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Abstract

This paper proposes a numerical approach based on a detailed 3D FE model to calculate
the global mechanical behaviour and local stress state of dynamic submarine power cables.
The method is applied to a three-core dynamic submarine power cable under a cyclic bending
load. The numerical approach is based on the homogenization theory of periodic structures.
The 3D computational domain is thus reduced to the helical period of the internal cable
components, which allows the geometrical complexity and contact interactions between the
components to be fully considered. In addition, the mesh size is reduced by using beam
element modelling of the armour components. The study investigates the sensitivity of
the cable bending behaviour to frictional interactions and manufacturing residual stresses.
To validate the numerical model, the results are compared with experimental data and
analytical results. The first comparison focuses on the overall behaviour of the cable under
a cyclic bending load, while a local analysis compares quantities such as displacement and
stresses with the results of analytical models available in the literature. The close agreement
between the numerical, experimental and analytical results demonstrates the accuracy of the
model in predicting the non-linear bending behaviour and local stresses that are essential
for the cable design process.

Keywords: Dynamic power cable, Bending, Homogenization, Finite element method,
Contact

1 Introduction

Dynamic submarine cables or umbilicals are widely used in the offshore industry, partic-
ularly in renewable energy systems. These cables are deployed in floating systems such as
wave energy converters or, as presented in this article, in the case of floating wind turbines.
The dynamic power cable is a key component of a floating wind turbine as its main role is
to transport the electrical energy generated by the turbine to the electrical grid. The cable
also plays a crucial role in managing the communication and data exchange between the
different subsystems of the wind turbine and the control centre. Dynamic power cables are
complex and heterogeneous structures composed of several metallic components: copper or
aluminium in the centre of the power cores (conductive part), and steel on its periphery
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(armour layers). These metallic components consist of a helically wound arrangement of
wires creating concentric layers. The components are protected by plastic sheaths and held
together by filling in the gaps around them. The dynamic cable is immersed and deployed
over several tens of metres between the floating platform and the seabed, see Figure 1a.
During service, the cable is mechanically constrained by the movement of the platform,
swell and current movement, which ultimately expose the cable components to mechanical
fatigue, particularly in the case of cyclic bending loading [1].

Designing cables involves calculating their response in service. From a mechanical point
of view, the cable time response is determined at different sea states. In such an analysis,
the cable is described by a numerical beam model subjected to hydrodynamic loads and
platform motions, see [2–6]. It is therefore important to provide the stiffness characteristics
of the beam to this model. It is also necessary to estimate the local stresses in the cable
components from the results of the beam model to perform a fatigue analysis. The overall
behaviour of the beam and the local stress state can be obtained by different approaches.

The axisymmetric behaviour (traction and torsion) of the cable is generally well predicted
thanks to the several analytical or numerical models present in the literature. An expression
of the stiffness in tension and in torsion is given in [7] based on the curved beams theory. A
more precise formulation of the axial response is given in [8] which takes into account the
material non-linearity, the contact and the local curvature variation of the helical strands.
A finite element (FE) formulation of the axial problem is developed in [9], based on curved
beam kinematics and the thin shell theory. A 3D FE modelling is proposed in e.g. [10–13]
which shows a good agreement between analytical and numerical predictions.

However, compared to the axial case, few bending analyses are present in the literature.
This is mainly due to the non-linear behaviour resulting from friction and sliding between
components, which depend on the initial strain and stress state of cables, as shown in the
experimental studies in [14, 15]. In [16] an analytical approach is proposed to estimate
the armour layers bending stiffness. Expressions are given in slip behaviour where all com-
ponents are free to slip in the cable cross-section and in stick behaviour where no slip is
possible. The formulation is based on a discrete curved beam description of the helical
components, see [17–19]. An analytical formulation using the principle of minimum strain
energy is proposed in [20] to evaluate the bending behaviour of flexibles and umbilicals.
In [21], an analytical formulation of the bending response is proposed to study the fatigue
of the helical components. The radial contact pressure between layers is estimated from a
numerical analysis of the axial loading case. The sliding of the components is described by
a loxodromic curve. Other bending models use geodesic kinematics, see [22] in the case of
flexible. A discussion of this hypothesis can be found in [23, 24].

As shown in [25], the limitations of the analytical models to account for contact, friction
and sliding have lead many authors to use numerical models to characterise the bending
behaviour and the stress state in power cables. In [26], UFLEX software is developed
with a specific FE formulation based on curved beam kinematics, which shows a reasonable
correlation between model and experimental tests for hysteresis bending cycle load. However,
the model seems to overestimate stiffness, particularly in the initial phase of the stick state.
In [27], the previous numerical tool is used to study the fatigue strength of power core
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conductor. It is shown that the 3D approach allows for taking into account the local change
of curvature due to the point contact distribution between the different strands layers. In
[28], the non-linear bending behaviour of a copper conductor is analysed with a FE model
with beam and shell elements solved with BFLEX, and compared to tests results. Other
authors propose a 3D analysis by the FE method using commercial softwares such as ANSYS,
ABAQUS. A 3D description with solid elements allows a detailed analysis of the behaviour
and the stress state especially for simple metallic cable, see [29, 30]. However, it requires
a large computation time for complex geometries encountered in dynamic cables. In [25],
[31] and [32] beam or shell elements are used to save computation time while ensuring
good accuracy in the stress state prediction within wires and components. However, the
model axial length is taken sufficiently large to limit the edge effects generated with the use
of rigid-body assumptions for the end cross-sections. In [3] the axial model is reduced to a
representative part of the cable corresponding to the armours helix pitch. Each component is
modelled with solid elements. The lay angle of the power cores is neglected and conductors
are approached by continuous straight copper cylinders. The bending loads are applied
through kinematic periodic boundary conditions connecting each component to a virtual
beam which represents the cable main axis, see [33]. In [34] a representative part of the
cable, corresponding to 1/3 of the lay length of the power cores is modelled with solid
elements. The loads are applied through periodic boundary conditions. The penalty method
and Coulomb regularisation are used to solve contact between the various components. An
initial stress state is introduced into the model by applying pressure to the cable outer
sheath. A similar approach is applied to flexible pipe in [35].

The objective of this paper is to propose a computationally efficient numerical approach
to calculate the bending behaviour and the local stress state of dynamic submarine cables.
To achieve this goal, the approach is based on a homogenization method initially proposed
in [36] and used in a computational framework in [37]. It has recently been applied to
metallic strands in [38, 39]. Thus, as in [3, 34] the size of the numerical model is reduced to
the helical pitch of the internal components using specific periodic boundary conditions. In
addition, the numerical model integrates beam elements to reduce the model size. Several
parameters of the numerical model, such as the friction coefficient and the initial stress
state are studied to highlight their influence on the pure bending behaviour, as in [28]. The
numerical model is then compared to experimental results, focusing on a cyclic bending
loading to draw comparisons on the overall cable behavior. A local analysis is also provided
comparing quantities such as displacement and stresses to analytical results. The example
considered is an 8MW three-core cable which is representative of the submarine power cables
used in floating wind turbine farms.

2 Description of the mechanical problem

2.1 Global scale configuration

The submarine dynamic cable considered here is a three-core power cable with an external
diameter of 101 mm. A bend stiffener tied to the platform is used at the hang-off section of
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the cable, and the other end is connected to a static cable laid on the seabed. A lazy wave
shape is considered with buoyancy modules around the cable.

The critical zones of interest, where the curvature variation is most significant, are the
sagging and hogging zones as shown in see Figure 1a. Therefore, this paper is focused on the
bending behaviour of the cable, although the proposed approach may be used for studying
its axial - tensile and torsion - behaviour.

Figure 1: Representation of the lazy wave configuration for floating wind turbine application (a) the dynamic
cable cross-section, photograph courtesy of Ecole Centrale Nantes (b)

2.2 Local description of the dynamic submarine power cable

In Figure 1b, a cross-sectional view of the three core power cable is shown, while Figure
2 illustrates its helical assembly. The cable comprises two armour layers of galvanised steel
helical wires, with their lay angles arranged in opposite directions to minimise the tension-
torsion coupling. The armour bedding is made of a single layer of perfluoro-elastomers
(PFR), while the inner and outer sheaths are composed of high density polyethylene (HDPE).
The stranded copper cores of the cable possess a helical mean line. The insulation system
comprises an extruded layer of cross-linked polyethylene (XLPE) covered by helical copper
wires and a HDPE insulation/power core shield. The fillers, which are made of polypropylene
(PP) ropes, ensure circularity and concentricity of the cables. The fillers also contain a
galvanised steel tube that is protected by steel wires and houses the optical fibres.

4



Figure 2: 3D Representation of cable geometry with the different components material

2.3 Mechanical behaviour of dynamic cables

The bending behaviour of the cable is strongly influenced by the contact interactions
between its different components. During the manufacturing process, extrusion of external
and internal sheaths generates an initial state with a non-zero normal contact force between
the components, as reported in an experimental study in [15]. In conjunction with friction,
this normal contact force causes the cable to exhibit a stick-slip bending behaviour of the
cable. For small curvatures, no relative slip exists between the components and the bending
stiffness is maximum (EI)max, as shown by path OA in Figure 3. As the curvature increases,
slip propagates throughout the entire cross-section until the minimum bending stiffness
(EI)min is reached, shown by path BC in Figure 3. Typically, slip starts in the layer furthest
from the cable main axis at the neutral axis and propagates towards the internal layers
[18]. The size of the stick region depends on initial stresses resulting from manufacturing
processes and the the tensile force. The latter increases the normal contact force between
the components and, as a result, the size of the stick region.

Figure 3: Representation of the bending moment as a function of curvature (a) and bending stiffness as a
function of curvature (b)

3 Experimental study

In this study, the bending response of the dynamic cable is obtained by using a four
point bending test. The tests were conducted at the Tony Davies High Voltage Laboratory
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(TDHVL), located at the University of Southampton, England. The load is applied to the
cable via two hydraulic actuators exerting a force Fa parallel to ~y-axis, see Figure 4. Each
actuator is placed at a distance L1 from the ends of the bench, where L1 represents a quarter
of the total bench length: Lg = 4L1 = 2.5 m. In contrast to a three-point bending, the
choice of a four-point bending ensures a zero shear force between the 2 hydraulic actuators,
which results in pure bending with a constant bending moment. The tests are performed
in the horizontal plane (~x, ~y) to avoid any influence from gravity on the results. A general
view of the test bench is shown in Figure 5a.

Figure 4: Representation of the four-point bending bench
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The tested length of cable (termed the gauge length, Lg) is supported at the two ends of the test rig such that it 
may not move vertically or horizontally, but will be permitted to slide inwards or outwards as the cable begins to 
bend or to straighten.  This unrestricted movement is critical in ensuring that there is no additional tension in the 
cable as the bending moment is applied, which might otherwise influence the curvature attained.  The design 
features of the test rig are briefly summarised below. 

1.1.2 Test Rig Design 
The test rig used is designed to enable a range of different mechanical tests.  The key functions from the 
perspective of bending stiffness measurement are described here.  The rig is constructed from heavy steel 
components (50mm steel plates and thick wall steel pipes) to ensure that it will suffer minimal deflection under 
the stress applied to the cable sample under test.  A general view of the test rig is shown in Figure 3.  The gauge 
length of the test rig is 2m (i.e. the distance between the centre of the pivots at each end of the rig).   

 

Figure 3, General view of test rig 

The cable is installed in the rig in the horizontal plane, to avoid the influence of gravity on the measurements.  To 
avoid the cable sagging under its own weight, it is supported by arrays of low friction rollers, which are separated 
from the cable using Perspex plates.  The Perspex plate is able to move freely across the rollers, while the cable 
does not move with respect to the Perspex plate. 
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1.1.3 Application of Bending Moment 
The bending moment is applied to the cable via two identical hydraulic actuators, located 25% of the gauge 
length from each pivot point.  The length of the rod is such that a maximum displacement of 25 cm from the 
nominal position may be achieved at each ram.  The pressure of the working fluid is measured via analogue 
gauges.  The force exerted by the ram when pushing outwards from the cylinder can be defined as:  

 𝐹𝑒𝑒𝑒𝑒𝑒𝑒 =
6895
4 𝜋𝑑12𝑃 (1) 

Where d1 is the internal diameter of the hydraulic cylinder (m), in this case equal to 0.032 m, and P is the gauge 
pressure (psi).  The force exerted by the ram when retracting (back towards the cylinder) can be defined as 

 𝐹𝑟𝑒𝑒𝑟𝑟𝑟𝑒 =
6895
4 𝜋(𝑑12 − 𝑑22)𝑃 (2) 

Where d2 is the external diameter of the actuator rod (m), in this case 0.02 m.  Note that the difference in the 
equations is due to the differing contact areas presented to the working fluid. 

The hydraulic actuators are connected to the cables via a roller interface, as shown in Figure 4.  This allows the 
cable to pass freely through the rollers as an increasing bending moment is applied.  The position of the rollers is 
adjustable for each cable type, ensuring that a good contact can be made for a range of different external 
diameters.  It should be noted that the roller design is specific to the cable type, and allowance is made in our 
budget for the fabrication of a roller system specific to the CAF1673 cable type. 

 

Figure 4, Roller interface with cable 
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Figure 6, linear bearing system at pivoting ends of test rig 

1.1.5 Displacement and Force Measurement 
The displacement of the cable is measured at 5 points along the length, allowing the curvature of the cable at 
each stage of the test to be reproduced.  The measurement system will consist of a guided linear variable 
differential transformer (LVDT), capable of measuring positive and negative displacements from the neutral axis.  
The LVDT will not be secured directly to the cable, but will be attached via a guidance system.  This is to prevent 
axial movement of the cable into and out of the test rig from changing the lateral angle of the displacement 
measurement. 

The output of the LVDT is a DC voltage which is automatically logged by a data acquisition system at intervals of 1 
Hz to 0.1 Hz, depending on the rate of movement expected in the specific test. 

The applied force is measured by monitoring the applied fluid pressure in the hydraulic actuator.  This is achieved 
using an electronic pressure sensor, which can be interfaced to the same data logging system as is used for the 
displacement monitoring.  This ensures synchronisation of time stamps between the displacement and pressure 
readings.   

1.1.6 Test Procedure  
A full cycle of bending will be applied in a horizontal plane to each cable sample.  The test method used in this 
procedure begins with the cable being at rest in a flat horizontal plane. To achieve this state, after the cable 
sample is positioned in the test rig it is left overnight.  This also ensures that the cable is at thermal equilibrium 

Figure 5: General view of test rig (a) ; roller interface between cable and actuators (b) ; linear bearing
systems at pivoting ends (c), courtesy of Tony Davies High Voltage Laboratory, University of Southampton

3.1 Boundary conditions of the test bench

The cable is allowed to freely pivot and slide in translation into and out the ends of the
test bench, as shown in Figure 5c. Thus, only the two hydraulic actuators can transmit a

6



shear force to the cable. The connection between the hydraulic actuators and the cable is
made by roller interfaces, as shown in Figure 5b. The rollers are specific shaped to fit the
cable outer sheath. This allows the cable to pass freely through the rollers without rotating
around its own axis when an increasing bending moment is applied. To prevent bending
due to the cable weight, it is supported by Perspex plates. Each plate is fixed to rails which
allow the cable to move with it, minimising the frictional forces.

3.2 Force and displacement measurement

The force applied to the cable is measured from two load cells placed between the hy-
draulic actuators and the metal frame that holds the rollers and the cable. The cable
displacement is measured at 5 points along the cable length, with 3 points between the
two actuators. The measurement system is based on LVDT (Linear Variable Differential
Transformer) sensors.

3.3 Bending behaviour

For this four point bending test, the bending moment M between the two actuators is
given by:

M = FaL1 (1)

The constant bending moment between the two actuators results in a constant curvature.
This property can be used to calculate the curvature from the three LVDT measurements
between the two actuators using two different methods. The first approach involves deter-
mining the coefficients of a second-order polynomial that describes the deflection between
the two actuators using a least squares method. The curvature is then calculated as the
second derivative of the polynomial. The second approach involves fitting an arc of a circle
to the deformed shape of the beam between the two actuators using a least squares method,
and calculating the curvature as the inverse of the circle radius. Both approaches were used,
and the difference between the two curvature values obtained using them was found to be
negligible.

3.4 The different measurement steps

Before the test, it is interesting to take into account the cable conditioning. The cable
is stored around a drum with a constant curvature. Once unwound, the cable relaxes until
it reaches equilibrium. Therefore, the first step in preparing the cable is to take a sample
of the cable and lay it on a flat and horizontal surface to reduce the residual curvature
accumulated during storage. The cable is then left on the test bench without external stress
overnight to reach thermal equilibrium (20 ± 1.5 ◦ C). The cable is positioned with the
residual curvature perpendicular to the bending plane (horizontal plane (~x, ~y)) to avoid its
influence on bending behaviour. Under the effect of the weight and after relaxation, this
residual curvature is thus close to 0 m −1. A first bending cycle between -0.1 m −1 and
0.1 m −1 brings the cable to zero curvature and to an initial bending moment close to 0
N.m. Subsequently, several bending cycles are measured by alternating the direction of the
hydraulic force and varying the amplitude of transverse displacement.
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3.5 Bending cycles measured

The curvature ranges tested were chosen based on a compromise between the capacity of
the bench, the minimum static breaking load and minimum dynamic breaking load. These
ranges are realistic compared to those expected under operational conditions of the cable.
The global reference model considers a floating wind turbine with an 8MW turbine per 60m
of water in an exposed North Atlantic environment.

The curvatures considered correspond to the critical intermediate points: SAG and HOG
zones, where the maximum curvature is 0.2 m −1. The bending loading curve used for the
mechanical characterisation test is shown in Figure 6. For each curvature level, 5 cycles
of 5 minutes are performed. A bending cycle is considered sufficiently slow to neglect the
viscoelastic effects and the initial moment is considered to be zero.
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Figure 6: Loading path for the mechanical characterisation of the dynamic cable

3.6 Tests result example

A typical bending cycle obtained from the test for a curvature range of -0.10 to 0.10 m−1

is shown in Figure 7. The bending moment diagram exhibits a significant non-linearity that
is due to the residual stress and strain present in the cable at the initial state. The stick
state behaviour is observed after the change in direction of the force application. Following
this change, the bending stiffness decreases until the slip state behaviour is reached.
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Figure 7: Bending moment-curvature diagram obtained from the test for a curvature range of -0.10 to 0.10
m−1

4 Numerical model

In this paper, the bending behaviour measured by the test bench is used as a reference to
assess a 3D FE model built with ABAQUS software. A detailed 3D description of the sub-
marine dynamic cable with solid elements and the length of the cable under test would lead
to prohibitive computation time. The homogenization method for periodic beams provides
an efficient and rigorous means to reducing the size of the computational domain, given
the structural axial periodicity, which stems from the helical geometry of cable components.
Furthermore, the use of beam elements can also help reduce the size of the numerical model.

4.1 Model geometry

Several simplifications and assumptions are made to account for uncertainties in the
initial cable geometry, particularly since the initial cable strain state at the end of the
manufacturing process - which is unknown - can affect the geometry, particularly the contact
surfaces between different components.

For instance, a single bedding is represented between the outer armours to simplify
contact interaction between the two layers, with slightly increased thickness to prevent
mesh distortion during loading. The fillers are modelled using a continuous material in
polypropylene, and the tube containing the individual optical fibres is not included since it
has a negligible influence on the cable response and is of minor interest for this study.

Each conductor wire has an irregular cross-section with a polygonal shape due to the
manufacturing process, but the slip between conductor wires is disregarded. Therefore, the
entire conductor is modeled as a uniform copper helix with a circular base. Screens, ab-
sorbent tapes and polyethylene sheaths of the insulation are not considered in the model.The
geometrical data used in the numerical model correspond to the specimen that was tested
and are presented in Table 1. The model representation is shown in Figure 2.
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Name Number Material Outer radius [mm] Thickness [mm] Helix Angle [deg]
Outer sheath 1 HDPE 50.5 4.5 –
Outer armour 63 Steel 2.0 – 19.6

Bedding 1 PFR 42.0 0.6 –
Inner Armour 55 Steel 2.00 – -20.1
Inner sheath 1 HDPE 37.4 4.5 –

Power core shield 3 HDPE 15.3 4.0 9.0
Insulation 3 XLPE 11.3 7.3 9.0
Conductor 3 Copper 4.0 – 9.0

Fillers 3 PP – – 9.0

Table 1: Geometrical data of the cable cross-section

4.2 Periodic beams homogenization theory

Homogenization theory has been used in the past to study the structural analysis of
periodic beams, see e.g. [36, 40, 37, 41]. This method has recently been applied to metallic
strands with contact non-linearities [38, 39]. It provides an efficient and rigorous means
of reducing the size of the computational domain by using the helical symmetry of the
components. This allows for a fine discretisation and precise representation of the helical
geometry of dynamic cables.

The cable is considered as slender structure with geometrical periodic heterogeneities
along its main axis. The size of the computational domain is defined by the heterogeneities
length, i.e. through a period which depends on the helical pitch and the number of compo-
nents of each helical layer.

Assuming a single-layer cable, the period length l is defined by the periodic pitch p and
the number n of helical components in the layer:

l =
p

n
=

2πRh

ntan(α)
, (2)

where Rh is the layer mean radius and α the lay angle. An example of a period is given
on Figure 8 for a 3-wire helical cable.

Figure 8: Representation of the period length in the case of a single layer 3-wire helical cable
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As soon as cable is composed of several helical layers, the period length is defined by the
common pitch between the different helical layers j and by the number nj of components in
a layer j:

l = kj
pj
nj

= kj+1
pj+1

nj+1

= ... = km
pm
nm

, (3)

with kj ∈ N and m the number of helical layers.
In the umbilical case and knowing the helical pitch of the two armour layers and the

three cores, the model length is defined from the equation (3) such that:

l = 20
p1
63

= 20
p2
55

=
p3
3
, (4)

where the indices 1, 2 and 3 correspond to the outer armour layer, the inner armour
layer and to the power core, respectively. The lay angle of the armour layers is adjusted
slightly to obtain the same period length between layers. The deviation of the armour lay
angle between the numerical model and the values measured on the cable is considered to
be not significant (< 2 %) to affect the solution. The model data in Table 1 indicate that
the period length of the proposed numerical model is 234.2 mm.

The homogenization approach, which is based on the asymptotic expansion method
of the displacement field, decomposes the initial three-dimensional elasticity problem into
microscopic three-dimensional elasticity problems written on the period and one-dimensional
macroscopic problems corresponding to an Euler-Bernouilli beam problem that provides
the overall beam response. The solution of the microscopic problems corresponds to the
localisation step, which allows to relate the local strain and stress state to the macroscopic
strains. The macroscopic strains are denoted by EE, EF1 , EF2 , and ET and correspond to
the axial extension, curvatures and torsion rate, respectively, as shown in Figure 9. In the
microscopic problem posed on the period, the displacement field is l-periodic in variable y3,
and the strain field and the stress field are obtained from the macroscopic strains as reported
in [37].

Figure 9: Representation of a dynamic cable period subjected to macroscopic strains

The numerical solution of the problem is computed using periodic boundary conditions
and an l-periodic mesh in the FE model. The mathematical framework of this method is

11



well established in the case of components perfectly bonded together, as described in [36].
It is assumed herein that the same periodic boundary conditions can be applied in the case
of a structure with several components and contact interactions, as presented in [38].

4.3 Components material

The elastic behaviour of each components is characterized by a Young modulus and a
Poisson’s ratio. Since no reference values were provided by the cable supplier, the values
listed in Table 2 were obtained from various sources, including material databases and other
studies such as [3] and [34].

Name Young’s Modulus [MPa] Poisson coefficient
Steel 210000 0.3

Copper 110000 0.3
HDPE 1380 0.4

PP 1300 0.4
PFR 512 0.4

XLPE 350 0.4

Table 2: Elastic properties used in the FE model

4.4 Numerical model. Mesh and contact interactions.

The structure mesh is generated from a in-house program developed in MATLAB to
ensure the mesh periodicity required for the homogenization method, as presented in [38].
The model mesh consists of several types of elements shown in Figure 10. The mesh genera-
tion is closely tied to the contact surface discretisation and the proposed approach for each
component interaction is presented in this section.

Figure 10: Display of the cable mesh: global view (a) and close-up view of the armours (b)

Given the large number of armour wires, each wire is modelled as a beam element
with surface elements for contact modelling. As shown in [38], the coupling of beam and
surface elements provides a very good compromise between accuracy and computational
efficiency. The contact interactions between armour wires and outer sheath, inner sheath or
bedding induce shear forces on beam elements. Therefore Timoshenko beam elements (B31
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in ABAQUS) are used. The beam circumference is discretised with 4-node surface elements
(SFM3D4 in ABAQUS), and rigid beams connect each surface node to the beam element
nodes (Multipoint Constraints in ABAQUS). As a result the number of independent degrees
of freedom is significantly lower than that of a solid element mesh. The sheaths and the
power core are meshed with linear hexahedral solid elements (C3D8 in ABAQUS) and fillers
are meshed with prism elements (C3D6 in ABAQUS). The use of homogenization theory
to minimise the axial length of the computational domain results in a FE model of 142,920
elements.

Contact interactions arise between several components in the cable cross-section, includ-
ing those between solid elements or solid elements and beams with surface elements. As
shown in Figure 11, the contacts between solid elements are located in the inner part of the
cable, i.e., filler with core, filler with inner sheath, core with core, core with conductor, and
core with inner sheath. The radial contact between solid elements within the same armour
layer is ignored, considering the mean radius and lay angle of armour wires. Consequently,
the contacts between solid elements and beams with surface elements are between armour
wires and outer sheath, bedding, and inner sheath.

The contact surface discretisation is dependent on the contact surface width between two
components. Contacts between armour wires and plastic sheaths, as well as core-core and
core-inner sheath contacts are approximated by a contact line. Therefore, a node-surface
algorithm is chosen to reduce the size of the model and simplify the mesh, as shown in
Figure 11. When contact surfaces cannot be approximated by a contact line, such as in the
case of core-fillers, fillers-inner sheath, a surface-surface algorithm is adopted. It is assumed
that the insulation is perfectly bonded to the power core shield.

However, to account for contact between the insulation and the conductor, referred to
as IC contact, two assumptions are considered. The first, denoted Case 1 - pure stick
IC contact interface, is a stick assumption which is modelled by a common node surface
between the insulation and the conductors. The second, denoted Case 2 - frictional IC
contact interface, is a frictional contact assumption that allows for relative displacement
between the insulation and the conductors. This is modelled by a surface-surface contact
algorithm. These two assumptions show no difference in the overall bending behaviour of
the cable, but some differences can be noticed at the local scale, particularly with respect
to axial stress, as discussed in the following.
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Figure 11: Display of a quarter of the cable mesh with contact surface discretisation

The element sizes were selected based on a convergence study of the cable homogenized
bending stiffness. The resulting mesh, shown in Figure 10, achieves a good compromise
between accuracy and computation time.

4.5 Contact modelling

Contact modelling is a critical aspect of model generation. It is necessary to model the
contact force transmission between layers and the friction that causes the non-linear bending
behaviour of the cable.

In preliminary studies conducted in [38], different methods of contact modelling were
evaluated in the case of single and multilayer strands. The penalty method is used to solve
normal and tangential contact. However, when dealing with a contact involving beams
with surface elements, the contact surface has neither thickness nor stiffness. Consequently,
it is necessary to combine the penalty method with the Lagrangian method to limit the
penetrations and define the contact stiffness..

In the tangential direction, the penalty coefficient depends on the critical relative dis-
placement which delineates the stick behaviour and the slip behaviour. The critical relative
displacement is defined as a fraction β of the characteristic length le of the element in contact:

gcritT = βle. (5)

As shown in [38], the bending behaviour is sensitive to the parameter β. A very small
value β provides a good approximation of Coulomb’s law but causes convergence issues. A
larger value increases the slip, but makes the full slip regime occur too late. In the present
work, the value β = 0.001 is chosen to ensure a good approximation of the Coulomb’s law.

Regarding the slip between different cable components, the small sliding approach can be
used as in [42] and [43], for metallic strands. The contact relationships are established only
once in the first iteration of the computation, which saves computation time. A preliminary
study showed that for a maximum curvature of 0.2 m −1, there was a difference of less
than 5% in terms of bending stiffness between small sliding and finite-sliding assumptions.
Therefore, small sliding is used in this study.
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4.6 Boundary conditions

The periodic homogenization problem is solved by the FE method with periodic boundary
conditions. These periodic boundary conditions are expressed in terms of the macroscopic
strains, which are shown in Figure 9. They lead to linear relations between each degree of
freedom of two opposite nodes belonging to the boundary ∂Y + and ∂Y −. The translation
degrees of freedom of the boundaries, denoted U+

i and U−
i , are related by the following

equations [37]:

U+
1 − U−

1 = l(y3E
F1 − y2ET ), (6)

U+
2 − U−

2 = l(y3E
F2 + y1E

T ), (7)

U+
3 − U−

3 = l(EE − yαEFα), α = [1, 2], (8)

with y3 =
1

2
(y+3 + y−3 ) and yα = y+α = y−α .

For beams, three equations are added for the rotational degrees of freedom of the bound-
aries, denoted θ+i and θ−i [44]:

θ+1 − θ−1 = lEF1 , (9)

θ+2 − θ−2 = lEF2 , (10)

θ+3 − θ−3 = lET . (11)

The FE problem can be written as:

[K]


{U}
EE

EF1

EF2

ET



 =


{0}

l


N
M1

M2

M3



 , (12)

where [K] is the stiffness matrix. The loading case is defined by the corresponding values
of macroscopic strains. Using equation (12), the axial force and the macroscopic moments
are then obtained from the right-hand term. As shown in [38], it is assumed that these
boundary conditions are valid even if the components are in contact. In that case, one set
of boundary conditions is defined for each component.

4.7 Loading and simulation parameters

The loading process is divided into two steps: the initial state of the cable and cyclic
bending loading. Each load step is summarised in Figure 12.
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Figure 12: Representation of the different loading steps applied to the dynamic cable

The initial state arises from the manufacturing process which leads to a non-zero normal
contact force between the different components of the cable, and the cable storage on a
drum resulting in a non-zero residual curvature. In this study, only the initial state after
the manufacturing process is considered, and is simulated with a uniform radial pressure P
applied along the length of the external membrane, as suggested in [34]. The final pressure
value is calibrated by comparing the numerical and experimental results, as explained in the
following.

The second loading step consists of applying a sinusoidal curvature EF1 around the ~y1-
axis to represent the bending cycle, as shown in Figure 12, using the periodic boundary
conditions, see equations (6) to (11) (EE = 0; EF1 6= 0;EF2 = 0;ET = 0).

An implicit scheme is used to solve the FE static problem, with the number and size
of the increments chosen based on the model size, loading and solution convergence speed.
The friction in the numerical models results in a non-symmetry of the stiffness matrix, and
therefore, a non-symmetrical storage of the stiffness matrix is used to obtain a converged
solution.

The homogenization problem is solved assuming small displacements and small strains,
which means that the displacements are small compared to the cable diameter.

The periodic homogenization problem solution is defined up to a rigid body displace-
ment, which includes three translations and a rotation around the cable’s main axis for each
component. These displacements are dissipated with a viscous damping coefficient added
to the implicit scheme, see [38]. To ensure a negligible effect on the final solution, this coef-
ficient is updated throughout the simulation, keeping the ratio of damping energy to total
energy less than 5%.

As discussed in section 4.4, the mesh consists of 142920 elements, including beam, surface
and solid elements. The number of nodes is 165,148 and 168,100 in Case 1 - pure stick IC
contact interface, and Case 2 - frictional IC contact interface, respectively. Since the surface
element nodes of the beams and the nodes of the two end cross-sections are subjected to
multipoint constraints, the total number of free dofs is 264,192 and 272,616 for Case 1 and
Case 2, respectively. Considering the complexity of the cable architecture, the FE model
size is low, achieved by using homogenization theory to reduce the axial length of the model
and using beam elements for the armour layers.
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5 Preliminary study

The are two main uncertainties in the model parameters: the friction coefficient and the
radial pressure value, which are related to the surface interactions and initial stress state in
the cable, respectively. To obtain a good agreement between numerical and experimental
results, as in [28], the friction coefficient and pressure are adjusted on a a specific curvature
range test. The Case 1 - pure stick IC contact interface, is considered in this section with a
stick contact between the insulation and the conductors.

5.1 Influence of the friction coefficient on the global bending behaviour

To study the influence of the friction coefficient on the bending behaviour, the external
pressure is fixed to 0.3 MPa. The friction coefficient values are chosen between 0 and 0.3.
A cyclic loading with a curvature range of -0.05 m −1 and 0.05 m −1 is applied to the cable
around the ~y1-axis. The bending cycle of the cable obtained from the numerical model is
presented in Figure 13a.
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Figure 13: Evolution as a function of the friction coefficient of: the bending behaviour (a); the energy
dissipated during the bending cycle (b)

When the friction coefficient µ = 0, the cable components are free to slip, and the bending
behaviour corresponds to the slip behaviour with minimal bending stiffness. However, for
non-zero values of the friction coefficient, a non-linear bending behaviour is observed. At
the first loading step, the bending stiffness is maximum, but it is important to note that the
size of this loading step is such that slip occurs. The lower the coefficient of friction, the
greater the slip, resulting in a lower stiffness than the stick stiffness, which is not dependent
on the coefficient of friction. As curvature increases, the bending stiffness decreases until it
reaches a minimum value, corresponding to the slip behaviour over the entire cross section.
Figure 13a shows that this minimum bending stiffness is almost insensitive to the friction

17



coefficient, since the cable responses are parallel in the full slip zone. However, as the
coefficient of friction increases, the tangential contact forces increase, resulting in a larger
bending moment required to reach the full slip zone. This leads to increase the energy
dissipated during the bending cycle, as shown in Figure 13b.

5.2 Influence of the external pressure on the global bending behaviour
As mentioned earlier, to introduce a normal contact force between the cable components,

pressure is applied to the outer sheath of the numerical model. The influence of this pressure
on the bending behaviour is analysed in this section, with the friction coefficient set at 0.2.
The pressure values are varied between 0 MPa and 0.5 MPa., and a cyclic loading with
curvature between -0.05 m −1 and 0.05 m −1 is applied to the cable around the ~y1-axis.

The bending behaviour obtained by the numerical model for different values of the pres-
sure is presented in Figure 14. There is a strong similarity in the evolution of the cable
response as a function of pressure and friction coefficient, as seen in Figures 14 and 13,
respectively. For zero pressure, the cable is in a slip state as observed on Figure 13 for
µ = 0. In other words, even if friction is taken into account in the model, no normal contact
force is present between the components before bending, so the cable components are free
to slip. Increasing external pressure generates an increase in normal and frictional forces,
which delays the transition to the full slip zone. As a result, the dissipated energy increases
with pressure, as shown in Figure 14b. However, the external pressure has a little influence
on the bending stiffness in the slip state.
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Figure 14: Evolution as a function of the external pressure of: the bending behaviour (a); the energy
dissipated during the bending cycle (b)

5.3 Calibration of the numerical model on an experimental result
Calibrating the numerical model is akin to solving an equation with two unknowns: the

friction coefficient and the external pressure. To simplify the problem, the friction coefficient
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is set at 0.2, which is close to reference values in [3] and [34]. Therefore, the remaining
parameter to consider is the external pressure, which is used to model the residual stresses.

To calibrate the numerical model with experimental results, two criteria are used: com-
paring the final bending stiffness obtained at the end of the loading and unloading steps,
which coincides with the bending stiffness in the slip state, and comparing the energy dis-
sipated during one bending cycle.

For this calibration, the load case considered is the same as the one in the two previous
sections, namely a cyclic loading with a curvature of 0.05 m −1 and 0.05 m −1 around the
~y1-axis.

Figure 15a shows a comparison between numerical model and experimental tests. For
each external pressure value, the relative deviation between the numerical model and the
test is calculated for the bending stiffness at the end of loading and unloading steps, as well
as for the energy dissipated during the bending cycle, see Figures 15b and 15c, respectively.
Figure 15b shows that the stiffness obtained by the numerical model is very close to the
bending stiffness of the test, with a maximum relative deviation of 7.50 %. However, there
is a significant difference in terms of dissipated energy in Figures 15a and 15c when the
external pressure deviates from 0.3 MPa.
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Figure 15: Evolution as a function of the external pressure of: the bending behaviour (a); the absolute
relative deviation between the numerical stiffness and the test stiffness at the end of loading and unloading
steps (b); the absolute relative deviation between the numerical model and the test in terms of energy
dissipated during the bending cycle (c)

It appears that with a friction coefficient µ = 0.2, the pressure value of 0.3 MPa better
reproduces the test results. These two parameters are then fixed in the following section for
the modelling of each experimental loading case, in order to compare the numerical results
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to experimental values.

6 Global and local analysis from numerical results

The numerical model is used to study both the overall bending stiffness of the cable
and local quantities, including stresses in conductor, displacements of the components and
contact forces.

6.1 Comparison of the bending behaviour between numerical, experimental and analytical
results

Figure 16 displays the bending moment-curvature diagram obtained from the tests and
the numerical model with Case 1 - pure stick IC contact interface between the insulation
and the conductors for various curvature ranges. For comparison purposes, the minimum
bending moment obtained from the analytical solution [20], see Appendix A, is shown for
each load case. Figures 16a and 16b depict a bending cycle centred on zero while Figures
16c to 16f correspond to a bending cycle starting at zero. For each load case, the solution
is obtained with a computational time of approximately 1 hour with 4 cores Intel Xeon
(Haswell) having 5.33 Gb of memory per core.

The length of the test bench is 2.5 m, while the length with constant bending moment is
1.25 m. On the other hand, the pitch lengths of the outer armour layer, inner armour layer
and power core are 0.73 m, 0.64 m and 0.70 m, respectively. Thus, end effects might have
an influence on the tests results. However, this has not been investigated in this work since
only one type of cable has been tested and it was not feasible to modify the test bench.

A very good agreement is observed among numerical, experimental and analytical values.
For each test, the non-linear behaviour is well predicted by the numerical model.
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Figure 16: Comparison of the bending moment-curvature diagram between numerical, experimental and
analytical [20] results for bending cycles with different curvature ranges

Table 3 displays the minimum bending stiffness in the slip zone at the end of loading and
unloading steps. For a given curvature range, the values obtained from numerical model are
close, while this is not the not always the case for the tests results, which may be attributed
to residual stresses from storage. This is more pronounced for a curvature of 0.2 m −1,
resulting in an increase in the difference between the numerical and test bending stiffness.

As the curvature increases, the bending stiffness obtained by the numerical model and
tests tend to approach the minimum stiffness value given by the analytical solution. How-
ever, friction between the components after slip leads to a difference between the minimum
analytical stiffness corresponding to a full slip behaviour and the stiffness obtained in the
numerical simulations and tests.

In terms of energy dissipated during the bending cycle, small differences between the
numerical model and the tests are observed, with a maximum relative deviation of less than
8%. The target curvature ranges in the numerical simulation are the ranges defined in section
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3.5, whereas the experimental curvature ranges sometimes differ from these target values.
This discrepancy leads to an artificial increase in the difference between the numerical and
experimental results. During the tests, step increments of bending force are applied until
the sample displacement measured at the midpoint approaches the deflection corresponding
to the curvature target value. After the tests, the curvature was computed more accurately
from the three measurements of sensors located between the two actuators, as described in
sections 3.2 and 3.3, revealing a discrepancy with the previous value calculated only from the
midpoint sensor. This explains the difference between experimental and targeted curvature
ranges, which is the main source of error in energy dissipated between numerical model and
tests. Moreover, as shown in sections 5.1 and 5.2, the numerical model underestimates the
bending stiffness at the beginning of the loading, which also accounts for this difference.

Curvature
[m−1]

Model
Minimum stiffness

loading [N.m2]
Minimum stiffness
unloading [N.m2]

Dissipated
energy [J ]

[-0.05;0.05]
Figure 16a

test 3955 3854 21.92
numerical 3846 3834 22.46

relative deviation [%] 2.74 0.54 -2.46

[-0.10;0.10]
Figure 16b

test 3529 3410 61.60
numerical 3701 3700 57.20

relative deviation [%] -4.87 -8.49 7.14

[0;-0.10]
Figure 16c

test 3517 3990 21.41
numerical 3807 3795 22.11

relative deviation [%] -8.24 4.90 -3.27

[0;0.10]
Figure 16d

test 3943 3615 21.27
numerical 3807 3796 22.11

relative deviation [%] 1.71 -4.99 -3.45

[0;-0.20]
Figure 16e

test 3296 3554 52.25
numerical 3696 3623 50.03

relative deviation [%] -12.16 -1.93 4.25

[0;0.20]
Figure 16f

test 3677 3083 52.98
numerical 3697 3623 52.63

relative deviation [%] -0.53 -17.51 5.57

All loading
case

Analytical
minimum bending 3593 3593 -

stiffness

Table 3: Comparison of the minimum stiffness values at the end of the loading and unloading steps and of
the dissipated energy between the test results and the numerical and analytical results

6.2 Axial stress prediction from analytical model

Analytical models provide axial stress expressions within the helical component such as
conductors, which are one of the most fatigue-sensitive parts of the cable. The conductors
are approximated as continuous cylinders with a helical mean line. The analytical solution
presented in this study is obtained with the following assumptions:

• all components have linear elastic behaviour,

• helical components slide along a loxodromic path,
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• radial contact in the same layer is neglected,

• the cable is bent to a constant curvature κ,

• the cross-section deformation of the cable during bending is not considered.

The axial stress σ33, which is defined in the cable axial direction, is decomposed into
three components: σA induced by axisymmetric loads (tension-torsion and radial pressure),
σB due to the local change of the component curvature and σf generated by the frictional
interaction between components:

σ33 = σA + σB + σf . (13)

The first term σA is generally given by axisymmetric analysis from analytical or numerical
models such as in [8] and [9].

According to [45], the local bending stresses σB can be obtained by:

σB = E
[
X2cosα(1 + sin2α)cosθ +X3cos

2αcos2αsinθ
]
κ, (14)

where E is the Young’s Modulus, θ is the angular position of the component in the
cross-section and α is its lay angle. Variables X2 and X3 are the local coordinates in the
component, as shown in Figure 17a for a curvature around the ~y1-axis.

At the beginning of the slip phase, the critical curvature κc (see [21]) can be defined by:

κc =
f

EAcos2αsinα

θ

sinθ
, (15)

where A is the cross-sectional area of the component and f the frictional force per unit
length acting on the component boundary.

As reported by [21] and [34], if the contact between components in the same layer is
neglected, the frictional force can be determined by the following expression:

f = µiqi + µ0q0, (16)

in which µi and µ0 are the friction coefficients of the adjacent inner and the outer layers,
respectively, and qi and q0 are the contact force per unit of length along the contact line of
the inner and outer helices, respectively. At the beginning of the slip phase, the frictional
force induces axial stress σf given by:

σf =
Rhθ

Asinα
f, with θ ∈ [−π/2; π/2], (17)

the frictional force being symmetric with respect to ~y2-axis.The frictional force is usually
obtained from an axisymmetric analysis with analytical or FE models. In this work, it is
determined from the results of the 3D FE model.

A graphical evolution of axial stress in a helical component during a stick-slip behaviour
is shown in Figure 17b. The bending behaviour consists of two linear approximations. The
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stick zone is defined between the axial stress coordinates (κ = 0; σA) and the frictional stress

coordinates (κ = κc; σA + σf ). Then, the slip zone starts with a slope of
σB
κ

.

In the case of a loxodromic assumption, the axial displacement u3 of a component is
given by the following equation [34]:

u3 = R2
h

cos2α

sinα
κcosθ. (18)

Figure 17: Local coordinates within an helical component (a) and representation of the stick-slip behaviour
(b)

6.3 Local displacement

Figure 18a shows the transverse deflection at one end cross-section of the model for the
maximum curvature of 0.2 m−1 around the ~y1-axis. For this loading case, the maximum
displacement is 1.26 mm which corresponds to 1.25% of the cable cross-section diameter.
Therefore, the small displacements assumption is valid for curvatures equal to or less than
0.2 m−1.

The axial displacement of the inner armour layer obtained by the numerical model is
shown in Figure 18b for curvatures from 0.05 m−1 to 0.02 m−1. For each curvature, it can
be observed that the armour layer displacement is close to the displacement predicted by a
loxodromic curve given by the equation (18). This observation also applies to the conductors
and the insulation, as shown in Figure 18c, in Case 1 - pure stick IC contact interface or
Case 2 - frictional IC contact interface.

When the conductor is bonded to the insulation, no relative displacement is allowed.
Thus, the slip mechanism is controlled by the friction around the boundary of the power
core. In Case 2 - frictional IC contact interface, some relative displacements occur between
the insulation and the conductors, as shown in Figure 19. As predicted by the equation (18),
these relative displacements are equal to zero when the angle with respect to the bending axis
is ±π/2. For other angular positions, some relative displacement appear between the core
and the inner sheath and also between the insulation and the conductor. It can be observed
that when the core is in a stick state (κ ≤ 0.02 m−1 for example), the conductor seems to
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Figure 18: Deflection distribution at one end of the model at 0.2 m−1 around ~y1-axis (a); axial displacement
between inner armour layer and the inner sheath for 0.05 m−1 and 0.2 m−1 (b); axial displacement between
the core and the inner sheath for 0.05 m−1 and 0.2 m−1 (c)

slip into the insulation. And when the core is in a slip state (0.02 m−1 < κ ≤ 0.05 m−1 for
example), the slip between the conductor and the insulation remains almost constant as the
curvature increases.
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Figure 19: Relative displacement between the conductors and the insulation during a cyclic loading κ ∈
[−0.05 m−1;−0.05 m−1]
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6.4 Contact force transmission between layers

Figure 20 presents the distribution of the contact force between the inner sheath and the
cores and fillers at the end of the radial pressure step: P=0.3 MPa. As with simple metallic
strand [38], the distribution of this contact force strongly depends on the position of the
contact point between the outer and the inner armour layers. When two wires belonging to
two different layers are at the same angular position, the transmission of the contact force
is maximum, even if there is a thin sheath between the layers. Conversely, the transmission
is minimum if the difference in angular position is maximum, as shown in Figure 21. This
phenomenon causes a sinusoidal distribution of the contact lineload in the normal direction.
For instance, Figure 20b shows that the lineload between the cores and the inner sheath
oscillates around a mean value of 1.9KN/m.

Figure 20c reveals that the mean lineload acting on the whole surface of the internal
sheath remains almost constant throughout the bending cycle, with a value close to 46KN/m.
Similarly, by integrating the contact forces around the contact surface of a core, one can
obtain the mean lineload applied to a core, which is also almost constant during the bending
cycle with a value close to 16.5 KN/m. This result is consistent with that of [34] for a power
cable with three cores, where the inner sheath transmits about 1/3 of the lineload to each
core. In Case 2 - frictional IC contact interface, assuming frictional contact between the
insulation and the conductors, the mean lineload acting on conductor is also constant during
the bending cycle with a value close to 4,3 KN/m. These lineload values will be used in the
following in the analytical model to predict the stress evolution within the conductor during
the bending cycle with the two contact assumptions: Case 1 - pure stick IC contact interface
or Case 2 - frictional IC contact interface - between the insulation and the conductors.
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Figure 20: Normal contact force distribution over the fillers and power cores at the end of the radial pressure
step: P=0.3 MPa (a); lineload distribution along axial position acting on power cores at κ = 0m−1(b); mean
lineload evolution acting on one power core and on the inner sheath for κ ∈ [−0.05 m−1; 0.05 m−1]

Figure 21: Representation of the contact normal force transmission between armour layers: without (a) and
with (b) radial alignment of the wires

6.5 Local axial stress analysis in the conductor

To study the fatigue strength of the cable, quantities of interest are the local stresses,
especially the axial stresses in the conductors, obtained by the FE model for the two contact
assumptions: Case 1 - pure stick IC contact interface or Case 2 - frictional IC contact
interface - between the insulation and the conductors. The numerical results are compared
with the analytical results resulting from the equations (13) to (17). The loading case under
study is a cyclic bending with curvature between 0.05 m −1 and 0.05 m −1 around the ~y1-axis
with an initial pressure of 0.3 MPa.
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The axial stresses are computed for different core positions in the cable cross-section. In
the case of bending around the ~y1-axis, the axial stress is maximum when one core is at the
angular position of θ = π/2, as shown in Figure 22a and the minimum is obtained at an
angular position of θ = −π/2, as shown in Figure 22b for the Case 1 - pure stick IC contact
interface. For these two angular positions the friction stress is actually maximum, as shown
by equation (17). The maximum or minimum axial stresses are reached at the node furthest
from the bending axis, i.e., on the outer fibre of the conductor. The axial stresses are close
to zero when the angular position of the conductor corresponds to the bending axis, for
which the friction stress is zero. The stress distribution for the Case 2 - frictional IC contact
interface is similar to that of the Case 1 - pure stick IC contact interface, but with lower
extremum values than in Case 1, as shown in the following.

(a) (b)

Figure 22: Axial stress distribution in the cores for the Case 1 - pure stick IC contact interface and κ = 0.05
m−1: core at θ = π/2 (a) and core at θ = −π/2 (b)

Figure 23 shows the evolution of the numerical and analytical axial stresses in the con-
ductor for the Case 1 - pure stick IC contact interface for θ = π/2 and θ = −π/6. In Figure
24, the axial stress evolution is presented for the Case 2 - frictional IC contact interface. In
both cases, almost zero axial stress is generated by the application of an external pressure
before the bending cycle. Therefore, σA is assumed to be zero in the analytical model, as
seen in Eq (13).

An overall stick-slip behaviour is obtained, regardless the contact assumption between the
insulation and the conductor. The maximum and minimum stresses occur for an angular
position of θ = ±π/2, where the frictional stress and the distance to bending axis are
maximum, unlike the angular position θ = −π/6. It can be seen that the stresses for the
Case 1 - pure stick IC contact interface model are close to those of the Case 2 - frictional
IC contact interface. The main differences between the two models are in the stiffness in
the stick zone, which is logically larger for the stick contact interface, leading to a larger
dissipated energy during one bending cycle.

It can also be observed from Figures 23 and 24 a good level of agreement between the FE
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simulations and analytical model. However, it is important to point out some limitations of
the analytical model, explaining the discrepancy with numerical results. The most significant
discrepancies occur in the stick zone for both models. In the analytical model, the full stick
assumption is made over the whole cross-section, whereas small slips are present in the
numerical models, decreasing the cable stiffness. In contrast, there is a very good agreement
between the numerical and analytical results for the stiffness in the slip zone. Additionally,
the analytical model is based on a configuration consisting of a layer of components, in
contact with a central core, as shown in Figure 17, assuming no radial contact in the layer.
However, in the case of three cores, there is no central core, but a radial contact exists
between the three cores. Moreover, in the Case 1 - pure stick IC contact interface model,
a relative slip between the three cores is observed in the numerical model, leading to the
stick-to-slip transition at lower stresses than the analytical model. This may be the source
of the conservatism of the analytical model, as reported in [34].
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Figure 23: Axial stress in the conductor for the Case 1 - pure stick IC contact interface and κ ∈ [−0.05 m−1

; 0.05 m−1] at θ = π/2 (a) and θ = −π/6 (b)
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Figure 24: Axial stress in the conductor for the Case 2 - frictional IC contact interface and κ ∈ [−0.05 m−1

; 0.05 m−1] at θ = π/2 (a) and θ = −π/6 (b)

7 Conclusion

This paper presents a computationally efficient approach based on a 3D local FE model
for simulating the global mechanical behaviour and for calculating the local stress state of
dynamic submarine power cables. The method is applied to a three core cable subjected to
cyclic bending loading with curvature ranges representative of the cable service state. The
numerical approach is based on the homogenization theory of periodic structures, which
allows to define a problem posed on a helical period of the cable internal components. In
addition, beam elements are used to model the armour layers, which further reduces the size
of the computational domain. Thus, the model can accurately account for the geometrical
complexity and contact interactions between the cable’s internal components.

A series of experimental tests are performed on a three core cable. The geometrical data
of this cable are known and material parameters are taken from material databases or other
studies dedicated to dynamic submarine power cables. However, some input data are not
available in the numerical model, such as friction coefficients and initial stress state due
to the cable manufacturing process. One test is used to calibrate the missing input data.
The numerical results are compared to experimental values, such as the bending stiffness
in the slip state and the dissipated energy during the bending cycle. The results show
that the friction coefficient has a significant impact on the overall bending behaviour in the
stick state, while it has a weak influence in the slip state. Moreover, the radial pressure
representing the initial stress state generates a non-zero normal contact force, affecting the
bending stiffness in the stick state and to the stick-to-slip transition. The pressure value is
calibrated on one test, and the calibrated model shows overall bending stiffness values that
closely match the results of the other tests.
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A validation of the local solutions is performed by comparing the FE results with the
predictions of analytical models in the literature. The longitudinal displacement, contact
force and axial stress are analysed. The longitudinal displacement of the helical components
such as armour layers and cores agrees well with the analytical loxodromic curve. The distri-
bution of the contact force along the axial direction of the cable depends on the distribution
of the contact point between the armour layers, leading to a sinusoidal contact transmission.
Furthermore, it is observed that the mean contact lineload between the components remains
constant during the bending load cycle. The evolution of the axial stress in the conductor
obtained from numerical model is in good agreement with the prediction of the analytical
model. However, it should be noted that the analytical model requires the value of the
contact force, which is obtained from the FE model results. Additionally, the FE model
provides more details at the local scale, particularly in terms of component compliance and
slip phenomena, which create a smaller axial stress range than the analytical model. In the
case of a cable without a central core, the analytical model needs to be improved to take
into account the evolution of contact and frictional stresses between the three cores.
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Appendix A Minimum bending moment of the dynamic cable from analytical
solution

This appendix presents the equations for calculating the minimum bending moment of a
dynamic cable with three cores, which are taken from [20]. The minimum bending moment is
influenced by the geometry of each component. The components can be classified into three
types based on their geometry: helical components with a circular cross-section (amours
and cores), helical components with a,non-circular section (fillers) and straight cylindrical
components (outer and inner sheath).

When the slip state is reached, the minimum contribution to the bending moment of
a helical layer i composed of nw,i components with circular cross-section can be written as
follows:

Mw,i =
1

2
nw,i(EI

n
w,i + EIbw,icos

2αw,i)κ, (A.1)

where EInw,i et EIbw,i are the bending stiffness in the normal and bi-normal direction to the
component mean-line, respectively.

In the particular case of fillers, the cross-section of the component is non-circular and
the local twist is taken into account. Thus, the minimum bending moment of a layer i of
nf,i fillers is determined by:

Mf,i =
1

2
nf,i(EI

n
f,i + EIyf,icos

2αf,i +GJf,isin
2αf,i)κ, (A.2)
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where EInf,i, EI
b
f,i and GJf,i are the bending stiffness in the normal and bi-normal direction

to the component mean-line and the component torsional stiffness, respectively.
The resultant bending moment from the cylindrical layers i can be determined by the

following equation:

Mc,i = EIc,iκ, (A.3)

with EIc,i the bending stiffness of the component.
Therefore, considering the geometry of all components of the dynamic cable, the mini-

mum bending moment Mmin of the dynamic cable can be expressed as follows:

Mmin =

m1∑
i=1

Mw,i +

m2∑
i=1

Mf,i +

m3∑
i=1

Ms,i, (A.4)

where m1, m2 and m3 are the number of helical layers of component with circular cross-
section, non-circular cross-section and the number of straight cylindrical components, re-
spectively.
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