemczura & Ravi-Chandar (2011b).

FINAL DISCUSSION AND CONCLUSION

The wave speed discrepancy between simulation and experiments for simple waves and shock waves might be due to the simplicity of the viscoelastic part in the model. Figure 7 shows that in uniaxial tension, the stiffness of the model for small strain can be higher than the one observed during simple wave experiments. Thus, the wave speed issued from the model is higher than the one measured. Similarly, for high strain the model is less stiff than the one determined with shock wave experimental results. Using a constitutive model with a more complex viscoelastic part would lead to a curvature closer to the one of the stress-strain material curve, and then would probably might provide results closer to the reality.

As a conclusion, even if the simulation does not exactly reproduce experimental data, it enables to predict the two different types of behaviour with a unique model: the simple wave and the shock wave. Moreover, the results obtained for the waves speed are not exactly the same than in the experiments, but they are still in the right order of magnitude. It demonstrates that viscoelasticity as a great influence for this type of loading conditions and can explain the observed phenomena.
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 1 Figure 1. Typical stress-strain curve for an elastomer and the corresponding wave propagation speed depending on the strain (Knowles 2002).
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 2 Figure 2. Diagram of the uniaxial sample in which occurs the propagation phenomenon.
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 3 Figure 3. Space-time diagrams of wave propagation as defined in Knowles (2002).

Figure 4 .

 4 Figure 4. Particle velocity depending on time for the different wavefronts as defined by Knowles (2002). The colors correspond to different points of the specimen as shown in Figure 2.

Figure 5 .

 5 Figure 5. Particle trajectory diagram for different loading cases. The pictures are extracted from Niemczura & Ravi-Chandar (2011a, 2011b) and the red curves are the data extracted from the FEM models.

Figure 6 .

 6 Figure 6. Particle velocity of several points of the sample with respect to their position from the pulling end of the sample (from Niemczura & Ravi-Chandar (2011a)). The red and black curves are the results obtained in experiments for the simple and the shock waves, respectively.
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  Introducing the right Cauchy-Green strain tensor C τ () , and its first and second invariants I t C I -1 and II t C I -1 , the K-BKZ model can be expressed:
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 7 Figure 7. Fit of the stress-strain curve with the viscoelastic model (from Niemczura & Ravi-Chandar (2011b)).
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 8 Figure 8. Deformation gradient with respect to current time configuration.

  σ

Figure 9 .

 9 Figure 9. Particle velocity of several points in the sample with respect to their position from the pulling end of the sample for different loading cases. The red curves are the data extracted from the FEM models and the black ones are extracted from Niemczura & Ravi-Chandar (2011a, 2011b).

Table 1 .

 1 Parameters of the viscoelastic model obtained for the latex used by Niemczura et Ravi-Chandar.

	Parameters	Values
	C 10 (MPa)	0.2116
	C 01 (MPa) C 20 (MPa)	0.0458 -0.002979
	C 30 (MPa)	0.00006215
	g 1 (MPa)	0.1322
	τ (s)	0.1187
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