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Graphical Abstract

Summary
The resilience of an animal can be compared with the shock absorbers of a car, which buffer road bumpiness. 
Just as the quality of a shock absorber is measured by its ability to respond to road conditions, measuring animal 
resilience requires capturing the response to environmental challenges through time-series measurements. On-
farm precision livestock technologies offer valuable opportunities in this regard. Environmental disturbances 
can be diverse, and the relative importance of different underlying resilience mechanisms (depicted by K and 
C) can change; snow tires are useful in winter but not on sand. Understanding the mechanisms may enable 
us to construct more nuanced resilience phenotypes. To validate a new shock absorber, we need long-term 
customer feedback. Likewise, resilience indicators need to be validated against the cumulative consequences 
of resilience, such as functional longevity.

Highlights
•	 Resilience is an emergent property of multiple underlying mechanisms.
•	 Phenotyping resilience requires time-series measurements by on-farm precision technologies.
•	 New resilience proxies should be validated against the accumulated consequences of resilience.
•	 Unpacking the underlying mechanisms is essential to better manage potential antagonisms.
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Abstract: The capacity of animals to cope with environmental perturbations, hereafter called resilience, is an increasingly important trait. 
Resilience at the level of the animal is an emergent property of multiple underlying mechanisms (physiological, immunological, behav-
ioral). This means that there is no direct measure of resilience, no easy key traits. Resilience is a latent variable that may be inferred from 
multivariate measures. Further, the flexibility that resilience provides is evidenced in the rate of response to, and rate of recovery from, 
the environmental perturbation. Thus, it requires time-series measurements. The increasing availability of on-farm precision livestock 
technologies, which are capable of providing time-series measures of performance and of various physiological and health biomarkers, 
offer the opportunity to move toward large-scale phenotyping of resilience. There have been numerous studies putting forward methods 
to quantify resilience. These methods can be classified as being data driven or concept driven. However, new candidate resilience proxies 
need to be validated. This is tricky to do because there is no direct measure of resilience, no easy gold standard measure. Per definition, 
good resilience will benefit the animal. Thus, the accumulated consequences of resilience can be used to evaluate resilience proxies. 
All other things being equal, it is expected that good resilience will be associated with a longer functional longevity (longevity adjusted 
for production level), with more reproductive cycles, and with fewer disease events. Recent examples of this approach of evaluating 
resilience proxies against the accumulated consequences of resilience are discussed. They show clearly that operational resilience proxies 
that are heritable and have been validated against the consequences of good resilience can be derived from on-farm time-series data. With 
the aim of deriving more nuanced phenotypes, there are an increasing number of studies that have taken up the challenge of attempting 
to statistically combine the information coming from multiple time-series measures. These studies show how multivariate time-series 
statistics can be used to derive more nuanced resilience phenotypes that capture some of the underlying mechanisms of resilience. In 
conclusion, the recent studies reviewed here have shown that operational and heritable resilience proxies exist, that they can form the 
basis for selection for resilience, and that more nuanced phenotypes are attainable, which will allow selection for resilience to be tailored 
according to prevailing environmental challenge types.

The capacity of animals to cope with environmental perturba-
tions, hereafter called resilience, seems to be an increasingly 

important trait. It is a trait that is highly valued by farmers who 
in surveys refer to easy-care cows or anonymous cows (i.e., the 
animals that do not require attention or intervention; Spiegel et al., 
2021; Christiansen et al., 2022). The increasing frequency of en-
vironmental perturbations associated with climate change and the 
likelihood that ruminants will be increasingly deployed in marginal 
environments, or fed poorer quality feeds, strongly suggest that the 
value of animal resilience will only increase (Yatoo et al., 2012; 
Tixier-Boichard et al., 2015; IPCC, 2022). However, resilience is 
challenging to measure.

Numerous and varied definitions of resilience have been pro-
posed (Döring et al., 2015; Colditz and Hine, 2016; Scheffer et 
al., 2018; Meuwissen et al., 2019; Doeschl-Wilson et al., 2021; 
Friggens et al., 2022) but all agree that resilience at the level of the 
animal is an emergent property of multiple underlying mechanisms 
(physiological, immunological, behavioral) and their associated 
genetic determinism. This means that there is no direct measure 
of resilience, no easy key traits. Resilience is a latent variable that 

may be inferred from multivariate measures. Even though moder-
ate heritabilities for resilience-related traits have been found (e.g., 
Nayeri et al., 2017; Mucha et al., 2022), this also implies that the 
heritable component of resilience is spread across multiple genes. 
A further consideration is that the panel of underlying mechanisms 
(and thus physiological traits) will have differing relative impor-
tance depending upon the type of environmental challenge. It is 
relatively easy to envisage that the major underlying mechanisms 
solicited when responding to a disease challenge will not be the 
same as those needed for coping with a nutritional challenge (Lou-
vandini et al., 2006; Simpson et al., 2009; Doyle et al., 2011). Even 
without evoking such extremes, Tsartsianidou et al. (2021) found 
that resilience to cold weather (10°C) of animals that start produc-
ing milk in spring was under different genetic control compared 
with autumn and winter, exemplified by negative genetic correla-
tions (− 0.09 to − 0.27). Likewise, Sigdel et al. (2019) found that 
milk yield in thermoneutral versus thermo-stressing conditions are 
antagonistic traits. Findings like these also suggest that the option 
of simply selecting animals for performance in harsh or variable 
environments as a means to co-select resilience may not be the 
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most efficient way to make progress, especially in the context of 
genomic selection with its possibility to more precisely target un-
derlying mechanisms (Friggens et al., 2017). Furthermore, a key 
question for resilience selection strategies is when should they fo-
cus on resilience to specific types of environmental challenge, for 
example, selecting heat-tolerant dairy cows (Nguyen et al., 2016), 
and when should they focus on improving general resilience (i.e., 
harnessing those mechanisms that are common across challenge 
types)?

The second feature of resilience that makes it difficult to mea-
sure is that it requires time-series measurements. The flexibility 
that resilience provides is evidenced in the rate of response to, and 
rate of recovery from, the environmental perturbation (Lough et 
al., 2015; Sadoul et al., 2015; Poppe et al., 2020; Ben Abdelkrim 
et al., 2023). Figure 1 shows an example of the individual vari-
ability in the dynamic of response and recovery. These dynamic 
aspects of resilience can only be captured from time-series data, 
and only from animals that experience an environmental perturba-
tion. The elasticity of the system is only revealed when the system 
is “stretched.” Given the need for multivariate and time-series 
data, it seems at first sight that it will not be easy to phenotype 
resilience, at least at large scale. However, the increasing avail-
ability of on-farm precision livestock technologies that are capable 
of providing time-series measures of performance and of various 
physiological and health biomarkers offers the opportunity to 
move toward large-scale phenotyping of resilience. The remainder 
of this article discusses the approaches to measuring resilience and 
the challenges involved.

In recent years there have been numerous studies putting 
forward methods to quantify resilience. These methods can be 
classified as being data driven or concept driven, with inevitably 
some methods that sit in between these 2 classes. In general, all 
these methods seek to establish a baseline, unperturbed, time trend 

against which to quantify deviations from the baseline. The data-
driven methods make no a priori assumptions about the baseline, 
and derive it directly from the data by standard smoothing methods 
(moving medians, splines, and so on) usually applying a high de-
gree of stiffness to the smoothing and often giving lower weight 
to negative residuals in the fitting process (Codrea et al., 2011). 
The concept-driven methods assume an a priori functional form for 
the baseline, for example, a Woods curve for milk production data 
(Ben Abdelkrim et al., 2021) or a Gompertz function for growth 
data (Revilla et al., 2019) or intake (Nguyen-Ba et al., 2020). Then, 
deviations in the observed time-course relative to the baseline can 
be quantified to assess the impact of environmental perturbations. 
The concept-driven methods emerged partly as a way to deal 
with one of the shortcomings of the simpler data-driven methods, 
namely that when the baseline is solely derived from the data there 
is a tendency to underestimate longer-lasting deviations. Longer 
dips in the data inevitably drag the baseline down. However, these 
concept-driven methods impose a functional form (often a non-
linear function), which is assumed to apply to all animals in the 
data set, and is usually more costly to fit in terms of computing 
time. One interesting “in between” method class is the dynamic 
linear model, a particular case of so-called “state-space models.” 
These models can be described using 2 equations: an observation 
equation, relating observations and state variables, and a system 
equation, describing the changes of state variables over time (West 
and Harrison, 1997). These models allow an anticipated trajectory 
to be factored in. An example of a dynamic linear model being 
used to quantify resilience is Lenoir et al. (2022).

The approaches to characterizing the deviations in time-series 
data in terms of resilience mirror the above-described spectrum 
from data-driven to concept-driven methods. The deviations have 
been characterized by simply calculating the residual variance 
(Poppe et al., 2020) or using the turning points of spline functions 
to calculate amplitudes of response and time for recovery (Ben 
Abdelkrim et al., 2021). They have also been characterized assum-
ing a piecewise structure to the pre-, during, and post-perturbation 
time-series (Friggens et al., 2016) or even explicitly assuming that 
resilience can be modeled using the physics analogy of a damped 
spring (Sadoul et al., 2015). The recent review of Taghipoor et al. 
(2023) describes these different models in more detail.

There is another key issue for phenotyping resilience that ap-
plies, regardless of the method used to quantify the deviations 
in time-series data. What is the biological meaning of these de-
viations? Do they actually reflect resilience? In other words, new 
candidate resilience proxies need to be validated. This is tricky to 
do because there is no direct measure of resilience, no easy gold 
standard measure. Another approach is needed to validate resil-
ience proxies. The rationale for this starts by focusing on the con-
sequences of good or bad resilience as an emergent property. As 
described by Friggens et al. (2022), per definition, good resilience 
will benefit the animal. Thus, the accumulated consequences of re-
silience can be used to evaluate resilience proxies. All other things 
being equal, it is expected that good resilience will be associated 
with a longer functional longevity (longevity adjusted for produc-
tion level), with more reproductive cycles, and with fewer disease 
events (Adriaens et al., 2020; Rostellato et al., 2021; Lenoir et al., 
2023). The caveat “all other things being equal” is important as it 
is well established that phenotypes such as functional longevity are 
influenced by other factors than just resilience. Indeed, it has been 
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Figure 1. Shows an example (glucose in milk) of the individual variability in 
the dynamic of response to and recovery from a 2-d nutritional challenge 
(details in Ithurbide et al., 2023). Each line is an individual trace; an example 
of 1 animal is highlighted by the thick blue line. These dynamic aspects of 
resilience can only be captured from time-series data, and only from animals 
that experience an environmental perturbation; the elasticity of the system 
is only revealed when the system is “stretched.”
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shown that farm level management factors impinge considerably 
on functional longevity and thus interfere with the calculation of 
farm-level resilience rankings (Adriaens et al., 2020).

There are recent examples of this approach of evaluating resil-
ience proxies against the accumulated consequences of resilience. 
Poppe et al. (2020) used daily milk records to calculate the log vari-
ance of the residuals in milk yield after adjusting for the effect of 
the overall lactation curve, and proposed this as a resilience proxy. 
The data set used contained data from over 2,000 farms with more 
than 200,000 first-parity cows for which pedigree information was 
available. Accordingly, this study was able to show that there were 
negative genetic correlations between this simple resilience proxy 
and functional longevity. In other words, the greater the residual 
variance, the poorer was functional longevity. Lenoir et al. (2023) 
extended this approach by looking not at a single performance trait 
but rather at resource allocation. They calculated the proportion of 
energy intake being allocated to growth in 5,000 growing pigs, and 
calculated the log-squared residuals of resource allocation (relative 
to the linear trend in allocation with age; Figure 2). The resilience 
proxy was found to be heritable (h2 = 0.05). To test it against the 
accumulated consequences of resilience, Lenoir et al. (2023) calcu-
lated a robustness score that combined (lack of) mortality, vitality, 
and number of health events. They then showed that the proportion 
of animals with the high robustness score increased with increasing 
quartiles of the estimated breeding values for good resilience (i.e., 
smaller log-squared residuals). These 2 examples show clearly 
that operational resilience proxies, which are heritable and have 
been validated against the consequences of good resilience, can be 
derived from on-farm time-series data. The study of Lenoir et al. 
(2023), using the concept of resource allocation as its basis, is also 
a first step toward gaining a more nuanced phenotype of resilience.

There are several reasons for wishing to have more nuanced 
phenotypes of resilience. The multivariate nature of resilience, 
building on multiple underlying mechanisms, implies that there 
will be considerable variability in the ways by which animals re-
spond to a given challenge (Bateson and Gluckman, 2011). This in 
turn suggests that when faced with a different type of environmen-
tal perturbation there may be a reranking, depending upon which 
mechanisms are favored by different individuals. In this context, 
tools and measures that allow identification of the perturbation 
type would provide highly valuable additional information. This 
can be achieved using experimental perturbations of different types 
on the same animals, which has all the advantages of controlled 
conditions (nature, start, and stop times of the imposed perturba-
tions) but is likely to be limiting in terms of numbers of animals 
that can be phenotyped. Alternatively, naturally occurring pertur-
bations can be exploited if there is accompanying environmental 
information such as local meteorological information. In this 
context, studies have shown effects of weather on performance 
(Bunning and Wall, 2022). It can also be achieved by using animal 
measures. For example, on-farm monitoring of mastitis indicators 
such as SCC allows disease perturbations to be readily identified. 
Further, Garcia-Baccino et al. (2021) showed how the degree of 
synchrony in deviations in performance within a herd could be 
used to identify times when perturbations were occurring. Le et 
al. (2022) developed a so-called “up and down” method for detect-
ing perturbations based on longitudinal data of intake or weight, at 
different scales: group, pen, or individual. These elements would 
contribute to an improved use of genotype-by-environment inter-
actions approaches for identifying resilient animals (Murani et al., 
2023; see also Garcia-Baccino et al., 2021).

Another reason for wanting to open the black box, to have more 
nuanced phenotypes, is to be able to better understand the link-
ages between resilience and other traits. The study of Poppe et 
al. (2020) found that there was a positive correlation between the 
resilience proxy and milk yield, indicating that higher producing 
animals were less resilient. Likewise, Lenoir et al. (2023) found an 
unfavorable genetic correlation between their resilience proxy and 
feed efficiency, suggesting a possible trade-off between resilience 
and efficiency. These results suggest that selection for improved 
resilience will need to take into consideration these potential trade-
offs (Bouquet et al., 2022; Ghaderi Zefreh et al., 2023).

With the aim of deriving more nuanced phenotypes, an increas-
ing number of studies have taken up the challenge of attempting 
to statistically combine the information coming from multiple 
time-series measures. Højsgaard and Friggens (2010) proposed a 
multivariate state-space model to capture the degree of infection 
associated with mastitis. This assumed that the short-term devia-
tions in the time-series of 3 mastitis markers (SCC, conductivity, 
and LDH) were all reflecting changes in an underlying degree 
of infection. This proof of principle study was able to show that 
onset of, response to, and recovery from mastitis was a continuous 
process quite different from the traditional binary classification of 
mastitis as healthy versus sick. It also showed the value of the more 
nuanced phenotype in terms of allowing early detection, 5 d before 
the recorded treatment day.

Ithurbide et al. (2023) proposed another approach for exploring 
the resilience to a short-term nutritional challenge. In this study, 
14 milk metabolites were measured daily throughout the prechal-
lenge, challenge, and postchallenge phases for 138 dairy goats. 
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Figure 2. Shows an example of dynamic trajectory of the resource allocation 
coefficient αt (net energy [NE] available that is allocated to growth) during 
the whole fattening period for one animal: measurements smoothed with 
a dynamic linear model (red line), its prediction from a random regression 
model (dotted line), and deviations associated to resilience (green hatched 
area), with details in Lenoir et al. (2023).



JDS Communications 2024; 5: 761–766

They proposed the analytic pipeline shown in Figure 3. Central 
to this pipeline is a functional principal components analysis 
(fPCA) that for each metabolite captures the key dimensions of 
variability in the time-series trajectory. With the resulting fPCA 
scores, an unsupervised clustering was carried out. This found 3 
clusters with significant differences in longevity between clusters. 
Thus, the analysis found differences in resilience phenotypes that 
related to differences in longevity. Given the nature of the data 
and the analysis, inferences about the underlying mechanisms 
can be made. It seems that shorter longevity was associated with 
goats that had more extreme lipomobilization responses to the 
short-term challenge and longer recoveries in the carbohydrate 
metabolite markers. The details of the statistical method and the 
results are presented in Ithurbide et al. (2023). This study shows 
how multivariate time-series statistics can be used to derive more 
nuanced resilience phenotypes. Interestingly, a supervised cluster-
ing was also carried out, using the fact that the animals in the study 
were daughters of bucks that were divergent on longevity. This 
supervised clustering on fPCA scores did not readily distinguish 
high versus low longevity animals, suggesting again that there 
is additional resilience information to be gained by seeking out 
resilience proxies at the level of responses to and rates of recovery 
from environmental perturbations.

The types of data needed for nuanced phenotyping of resilience 
have not been traditionally easy to obtain. However, the increasing 
sophistication of on-farm precision livestock technologies makes it 

increasingly possible to achieve large-scale phenotyping for resil-
ience. This is in terms of having time-series measurements but also 
in terms of having physiological measures such as metabolites, 
enzymes, and hormones. New statistical models have been, and 
will continue to be, developed for the integration of multivariate 
time series, to develop new resilience phenotypes that capture the 
underlying mechanisms of resilience. The recent studies reviewed 
here have shown that operational and heritable resilience proxies 
exist, that they can form the basis for selection for resilience, and 
that more nuanced phenotypes are attainable that will allow selec-
tion for resilience to be tailored according to prevailing environ-
mental challenge types.
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