
HAL Id: hal-04409130
https://hal.science/hal-04409130v1

Submitted on 22 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperation processes in inclusive learning settings with
a special focus on mathematical potential

Anna-Maria Billigen, Elke Söbbeke, Lara Sprenger

To cite this version:
Anna-Maria Billigen, Elke Söbbeke, Lara Sprenger. Cooperation processes in inclusive learning set-
tings with a special focus on mathematical potential. Thirteenth Congress of the European Society
for Research in Mathematics Education (CERME13), Alfréd Rényi Institute of Mathematics; Eötvös
Loránd University of Budapest, Jul 2023, Budapest, Hungary. �hal-04409130�

https://hal.science/hal-04409130v1
https://hal.archives-ouvertes.fr


  

Cooperation processes in inclusive learning settings  

with a special focus on mathematical potential 

Anna-Maria Billigen, Elke Söbbeke and Lara Sprenger 

University of Wuppertal, Germany; billigen@uni-wuppertal.de  

In inclusive education, all learners should be enabled to develop their individual potential. With 

respect to mathematical difficulties, there are already numerous concepts for inclusive classrooms. 

In contrast, the promotion of mathematical potential often takes place outside the classroom in 

exclusive learning situations. This allows only few opportunities for cooperation and negotiation 

between all learners in classroom. In the research reported here, learning environments for inclusive 

education had been designed to promote mathematical potential as well as the participation of all 

learners. The paper focuses on children’s cooperative negotiation processes in inclusive learning 

settings with special focus on mathematical potentials.  

Keywords: Mathematical learning processes, inclusive education, students with special needs, 

mathematical potential, cooperation. 

Inclusion 

The introduction of the term inclusion into school practice (UN Convention on the Rights of Persons 

with Disabilities, United Nations, 2006) emphasizes an important wider perspective, which is 

fundamental for our research orientation: in an inclusive education system, all persons should have 

the chance to develop their individual potential and should be perceived, accepted, and valued in their 

diversity and individuality. Thus, the goal of inclusive teaching is to support all students in the best 

possible way (Ainscow et al., 2006). Numerous efforts in the context of inclusion focus primarily on 

mathematical difficulties. But inclusion means the promotion of mathematical potential, too. 

However, international comparative studies like TIMSS 2019 (Mullis et al., 2020) indicate that the 

promotion of high-achieving students in Germany is less successful than the promotion of low-

achieving learners. It also points to a decline in high-performing primary school children, that reach 

or exceed the defined standards in mathematics. That’s why the potential of all pupils (not only those 

with special talents) is increasingly focused in academic and educational policy efforts (Dexel et al., 

2019). The present study refers to a perspective of inclusion as an interplay of joint and individual 

learning processes (Moser Opitz et al., 2018). Every learner can develop his or her individual 

mathematical potential through adaptive mathematical learning opportunities as well as social 

participation (Krähenmann et al., 2019). The paper focuses on this interplay of individual support and 

joint learning situations in inclusive learning environments with special focus on mathematical 

potential. In this paper we understand a learning environment as a framework for several tasks based 

on a common mathematical structure (Hirt & Wälti, 2022). 

Promotion of mathematical potential 

In different research orientations, there is a wide range of concepts related to the construct of special 

mathematical potential. There is no consistent and sometimes even contradictory understanding of 

this term (Leikin, 2018). While aptitude in a psychological context is often understood in the sense 

of giftedness measured by tests, research in German didactics of mathematics tends to work with 

systems of characteristics/properties to identify and describe giftedness (e.g. Käpnick, 1998). The 
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study presented in this paper joins a broader view on mathematical potential. From this point of view 

potential-oriented support in inclusive learning environments enables the promotion of each child’s 

individual abilities. This dynamic view contains that individual facets of mathematical potential can 

develop independently of the current level of performance and thus emphasizes the aspect of 

development of mathematical potential (Leikin, 2018). In Germany, concepts to support 

mathematical potential are often located outside the classroom or school (e.g. children’s university). 

In concepts of enrichment, selected children receive additional, enriching learning opportunities 

(Wieczerkowski et al., 2000). Even these concepts of enrichment, in which all students work spatially 

together, make it difficult to initiate processes of joint negotiation about mathematical insights, 

because not all children work on the same task. Consequently, many concepts to support 

mathematical potential are designed rather exclusively and allow few possibilities to cooperate, 

communicate, and learn with and from each other in the sense of inclusion as explained above.  

Cooperative learning settings 

In various research traditions, learning mathematics is no longer seen as a purely individual, mental 

process of the individual child, but as a learning process in which social interaction and 

communication with others is an essential basis for the development of new mathematical concepts. 

To promote mathematical potential as well as the participation of all learners, it is important to 

understand what characterizes fruitful processes of communication and cooperation. These aspects 

have to be considered to develop and investigate learning environments for inclusive education. 

Numerous studies emphasize that adequate mathematical communication makes a decisive 

contribution to the success of learning processes and has a beneficial effect on the growth of learning 

(Gersten et al., 2009; Stacey & Gooding, 1998). For this reason, it is important, that all learners have 

opportunities to participate in these communication processes. Therefore, learners have to be given 

access to the mathematical subject. Such processes of cooperation and communication are not only 

important for the construction of new mathematical knowledge. In the context of inclusive education, 

they also offer a rich opportunity for real participation for all learners. It is assumed that precisely the 

exchange of learners’ experiences and concepts on different levels can initiate learning processes: 

The diversity and heterogeneity of learners can benefit the insights of all so that the joint engagement 

with a common subject can be fruitful (Feuser, 2005). Therefore, inclusive education should interplay 

between individual and joint learning processes (Wocken, 1998). In order to reach this, various 

cooperative learning situations have to be created, which enable children to achieve different learning 

goals but which are related to a common subject, so that communication and cooperation becomes 

possible. A well-explored concept in the German didactics of mathematics is the concept of natural 

differentiation. In this concept, all children receive the same task, which is holistic and sufficiently 

complex, so that it opens up learning opportunities for children on different levels. By working on a 

common task, a meaningful discussion about individual strategies and insights can take place. This 

initiates productive situations of learning with and from each other (Scherer & Krauthausen, 2010). 

Thus, this concept offers many advantages for dealing with the diversity of learners. However, 

looking at inclusive education from a wider perspective that includes particular mathematical 

difficulties as well as mathematical potential, natural differentiation is not always sufficient to create 

learning situations for all children: Therefore, all learners have to be enabled to get access to the 

subject matter at their individual level of difficulty as well as to participate in joint processes of 



  

cooperation and communication (Häsel-Weide & Nührenbörger, 2021). The concept of 

parallelization builds on the idea of natural differentiation, but it can offer broader possibilities to 

realize the demands mentioned above. It is often associated with mixed-grade teaching but is equally 

relevant to accommodate diversity in inclusive learning settings. In the present parallelized learning 

environment, the tasks which children work on, follow the design of natural differentiation, but also 

allow to explore analogous mathematical relations at different levels. Due to these target-

differentiated levels, all learners can be given individual access to the subject of learning. Likewise, 

this opens up a variety of possibilities for a fruitful exchange between the learners. They can 

contribute their discoveries, which they have obtained at the respective levels, so that social 

participation is guaranteed for all (Nührenbörger & Pust, 2016). Because of these advantages, the 

present research project uses parallelization in order to initiate participation for all learners as well as 

learning processes with a special focus on mathematical potential. The study explores if the concept 

of parallelization realizes these requirements and how children’s 

communication and cooperation processes can be characterized. 

Methods  

The study develops a parallelized learning environment built on the concept of 

natural differentiation and focusing on Magic Squares (MS). MS offer 

opportunities to discover and explore rich mathematical structures at different 

levels, which make them suitable for both natural differentiation and 

parallelization. In a MS the sum of each row, column, and diagonal is equal 

(Figure 1), and is called the magic number. In MS of odd-order the magic number is related to the 

odd-order and the mean number (e.g. in a 3x3 MS the magic number is three times the mean number). 

Furthermore, there are several possibilities to find new MS, for example by systematically varying 

the numbers (Hirt & Wälti, 2022). The current study is an ongoing PhD project, which explores two 

different parallelized learning environments. In this paper we refer to the learning environment MS, 

in which so far 31 children (aged 9 to 10 years, Grade 4) were videographed working on the different 

tasks. The researcher also takes the role of the interviewer. The learning environment is divided into 

three interview sequences. In the first sequence, children work individually in a naturally 

differentiating learning environment to become familiar with MS, and to explore first structures. The 

researcher then forms pairs of students on the basis of the student’s outcome from the first sequence. 

The pairs work together at the same subject level. According to the concept of parallelization, some 

teams work at level A and other teams at (the more complex) level B to offer target-differentiated 

learning opportunities in Sequence 2. So individual access to the subject of learning at different levels 

is offered. Children working on level A explore relations 

between the mean and magic numbers as well as systematic 

variations of numbers in 3x3 squares. Children working at level 

B focus on mathematical structures of different MS of size 

𝑛x𝑛, which is more complex than the task of level A. The 

challenge is to find MS of different sizes (3x3, 4x4, …, 𝑛x𝑛) 

with the magic number 90. Especially the comparison of odd- 

and even-order squares offers substantial discoveries. In 

Sequence 3, the students work together in new teams composed Figure 2: Task of Sequence 3  

Let’s find  
a magic square with the 

mean number 3! 

That’s not possible. 

Who is right? Work together and find different reasons. 

Figure 1: Magic 

square (3x3) 

Magic Number: 15 



  

of one learner each from level A and B. Now they work on a task of natural differentiation (Figure 

2). Both learners can participate in working on this task by applying insights they made working on 

the task of level A or B in Sequence 2, e.g. arguments about the relation between the mean and magic 

number as well as systematic variations (A) or structures of different MS (size 𝑛x𝑛) (B).  

For the research project, the epistemological triangle (Steinbring, 2009; Figure 3) represents a 

substantial analytical tool for reconstructing conceptual 

interpretations as well as their change in children’s 

cooperation processes. At this point, essential features of the 

epistemological triangle will be briefly presented: All 

mathematical knowledge requires certain signs to encode it 

(Figure 3). These signs do not have an automatic meaning in 

themselves, the meaning has to be produced by the learners. 

This requires appropriate reference contexts, to develop an 

interpretation of signs. On this basis, Steinbring understands the development of new mathematical 

knowledge (concept) as the active production of interpretations between the signs and the reference 

contexts (for detailed description see Steinbring, 2009). The analytical tool is used to reconstruct in 

three steps how children interpret the task (sign), which reference contexts they consult for this 

purpose, and which mathematical concepts develop. That helps to describe how children’s individual 

interpretations can be characterized in processes of communication and cooperation. 

First results 

The following scenes present first insights in the results of the project with regard to three different 

focuses: 

1. Applying individual insights from the previous sequence into the discovery phase  

2. Accessibility to the subject of learning and social participation 

3. Promotion of mathematical potential  

In Sequence 2, the children Lenny and Lotta initially worked separately from each other on different 

levels. Lotta worked with her partner on level A. In doing so, she made discoveries and explorations 

about the relation between the mean and the magic number. Lenny worked with his partner on the 

more complex level B. He examined various MS that showed fundamental structural differences and 

did not make the relation between the mean and the magic number immediately visible in all squares. 

With these previous experiences, Lotta and Lenny come together in a new working group to deal with 

the task from Sequence 3 (Figure 2). 

Lotta brings an important impulse into the interaction so that participation arises 

Lotta Write down the three.  

 

 
 
 

Magic Number:__         

Lenny Mmh [notes the 3]. I believe we can 

Lotta And we have to write a nine here. [points to the field “magic number”] 

Lenny [looks surprised] Hmhm [thinks; writes down the 9] I didn’t know that 

this has to be a nine [looks sad]. 

Interv. Maybe Lotta can explain it to you. 

Lotta Because three times three is nine and you always have to calculate the 

number in the middle always three times. 

Lenny Ahh [5 sec.; amazed]. 

Reference context 
Sign 

Figure 3: The epistemological triangle 

(based on Steinbring, 2009) 

Concept 



  

The children have to argue whether a MS with the mean number 3 is possible. This requirement 

represents the sign that they have to interpret. After they have written the 3 in the middle field of the 

MS, Lotta initiates the problem-solving process. She refers to her insights from Sequence 2, where 

she explored the relationship between the mean and the magic number (reference context), and 

determines the magic number “9”. This finding represents an important concept for the further 

working process in the third sequence. When the interviewer asks Lenny if he understands why the 

magic number is “9”, Lenny denies. Lotta explains how to work out the magic number. Through her 

discovery, which is new to Lenny, Lotta gives an important insight into the communication, which is 

taken up productively by both children in the further process of interaction. The scene leads to the 

assumption that the individual support by the previous target-differentiated approach in Sequence 2 

is fruitful. In this way, both pupils (especially Lotta, who worked at the less complex level A) can 

apparently participate in a profitable way while working together on the task of Sequence 3.  

Despite different conceptual interpretations, cooperation emerges  

Lenny But that doesn‘t work. Maybe we need one, maybe that could work but only 

maybe two, and four, [notes 2 in F4 and 4 in F6]1 that gives 

 
 

Lotta two and three are five [taps on F4, F5, F6] yes that’s nine. 

Lenny That doesn’t work. 

Lotta Writes down a five [taps on F2]. 

Lenny Because we need a five, then it makes nine. So, if we make a five, we have 

to put the numbers two or three. That doesn’t work. Or one or four. Four we 

have already. That doesn’t work. 

Lotta Because then you have to use a number twice. 

Lenny And here we have to put the seven [taps F1], but that doesn’t work because 

then we have to take four and one, but we already have a four, that doesn’t 

work at all. 

Lotta Yes, it only works if we add a five [notes 5 in F2] and a one [notes 1 in F8], 

then we also have nine.  

Lenny And then everything else doesn’t work.  
Lotta But here you can put a six [taps F1], then we have nine, but you can’t use a 

zero. Because if you put a six here [taps F1], a three there [taps F5], and a 

zero there [taps F9], it makes nine. 

Interv. And why are there no more? 

Lotta Because you can’t use eleven and three, then it’s already higher. 

Lenny Wait, maybe like this, seven [writes 7 in F1] and a zero [writes 0 in F7] now 

that’s nine [points to the left column] and then six [writes 6 in F9]. 

 

Lotta But seven plus three [taps 7 and 3 in succession] is already ten. 

Lenny Ohh [thinks for 5 sec.] Yes. That doesn’t work. There is not a single magic 

square with the three. 

Lotta Uh. You can’t use a number above nine, because then the results are higher.  
Interv. Mhm [confirming], and what’s the problem with that? 

Lenny We have nine cells. 

Lotta But you can’t use nine because nine plus three is twelve, you can’t use eight 

either, that’s eleven. 

                                                

1 For a better understanding of the transcript, the cells of the MS are numbered consecutively.  



  

Lenny Uh, you can’t use nine [taps on empty F3], eight [taps on F5], seven [taps 

on empty F3], six [taps on F5]. 

Lotta But you can use the six. 

Lenny We can yes. We can use only six, five numbers because the three is already 

there [taps the mean number in F5]. But we still have eight cells to fill 

[circles finger counterclockwise over the outer 8 cells]. 

In the further process of interaction Lotta and Lenny try to find a MS with the mean number 3 and 

the magic number 9 (sign). To find the missing numbers in the cells of the MS, both learners use the 

insight that the sum in the rows, columns, and diagonals has to be “9” (reference context). By first 

entering the numbers 2 and 4 in the middle row of the MS and trying out a possible solution together, 

Lenny already develops the assumption that the MS cannot be solved. It seems that Lotta and Lenny 

are looking at different relationships in the MS: Lotta tries to construct single rows, columns, and 

diagonals with the sum 9 without noting the overall structure of the MS. Whereas Lenny’s statements 

suggest that he is looking at those relations between cells of the different rows, columns, and 

diagonals on the overall structure of the MS. Although the approaches of the children partly suggest 

different concepts of the MS, both children do not work separately from each other, but continuously 

take up ideas of the other and refer to each other. For example, Lotta explains with reference to 

Lenny’s statements that no numbers can be used twice. In the course of the further interaction, both 

jointly develop various reasons why the MS cannot be solved with the mean number 3. In this context, 

they state, (1) that numbers would have to be used twice to solve it, (2) that the MS consists of nine 

cells, but that the number 9 cannot be used in a cell because the sum of the mean number, and 9 would 

be greater than the magic number 9 as well as (3) that only five or six numbers can be used to create 

the magic number, but that eight cells have to be filled. It is possible that the children’s different 

interpretations also reflect the different perspectives and insights from the previous work on different 

levels in Sequence 2. That scene shows that both learners can participate in the communication and 

cooperate although they bring different discoveries. They use them for argumentation in a fruitful 

way for both learners. This can be seen as another indication, that the concept of parallelization opens 

up rich possibilities for social participation and fruitful cooperation. 

Lenny uses insights from the collaborative working process to construct solutions in an 

extended number range. 

Lenny I’ll try other magic squares and see if I can find more reasons. 

[writes in the empty MS] two point five, two (..) three point five, one 

[notes the numbers], maybe that works but only with decimals. 

[15 sec. silence] two point three [notes 2.3 in F7] and there has to be 

three (.) three point seven, three point seven [notes 3.7 in F3]. Yes.  

 

Lenny then explains that he wants to check whether there are other reasons or solutions for this task. 

Again, finding a MS with the mean number 3 and the magic number 9 represents the sign, that has to 

be interpreted. To find the missing numbers in the cells of the MS, Lenny refers to the common 

insights (e.g. sum in the rows, columns, and diagonals equals 9) (reference context). Against the 

background that Lenny and Lotta have previously realized together that the number of digits (0 to 6) 

are insufficient to fill all cells of the MS, Lenny now develops a new idea. He puts different decimals 

into the MS and adds them up. At this point, Lenny fundamentally transcends his previous conceptual 

interpretations by going beyond the previous number range of natural numbers and developing 



  

conceptual interpretations in the context of rational numbers (concept). That can lead to the 

assumption, that MS (as a common subject in an inclusive learning environment) can help to develop 

mathematical potential, too. In addition to the target-differentiated approaches in Sequence 2, 

children can make a variety of challenging discoveries that go beyond the usual number range. 

Conclusion 

The analysis on the basis of the epistemological triangle makes it possible to describe how children’s 

individual interpretations can be characterized in processes of communication and cooperation. The 

following initial findings emerge from the data analysis: It seems, that the special setting of the 

learning environment can open up a well-founded accessibility for children, potentially caused by the 

combination of parallelization and naturally differentiating learning tasks. There are indications that 

learners generate complementary insights at different levels in Sequence 2, which can create a fruitful 

basis for processes of mathematical negotiation and participation in the third sequence. The 

discussion with a partner seems to be productive in generating interpretations in order to adopt new 

perspectives (Gersten et al., 2009; Stacey & Gooding, 1998). The example presented in the analysis 

shows, that Lotta gains insights into a more overall structural view of the MS by cooperating with 

Lenny. Although Lotta worked at the less complex level A in Sequence 2, she also introduces 

discoveries about the relation between mean and magic numbers into the cooperation, from which 

Lenny benefits. It can be assumed, that on this basis, the children succeed in developing joint solution 

ideas and justifications, and therefore everyone has the possibility to participate (Krähenmann et al., 

2019). Beyond this, the mathematically rich learning environment and the process of cooperation 

apparently enable children with mathematical potential as well to benefit not only socially but also in 

developing their individual mathematical potential (Leikin, 2018). Rather, the MS in Sequence 3 (that 

cannot be solved in the number range of natural numbers) also opens up challenging new 

mathematical explorations to develop interpretations in other number ranges. In general, such a 

learning environment cannot automatically guarantee cooperation between both children; there has 

to be always a certain degree of willingness to cooperate. Nevertheless, the first data analysis suggests 

that it is precisely the combination of parallelization and naturally differentiated learning that opens 

up a well-founded accessibility to the subject of learning for all learners and enables rich insights, 

which are needed to participate in the processes of negotiation in the subsequent sequence. In which 

way these initial findings can be generalized, has to be investigated in further studies. 
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Moser Opitz, E., Grob, U., Wittich, C., Häsel-Weide, U., & Nührenbörger, M. (2018). Fostering the 

computation competence of low achievers through cooperative learning in inclusive classrooms: 

a longitudinal study. Learning Disabilities: A Contemporary Journal, 16(1), 19–35.  

Mullis, I., Martin, M., Foy, P., Kelly, D., & Fishbein, B. (2020). TIMSS 2019 International Results 

in Mathematics and Science. TIMSS & PIRLS International Study Center, Lynch School of 

Education and Human Development, Boston College and International Association for the 

Evaluation of Educational Achievement. 

Scherer, P., & Krauthausen, G. (2010). Natural Differentiation in Mathematics – the NaDiMa project. 

Panama-Post, 29(3), 14–26. 

Stacey, K., & Gooding, A. (1998). Communication and Learning in Small-Group Discussion. In H. 

Steinbring, M. G. Bartolini Bussi, & A. Sierpinska (Eds.), Language and Communication in the 

Mathematics Classroom (pp. 191–206). National Council of Teachers of Mathematics. 

Steinbring, H. (2009). The Construction of New Mathematical Knowledge in Classroom Interaction 

– An Epistemological Perspective. Springer. 

United Nations (2006). Convention on the Rights of Persons with Disabilities. United Nations.  

Wieczerkowski, W., Cropley, A. J., & Prado, T. M. (2000). Nurturing Talents/Gifts in Mathematics. 

In K. A. Heller, F. J. Mönks, R. Subotnik, & R. J. Sternberg (Eds.), International Handbook of 

Giftedness and Talent, 2nd Edition (pp. 413–425). Elsevier. 

Wocken, H. (1998). Gemeinsame Lernsituationen – Eine Skizze zur Theorie des gemeinsamen 

Unterrichts [Shared learning situations - An outline of the theory of collaborative teaching]. In A. 

Hildeschmidt (Ed.), Integrationspädagogik (pp. 37–52). Juventa. 

https://doi.org/10.3102/0034654309334431

	Cooperation processes in inclusive learning settings
	with a special focus on mathematical potential
	Inclusion
	Promotion of mathematical potential
	Cooperative learning settings
	Methods
	First results
	Despite different conceptual interpretations, cooperation emerges
	Lenny uses insights from the collaborative working process to construct solutions in an extended number range.

	Conclusion
	References


