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Introducing moldable tasks in OpenMP
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Abstract. This paper introduces a new approach to handle implicit
parallelism in library functions. If the library already utilizes a third-
party programming model like OpenMP, it may run in parallel. Other-
wise, if the library remains sequential, OpenMP directives in client code
cannot be used for direct parallelization. To express implicit parallelism
and, in the meanwhile, dynamically adjust the parallel degree of a task
when its starts, we propose to use moldable tasks. We handle this by
introducing a new construct called taskmoldable that generates mul-
tiples tasks from a single function call and an iteration space. For the
Lapack Cholesky factorization algorithm, our taskmoldable directive
allows simple code annotation to express parallelism between tiles and
improves programmability. Performance results on a beamforming appli-
cation indicates that our moldable implementation is slightly faster by
5% in mean, than a parallel execution achieved with Intel MKL.

Keywords: Moldable task · OpenMP Task · Task Dependency

1 Introduction

The task programming model promotes seamless collaboration between appli-
cation programmers and library developers, ensuring functional composition re-
gardless of their respective choices during development. A work stealing sched-
uler from Cilk [6] has undergone theoretical analysis to provide guarantees for
expected parallel time and space. A provable OpenMP-3.0 task scheduler should
inherit these same guarantees. Furthermore, task models with dependencies have
been subject to analysis within the same framework [14,30], allowing for the ap-
plication of similar theoretical results to the OpenMP-4.0 dependent task model.

Although theoretical results have provided satisfactory findings, they are
limited to a rigid task model that lacks consideration for the physical paral-
lelism of the target machine during task creation. However, task management,
including creation and scheduling, incurs overhead that significantly affects ap-
plication performance. To mitigate this, researchers have proposed solutions
such as lightweight task implementations (e.g., Cilk [6] for independent tasks,
Kaapi [15,7]. for data flow dependencies), task throttling [1], high-performance
work queue data structures for scalability [3,18], and caching task graph con-
struction for multiple iterations [15,33].
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Parallel programs typically involve more arithmetic operations and memory
accesses compared to their sequential counterparts. Although these extra over-
heads don’t fundamentally alter the asymptotic number of operations, they do
reduce practical efficiency. To mitigate these additional operations, it is crucial
to align the parallelism level of the application with the hardware’s degree of
parallelism. It is important to note that the aforementioned solutions do not
address these supplementary costs.

OpenMP efficiently adapts application parallelism to hardware through work-
sharing constructs. Parallel worksharing loops are automatically distributed among
the threads in the current parallel region, ensuring balanced iteration space. The
taskloop construct generates the right number of tasks based on the parallel re-
gion’s size, limiting arithmetic overheads.

This paper proposes a new task generating construct for expressing hidden
implicit parallelism in library functions. It allows to define moldable tasks, which
can adapt their parallel degree to available resources, based on established the-
oretical scheduling concepts [29,20].

The following section motivates our proposal, focusing on concrete case stud-
ies. Section 3 provides detailed information about the taskmoldable directive
and its key clauses. We then demonstrate the usage of the new directive in a clas-
sical Cholesky factorization and a beamforming application [16,28], concluding
the presentation.

2 Motivation
A recently proposed linear algebra API [10] defined batched API to process a
set of independent linear algebra subroutine calls on small matrices, with "the
aim of providing more efficient, but portable, implementations of algorithms on
high-performance manycore architectures [10]." They were present in commonly
used APIs such as Nvidia cuBLAS, Magma [17] or Intel MKL.

A call to perform batch_count matrix multiplications on a set of input
data is3:

1 gemm_batch(m,n,k,A,B,C,bc);

where each parameter is an array of size bc, the batch count, of the required
parameter to call the BLAS gemm kernel, i.e. the call is equivalent to:

1 for (int i=0; i<bc; ++i)
2 gemm(m[i],n[i],k[i],A[i],B[i],C[i]);

The gemm_batch operation performs bc independent calls to the gemm
BLAS subroutine where each gemm works with different parameters and data
provided in the effective array parameters. Because the for loop resides inside
the code body of the BLAS batch function it was not accessible to parallelize
calls to gemm_batch using any OpenMP worksharing directives or the taskloop
3 For simplicity, we omit some parameters such as the operations on matrices (trans-
position...), alpha and beta assumed to be 1, the leading dimensions or the info error
parameter which are required to pass arguments to each underlying gemm kernel.
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generating task construct. Our proposal aims at providing an OpenMP construct
to expose the implicit loop, and its iterations, as a task generating construct.

The application developer knows that the gemm_batch is equivalent to exe-
cuting the above implicit iteration loop. Thus the iterations may be partitioned
in a disjoint set of N intervals Ik = [bk, ek[ such that ∪N−1

k=0 Ik = [0, bc− 1], such
that the batched gemm calls could be rewritten to:

1 for (int i=0; i<N; ++i)
2 gemm_batch(m+b_k[i],n+b_k[i],k+b_k[i],A+b_k[i],B+b_k[i],
3 C+b_k[i], e_k[i]-b_k[i]);

Therefore, the gemm_batch operation can be viewed as a list homomor-
phism [5]. Given a list l, a concatenation operator #, and a function f assumed
to be a list homomorphism, we can transform the call f(l1#l2) into calls to
f(l1)⊕ f(l2), where ⊕ is a reduction operator. In our case, the function f rep-
resents the structured block outlined following the OpenMP directive.

Overview of moldable task. The two main issues are defining the implicit
loop iteration space (e.g. bc) and passing the effective parameters to the sub-
calls. We propose annotating the code with a new directive taskmoldable used
to inform that the following structured block has an implicit loop to partition.
The size of the iteration is specified by the clause batch_count and the trans-
formation of effective parameters to the parameters of the subsequences calls is
specified by the clause access.

1 #pragma omp taskmoldable access(linear: m,n,k,A,B,C) \
2 batch_count(bc)
3 gemm_batch(m,n,k,A,B,C,bc);

In this example, the transformation is of kind linear, that is a default
mapping function, that applies MX : i → X + i to any variable X listed in
the clause access to pass the parameter on the partition i. We called such
transformation a mapping function. It could be defined by the user.

syrk: a list homomorphism with reduction. The proposed clause can be
applied to list homomorphisms that involve reduction. Figure 1 illustrates a com-
mon call to the syrk subroutine in the left-looking Cholesky factorization [25],
as seen in the Lapack netlib potrf. syrk computes T = T − A × AT with T
symmetric. The moldable task has dependence types in on A and inout on T.
The computation T = T −A×AT is equal to T = T −

∑
i Ai ×AT

i where Ai is
the i-th tile of size nb× nb (except the last tile) as depicted in Fig. 1.

The moldable task in Fig. 1 expresses the fact that the call to syrk is a list
homomorphism with respect to matrix Ai starting at position A+i*nb from A:
This is an access strided{nb} with our proposal. Matrix T is fully accessed
by all calls to syrk. It was possible to keep the original inout dependence-
type, but to keep the possibility to reorder the accumulation depending on the
predecessor tasks releasing the matrix bloc Ai the clause specifies that the de-
pendence type on T expressed by generated task is mutexinoutset. Thus by
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 A A Ak T
1 #pragma omp taskmoldable access(strided{nb}: A) \
2 depend(in: A) depend(inout: T) \
3 access( full[mutexinoutset]: T)\
4 batch_count(min(1,n/nb))
5 dsyrk(nb,n,-1,A,lda,1,T,ldT);

Fig. 1: Left: SYRK T = T − A × AT in left looking version of the Cholesky
factorization. Right: annotation with taskmoldable.

accumulating the sequence of syrk calls on each Ai to the matrice T , we obtain
the result.

The code that generates the explicit tasks from Fig. 1 is equivalent to the
following, where bc is the batch count generated from the clause batch_count.

1 for (int i=0; i< bc; ++i)
2 #pragma omp task depend(in: A+i*nb) depend(mutexinoutset: T)
3 dsyrk(nb,n,-1,A+i*nb,lda,1,T,ldT);

The taskmoldable directive enables the expression of internal parallelism
within library functions, including batched or non-BLAS subroutines. By re-
ducing programming efforts, code annotations can result in highly parallel task-
based programs. The next section focuses on presenting the taskmoldable
directive and its associated clauses, which facilitates the extraction of more par-
allelism. Section 4 provides detailed accounts of three comprehensive case stud-
ies: the application of taskmoldable to matrix-matrix multiplication (gemm),
the sequential Lapack left-looking Cholesky factorization [25] and a beamforming
application [16,28].

3 A new directive: taskmoldable

As the taskloop directive [31,22], the taskmoldable directive is a task generating
construct. It enhances the functionality of the taskloop directive by allowing the
capturing of (implicit) parallel loops within any structured block through user
annotations and parameter passing rules to generated tasks.

3.1 General structure

The general structure of the directive is the following:
1 #pragma omp taskmoldable batch_count(<counter-list>) \
2 access( <data-mapping> [{args}] [<dependence-type>] : \
3 <list-item> )\
4 depend( <dependence-type> : <list-item> )\
5 <data-sharing attribute>\
6 num_tasks( <integer-list> ) | grainsize( grain-size-list)
7 {<structured block>}

When a thread encounters a taskmoldable construct, it creates an explicit
task that partitions the implicit iterations defined by batch_count into chunks,
each of which is assigned to an explicit task for parallel execution. Each chunk
has an identifier from 0 to the maximal number of chunks - 1. The size of the
chunk is computed before creating the explicit task. The data environment of
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each generated task is created according to the data-sharing attribute clauses
on the taskmoldable construct, per-data environment ICVs.

The clause access is used to translate the variables to be passed to each
explicit task. The effect is as if each variable in the list-item appearing in
the structured block is rewritten by applying the data mapping function on
the chunk id. The data-mapping is either a predefined identifier: linear,
strided{<integer expr>} or full; or a user-defined identifier. Section 3.3
presents the data mapping function. Optionally, the clause access can specify
the dependence-type of the generated tasks expressed on the variable.

Clause batch_count accepts a list of integers that are associated to an
implicit nested iteration loops. For instance, batch_count(C0, C1, ..., Ck−1)
is associated with the implicit nested loops generating the tasks as illustrated
in the following code. As for the taskloop directive, clauses num_tasks and
grainsize limit the number of tasks generated at runtime. For taskmoldable
directive, their parameters are a list of values applied on each loop of the nest.

3.2 Compilation

The compiler rewrites the taskmoldable directive to a code equivalent to the
following skeleton:

1 #pragma omp task depend( weak-dependency-type: <list-item> )
2 {
3 _kmpc_omp_taskmoldable_size( C0, .., Ck−1,
4 num_tasks, grainsize, S0, .., Sk−1 );
5 for (int i0=0; i0<C0; i0+ = S0)
6 for (int i1=0; i1<C1;i1+ = S1)
7 ...
8 for (int ik−1=0; ik−1<Ck−1; ik−1+ = Sk−1)
9 #pragma omp task depend( <inherited> )
10 {<structured block. Variables of the ’access’ list-item
11 have been replaced by the mapping function called with
12 (i0, i1, ..., ik−1, S0, S1, ..., Sk−1) as effective parameters>}
13 }

The moldable task is created with dependencies using the weak variant [24,14]
of the dependency type used in the depend clauses: e.g. a depend( inout:
A ) in the taskmoldable definition is translated to depend(weak-inout:
A). The objective is to postpone real dependencies on the child tasks (because
those are making real memory accesses and computation) rather than to the
moldable task which only creates tasks.

Then, the task calls the runtime function _kmpc_omp_taskmoldable_size
to compute the size of the tasks in each dimension S0, S1 ..., Sk−1 from the sizes
of the batch_count clause (dimension C0, C1, ..., Ck−1) and the values passed
in clause num_tasks or grainsize.

3.3 Data mapping functions

A data mapping function is associated with an item using the access clause of
the taskmoldable directive:
access( mapping_id [{<args>}] [<dependence-type>]: list-item )
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The optional dependence-type argument is presented in the next section
dealing with the expression of dependencies on generated tasks. The runtime de-
fines the subset of the initial workload for each task. It provides a tuple start
= (i0,i1,...,ik−1) that defines the beginning of the sub-iteration space it should
process. The access clauses provide information to get the right data for each
task. To do so the user provides a function called mapping_id where the decla-
ration is defined as follows:

F(item,batch_count,start,args...)

which is used to replace items from item-list each time it appear in the
structured block.

We propose three basic mappings, strided{args} that take as argument a
stride on each dimension, linear that assumes the data are linearly spaced and
full that assume all task work on the same data. They are defined as follows:

strided(A,bc,start,strides) -> A +
∑|bc|−1

u=0 iu * strides[u]

linear(A,bc,start) -> A +
∑|bc|−1

u=0 iu *
∏u−1

v=0 bc[v]
full(A,bc,start) -> A

Items from list-item are expected to be pointers of types that allow
pointer arithmetic.

An implementation of the linear mapping_id could be the following:
template<T> T* linear(T* A, int* bc, int* starts, int dim_count)
{

int pos = 0; int size = 1;
for(int u = 0; u < dim_count; u++)
{

pos += starts[u];
size *= bc[u]

}
return A+pos;

}

The runtime tries to decompose the computation into N tasks where N is
either provided by the clause num_tasks, or by default, computed automati-
cally: The dimensions of the split are even and computed by the runtime func-
tion _kmpc_omp_taskmoldable_size. Preliminary experimental results re-
ported in section 4.3 show that our proposition of compilation of moldable tasks
could be applied to heterogeneous architectures.

3.4 Data dependencies
Task generating constructs often require implicit synchronization to ensure the
correctness of parallel executions. However, relaxing these synchronization re-
quirements can enable better utilization of hardware resources. Sharing this goal,
a recent proposal to enhance OpenMP, as described in [22], suggests extending
the depend clause to include the taskloop construct.
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The same issue appears with the taskmoldable directive. The main differ-
ence is that iteration loops are hidden from the annotation thus the expression of
dependencies on generated task is different. Thanks to the data mapping func-
tion we are able to replace the item and the mapped item through the function,
as defined in the above section. In that way, the generated task inherits the
dependencies from the depend clause in the taskmoldable directive but on
items rewritten by the data mapping function.

However, the programmer may optionally refine the way generated tasks
declare dependencies through the access clause. This is illustrated in Fig. 1
where the generated tasks declare mutexinoutset dependencies on item T
while the moldable task has declared dependency type inout on it. The interest
here is to allows commutativity on the reduction operated by syrk in case of
faster resolution of dependencies on the Ai.

We assume the availability of the weak-dependencies [24] to postpone real
dependencies on the moldable task to the generated tasks. Without them, it
is possible to inline the execution of the moldable task creation of the task
generating tasks: at runtime, the taskmoldable directive is translated to the
code that directly generates the explicit tasks in place of creating the task (that
will generate the explicit tasks).

3.5 Implementation
We have created a customized runtime specifically designed to handle moldable
tasks, allowing us to validate a prototype before integrating it into the LLVM
OpenMP runtime. Thanks to our previous development work in the LLVM run-
time, we have taken care to ensure an easier merge process.

The task entry point follows the code outlined in section 3.2. To create a
moldable task, we utilize the runtime function __kmpc_omp_task_moldable,
which extends __kmpc_omp_task_withdeps to include task dependencies
and additional mapping functions. These are stored in supplementary fields of
the task data structure kmp_task_t.

We have also incorporated support for partitioning moldable tasks between
CPUs and GPUs. If the user provides a GPU version of the list homomorphism
function, the runtime divides the implicit iteration between CPUs and GPUs.
Initial experiments regarding this feature are reported in section 4.3. We briefly
discuss how to integrate moldable tasks with targets in the following perspective.

The runtime should select a granularity for each moldable task, our im-
plementation relies on previous executions of similar functions to compute an
expected performance for each worker, then it creates one task for each worker
that handles a subset of the moldable task proportional to its performance. Tasks
running on GPU targets may be further split by the runtime to fit the memory
constraints of the co-processor.

4 Evaluation
The two next sections illustrate our taskmoldable directive with two decom-
positions of the gemm matrix product, and how to produce a highly parallel
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(a) Row/Column decomposition (b) Block decomposition

Fig. 2: GEMM block decomposition.

Cholesky factorization from the sequential code of the Lapack netlib library.
Then we present a beamforming application with performance evaluation.

4.1 Gemm decomposition

The strided{<optional-args>} mapping function is well-suited when all
data are stored in an array by spacing each consecutive partition with a constant
stride. As an example, we will show how to generate two classical decomposition
of gemm with the taskmoldable directive:

1 #pragma omp taskmoldable batch_count(m,n)\
2 access(strided{lda,0}:A)\
3 access(strided{0,1}:B)\
4 access(strided{ldc,1}:C)\
5 depend(inout:C) depend(in:A,B)
6 gemm( m, n, k, A, B, C );

The result of this decomposition, in case of even split, is presented as figure
2a. It can generate up to m × n independent tasks. In this case, the block de-
composition only works with two dimensions thus the input matrices are split
by row or by column but not in blocks. To allows full block decomposition we
should handle dependencies between tasks and work on the third dimension of
the gemm. The following code result in decomposition 2b. We describe depen-
dency management in 3.4.

1 #pragma omp taskmoldable batch_count(m,n,k)\
2 access(strided{lda,0,1}:A)\
3 access(strided{0,1,ldb}:B)\
4 access(strided{ldc,1,0}[mutexinoutset]:C)\
5 depend(inout:C) depend(in:A,B)
6 gemm( m, n, k, A, B, C );

4.2 Lapack Cholesky factorization
The Cholesky factorization algorithm is used in signal processing algorithms
such as adaptive beamforming [13], it is also commonly studied in dependency
graph generation. We worked on the block left-looking version of the algorithm
which is implemented in the subroutine portf in Lapack4, the associated code
is sketched below5:
4 https://netlib.org/lapack/
5 Code is rewritten in C to follow the guideline of the paper
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Fig. 3: Left looking Cholesky task graph with N/NB = 4

1 cholesky( N, NB, A, lda ):
2 for( j = 0; j < N; j += NB )
3 {
4 #pragma omp task depend(in:A[0][j]) depend(inout:A[j][j])
5 syrk( NB, j, -1, A[0][j], lda, 1 A[j][j], lda )
6 #pragma omp task depend(inout:A[j][j])
7 potrf( NB, A[j][j], lda )
8 if( j + NB < N )
9 {

10 #pragma omp task depend(in:A[0][j],A[0][j+NB])\
11 depend(inout:A[j][j+NB])
12 gemm( NB, N - j - NB, j, -1, A[0][j], lda, A[0][j+NB],
13 lda, 1, A[j][j+NB], lda )
14 #pragma omp task depend(in:A[j][j])\
15 depend(inout:A[j][j+NB])
16 trsm( NB, N - j - NB, 1, A[j][j], lda, A[j][j+NB], lda )
17 }
18 }

At each iteration, it updates a group of NB columns with their definitive
values. A graph of tasks generated with this code is provided as Figure 3a.
Whereas the code is elegant and relatively simple, it does not express a lot of
parallelism.

By seeing the calls to syrk, gemm and trsm as moldable tasks and adapting
the granularity of the split we can achieve the same level of parallelism as a
right-looking implementation, the dependency graph is provided as Figure 3b.
Furthermore, if we make the granularity finer, as presented in section 4.1, more
parallelism can be generated on gemm and trsm function calls. The code is
provided below:
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1 cholesky( N, NB, A, lda ):
2 for( j = 0; j < N; j += NB )
3 {
4 #pragma omp taskmoldable batch_count(j) depend(in:A[0][j])
5 depend(inout:A[j][j]) access(strided{1}:A[0][j]) \
6 access(full[mutexinoutset]:A[j][j])
7 syrk( NB, j, -1, A[0][j], lda, 1 A[j][j], lda )
8 #pragma omp task depend( inout: A[j][j] )
9 potrf( NB, A[j][j], lda )

10
11 if( j + NB < N )
12 {
13 #pragma omp taskmoldable batch_count((NB,N-j-NB,j))\
14 depend(in:A,B) depend(inout:C) \
15 access(strided{0,1,lda}:A[0][j])\
16 access(strided{0,1,lda}:A[0][j+NB])\
17 access(strided{lda,1,0}[mutexinoutset]:A[j][j+NB])
18 gemm( NB, N-j-NB, j, -1, A[0][j], lda, A[0][j+NB], lda,
19 1, A[j][j+NB], lda )
20 #pragma omp taskmoldable batch_count(N-j-NB)\
21 depend(in:A[j][j]) depend(inout:A[j][j+NB])\
22 access(strided{1}:A[j][j+NB])
23 trsm( NB, N - j - NB, 1, A[j][j], lda, A[j][j+NB], lda )
24 }
25 }

The key point here is that original code can be annotated with OpenMP
directives6 for parallelizing compared to restructuring algorithms to exploit par-
allelism between tiles [9]. This was possible thanks to advanced features such as
dependencies between arrays [8,23].

4.3 Case of study: beamforming

We implement a beamforming algorithm design to work on rectangular arrays
of sensors using only moldable tasks, the algorithm is composed of three main
parts. First sensor data are converted from the temporal domain to the frequency
domain with FFT1D. Then we apply dephasing coefficients to each input to
compute the beams, thanks to the shape of the array we can decompose this step
in two consecutive matrix multiplications. The final step is to convert complex
values to energy by computing the absolute value of each element. Due to data
pattern restrictions in the used libraries, we insert a transposition step between
the FFT and the matrices multiplications. The pseudo-code is provided below,
the values of parameters stride_x are user-defined, constant and depend on
the in-memory representation of each array.

1 beamforming():
2 #pragma omp taskmoldable batch_count(fft_count) \
3 depend(in:Sensor_t) depend(out:Sensor_f)\
4 access(strided{fft_stize}:Sensor_t,Sensor_f)
5 fft1DExecBatch( fft_size, Sensor_t, Sensor_f, fft_count )
6
7 #pragma omp taskmoldable batch_count( fft_count )\
8 depend(in:Sensor_f) depend(out:Sensor_f2)\
9 access(strided{fft_size}:Sensor_f)\
10 access(strided{1}:Sensor_f2)
11 transpose( Sensor_f, Sensor_f2 )

6 Here we have presented C pragma directive - we also assume Fortran compatible
directive
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12
13 #pragma omp taskmoldable batch_count(gemm_0_count)\
14 depend(in:Sensor_f2,Dephase_x) depend(out:Pseudo_beam)\
15 access(strided{stride_S},Sensor_f2)\
16 access(strided{stride_X},Dephase_x)\
17 access(strided{stride_P},Pseudo_beam)
18 gemmStrideBatch( Sensor_f2, Dephase_x, Pseudo_beam, gemm_0_count )
19
20 #pragma omp taskmoldable batch_count(gemm_1_count)\
21 depend(in:Pseudo_beam,Dephase_y) depend(Beam)\
22 access(strided{stride_P}:Pseudo_beam)\
23 access(strided{stride_Y}:Dephase_y)\
24 access(strided{stride_B}:Beam)
25 gemmStrideBatch( Pseudo_beam, Dephase_y, Beam, gemm_1_count )
26
27 #pragma omp taskmoldable batch_count(abs_count)\
28 depend(in:Beam) depend(out:Energy)\
29 access(strided{1}:Beam,Energy)
30 abs( Beam, Energy, abs_count )

This code was executed on our custom runtime, it ran on a workstation with
Intel Xeon 8253, 16 cores processor. It ran about 1M FFT of size 4K, 4K square
GEMM of size 1024 and 256M abs values at each iteration. The implementation
uses Intel MKL sequential on Intel CPU and OpenBlas on AMD ones, cuBlas
and cuFFT are used for Nvidia GPUs.

Overhead of task managements : On this beamforming benchmark, at each it-
eration of the time step loop, the code generates 40 taskmoldable constructs
decomposed into 4062 tasks. The number of dependencies is 103086 between all
the tasks. We measure a mean creation cost of 360µs per moldable task; 4µs
per task; and 140ns per dependency. Our moldable task runtime does not fit
well with the analysis in [27] because the task granularity is not a free execution
parameter: It is fixed by the runtime according to available resources and their
performances. When more resources are used for the execution, the moldable
tasks are decomposed into more finer tasks.

Moreover, we compare the performances of the moldable implementation
using MKL sequential and a classical one using MKL parallel library. We find
out that the moldable implementation is 5% faster, in mean, than the classical
one, thus the overhead implied by the moldability and our runtime is negligible
for this workload. Mean execution times over 100 iterations for different core
count are provided in table 1.

#core: 1 2 4 8 12 16
MKL parallel: (s) 15.9 8.7 4.4 2.3 1.7 1.3

Moldable (s): 15.3 7.8 4.0 2.0 1.7 1.2
Delta (%): 4 10 9 13 0 8

Table 1: Beamforming execution times

By adding two different RTX GPUs to the workstation, we show that the
same code can scale on heterogeneous platforms, it implies to allow a task to
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execute different code for each target and to handle memory with the runtime.
Results of executions speed by adding GPUs are provided in Figure 4 with results
on a DGXA100 server. On the RTX platform, CPU-only execution ran in 28s,
it was 14.7 times faster than sequential execution and 2.89 times slower than
heterogeneous execution. On the DGXA100, CPU-only execution ran in 9s, we
reach a speedup of 4.5 by adding GPUs.

(a) DGX A100 (b) RTX workstation

Fig. 4: Beam-forming speedups

5 Related work
Tasks based runtimes are used to schedule tasks on the fly. There are multiple
runtimes available as OpenMP [12], StarPU [4], OMPSS [11], Kaapi [15] or
PaRSEC [19]. Those runtimes aim to schedule dependent tasks with a lack of
knowledge about task computational cost and without knowing tasks that will
be scheduled in the future. None of them offer a moldable task concept that
allows the expression of functions as a set of tasks. This criterion is absent
in the classification of [32]. In [2] the authors theoretically analyze the upper
bound on performance using an assumption that tasks are moldable without
support in StarPU used by their application. Several moldable task schedulers
are proposed and analyzed in scheduling literature [29,20] with ad hoc simulation
or experimentation without any runtime support of moldable tasks.

The OpenMP task concept exists and had been extended to provide task
creation from loop structures using taskloop [31], moreover, recent contribu-
tions open the path to data dependencies between tasks from different taskloops
without the need for a global synchronization [22]. Furthermore, [21] provides
a structure that allows OpenMP tasks to run inner loops as worksharing con-
structs, and [26] extensions allow more control over the parallelism generated
inside a task that calls library code that uses openMP tasks. OpenMP does not
provide a syntax to exploit the implicit parallel structure of library functions.

taskmoldable is a task generating directive. At runtime, it creates an
explicit task that postpones real dependencies to its child tasks. Athapascan-
1 runtime [14] allows this passing rule with the postponed access mode. Similar
features are recently proposed under the term weak-dependencies in OMPSS [24].
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With the absence of weak-dependencies it is always possible to directly create
child tasks with an anticipated decision to decompose the moldable task.

6 Conclusion and perspectives

The taskmoldable directive provides a means for users to leverage hidden
parallelism in a function without sacrificing the performance of library-specific
implementations or requiring an extensive restructuring of the function’s inter-
nal design. Our evaluation and examples demonstrate how this directive en-
ables the extraction of parallelism from a sequential Cholesky implementation.
Furthermore, we achieve minimal overhead when handling moldable tasks in
domain-specific workloads like beamforming, allowing us to compete with an
MKL implementation.

Our ongoing research aims to expand the scope of our preliminary experi-
mental results, encompassing CPUs and GPUs. This extension will enable users
to annotate code, constructing performance models that guide the sizing of par-
titions. Additionally, we are exploring the integration of target clauses into the
directive, facilitating heterogeneous computations based on moldable tasks.

Another future direction involves exploring how to express the moldability of
more complex moldable code structures beyond nested loops. For instance, we
aim to enable the perception of the entire Cholesky factorization as a moldable
task.

Acknowledgements: Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed (see https://www.grid5000.fr), supported by a scien-
tific interest group hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations.
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