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Abstract: This study was inspired by a real-life problem and concerns an injection machine that can produce several types of
products, each requiring a specific configuration. Depending on which configuration is set up, the production rate will be distinct,
and the minimum batch size is to be respected. The time horizon is one day and it is decomposed into very small time slots. The
problem is organizing batch production attempting to meet a given demand by keeping buffer levels within predefined intervals
and maximizing resource efficiency. Sequence-dependent setup time and stock coverage are taken into consideration. An integer
linear programming (ILP) model is proposed to solve the problem with an original modeling approach that determines the
optimal sequence of machine states over the time horizon. We distinguish three possible types of states the machine can hold:
production, setup, and idle. The ILP is validated by performing experiments with different-sized instances. Finally, we conclude
this study by presenting future extensions to consider parallel machines that share common resources required to perform setup
operations.
Keywords: Single machine, batch-sizing, sequencing, setup times, capacitated buffers

1. INTRODUCTION

Today’s environmental and economic issues require all
industries to efficiently use resources, whatever their nature.
In this context, we note that in several manufacturing sys-
tems, significant and incompressible setup times (e.g., machine
cleaning or tool changes) are required to move from one
product to another. Especially when setup times are sequence-
dependent, scheduling jobs is a crucial activity for planners to
maximize profits and reduce costs at the same time (Allahverdi,
2015).

For example, plastic injection systems are employed in the
automotive industry to efficiently turn raw plastics into dif-
ferently shaped pieces with complex geometry. Usually, these
pieces which are then assembled to obtain finished products,
require a proper configuration to be set on the machine, such as
a mold to be mounted, material, and color used. In this context,
a long setup time is required to prepare the machine and many
studies have shown that setup times can be globally reduced by
batching, i.e., the choice to produce similar pieces contiguously
(Potts & Van Wassenhove, 1992). For instance, to minimize
changeovers that cause a loss in productivity, it is preferred
that the manufacturing sequence should be followed from light-
colored parts to dark-colored parts. For a similar reason, it
is requested that raw materials and molds on the machinery
should be changed as little as possible. On the other side,
demand fulfillment can be improved by having smaller batches,
which also reduces throughput time and average inventory
levels. The need to fulfill demands at different points in the
planning horizon, with different levels of urgency caused by
different orders, add complexity to the system. In summary,
we have conflicting goals between reducing setup times, i.e.,
favoring large production lots, and high order fulfillment,

ideally achieved by one-piece-flow production.
Many studies address the molding process in terms of

the design process, manufacturing, and tuning of the param-
eters of the molding machines to improve the quality of
the manufacturing molds (Low & Lee, 2008). Satisfying the
due dates is a matter of satisfaction as well and plays an
important role in determining competitiveness in the mold
industry. The growing interest in plastic injection processes
for both academics and industries is highlighted by the recent
review of Echchakoui and Barka (2020), which highlighted
the opportunity to improve the decision-making process by
applying operational research techniques.

The present study is aligned with this relevance because
our contribution is an integer linear programming (ILP) model
to deal with a real-life batch sizing and sequencing problem
where sequence-dependent setup times are necessary when
changing the production from one type of product to another.
This problem arises in the automotive industry and concerns
an injection machine that is able to produce several types
of products, each of which requires a specific configuration
to be set on the resource. The problem is to determine the
start time and duration of each batch so that an internal
demand is met by buffers. Thus, batch production has to be
organized in such a way that the buffer levels are kept within
a predefined range, set in advance. In addition, it is critical to
strive for maximum machine efficiency, which translates into
maximizing productivity, when demand is met. This type of
problem has been identified to be more difficult to address
when resource capacities are tight (Fleischmann et al., 2005).

One of the related problems in the literature is the lot-
sizing and scheduling problem (LSSP) which aims to minimize
setup, production, and inventory holding costs (Karimi et al.,
2003). Typically, this is done within a monthly or weekly



planning horizon, but in our case, we are trying to arrange
production for the next 24 hours. Many authors have addressed
the problem of simultaneous batch size and scheduling by the
need to find solutions that can be applied in real-life scenarios
(Ibarra-Rojas et al., 2011). In the same vein, we are motivated
by the research opportunity to define an efficient scheduling
procedure for systems where many resources are involved in
manufacturing activities and their efficient utilization is crucial
to improve company’s performance.

This paper is structured as follows: Section 2 provides a
literature review of the problems that present some analogies
with the scheduling issue considered in this paper, such as
batching and lot-sizing. Section 3 describes the main character-
istics of our case study. Section 4 introduces our optimization
problem and its mathematical formulation, while Section 5
presents the numerical experiments. Finally, Section 6 con-
cludes this study and discusses future works.

2. LITERATURE REVIEW

The studied problem falls on the border of two research do-
mains: lot-sizing and scheduling problems (LSSP) and batch-
scheduling problems (BSP). Accordingly, in this section, the
most related works are analyzed by highlighting the differences
between the studied industrial problem and those considered
in the literature, which demonstrates the need for a new
optimization model. In parallel, we provide an overview of
studies addressing the mold injection process, as being the
context of the studied company.

Lot-sizing and scheduling problems are crucial for manufac-
turing systems with different characteristics such as multiple
planning periods, sequence-dependent setup times, and auxil-
iary assets used for production, among others. For a deeper
understanding, readers are referred to the reviews by Copil
et al. (2017), Karimi et al. (2003), Drexl and Kimms (1997).
According to Fleischmann and Meyr (1997), the lot-sizing
and scheduling problem (LSSP) is a tactical problem dealing
with the minimization of production and inventory costs by
simultaneously optimizing lot sizes and production schedules
within a planning horizon lasting several days, weeks, or
months. Studies about LSSP on a single machine are paid
more attention by both researchers and companies, given their
applicability to the real world (Guimarães et al., 2014). In
fact, results obtained from these models are commonly used
for scheduling bottleneck machines in more complex systems.

By considering the maximum number of setups per period,
the formulations for LSSPs can be decomposed into two
categories, small-bucket and large-bucket models (Copil et al.,
2017) (Ferreira et al., 2012). In the first category, the planning
horizon is divided into relatively short intervals or micro
periods within which one item can be produced at most. For the
large-bucket models, multiple items can be produced during
each macro period. Fleischmann (1990) proposed a model
in which the planning horizon is divided into periods, each
of which with a demand to be met, and only one setup per
period is allowed. In this sense, the discrete lot-sizing and
scheduling problem (DLSP) is a small bucket model with
the so-called all-or-nothing assumption. This means, in each
period, if production holds it should use the entire period
capacity, otherwise the period could not be used to produce
at all. Almost all small buckets models consider setup costs,
but only a few consider setup times. Copil et al. (2017)
show that it is probably due to standard formulations, which
assume a complete setup to be executed within a single period.

However, for short microperiods, this assumption usually does
not hold. Then, more complex formulations such as those in
Drexl and Haase (1995) and Suerie (2006) would be required
to ensure that a setup can span over multiple microperiods.
Günther (2014) highlights that in short-time planning horizons,
holding costs are negligible and proposes a block planning
approach where production events are scheduled first, followed
by determining quantities of products. This approach allows as
early as possible production using a makespan criterion.

In this study, we take the problem as a whole and this
issue may thus be referred to as a batch scheduling problem
(BSP). Batching is related to the decisions of whether or not
to schedule similar jobs contiguously, to avoid setup times
or setup costs (Potts & Van Wassenhove, 1992). Depending
on how jobs are released in the system, we classify batch
scheduling problems between job availability, which allows
each product to be released independently from the other
products in the same batch, and batch availability, which states
that a product cannot be released before its batch has been fully
processed (Potts & Kovalyov, 2000). Potts and Van Wassenhove
(1992) have proposed a classification of integrated models that
combine batch scheduling and lot-sizing. Jordan and Drexl
(1998) highlight in both DLSP and BSP models, we save
setups by batching jobs. In the DLSP, decisions regarding
what is to be done are made in each individual period and
all parameters are based on the period length, while in the
BSP, we decide how to schedule jobs, with a completion time-
related objective function. The authors have shown the DLSP
can be solved as a BSP if the DLSP instances are transformed.

Considering the injection molding industry, Wassenhove
and Bodt (1983) was among the first to apply the lot-sizing
problem to solve a real-life problem in this field. Studies
such as Ibarra-Rojas et al. (2011) address the problem of
maximizing the production of parts using molds mounted
on machines. This study proposes a MILP that determines
the batch size of every part and the assignments of parts to
mold and machines. An update of this study was proposed
by Rios-Solı́s et al. (2020) which aims to solve a lot-sizing
and scheduling problem where pieces are produced using
molds and then assembled in finished products. The authors
indicate that this problem combines both approaches of lot-
sizing and scheduling techniques and it is scarcely addressed
in the literature. Lot-sizing and scheduling considering the
molding context in the automotive sector is addressed by some
researchers like Andres et al. (2021) and Diaz-Madronero et al.
(2018) who propose original MILP models to take into account
the peculiarities of their case studies, such as stock coverage
constraints and backorders, which are recurrent features in this
industry. Similar problems arise in other industries like shoe
companies, whose requirements and schedules are generally
considered by pairs instead of units (Huang et al., 2012). In
the same way, Mula et al. (2021) considers the bi-part injection
molding problem, where a mold has two different cavities that
are managed as the same part in their model.

Comparatively to BSP which considers job due dates in the
input data, we start from a given demand to simultaneously
determine batch sizes and their sequence. Moreover, all of the
above models do not take into consideration the presence of
decoupling buffers to satisfy demand. Distinct from classical
LSSP models whose aim is to fulfill a forecast demand as
late as possible (just in time), our work aims at minimizing
backorders while trying to maximize machine efficiency. The
main difference from lot-sizing lies in the lengths of periods



compared with the setup times, which are much shorter in
our problem. Indeed setup requires several consecutive time
slots to be completed. The same applies to minimum batch
production. As seen in this literature review there are no works
dealing with so small periods with respect to setup times
and minimum batch size. In addition, it is important to note
that compared to the LSSP literature, our problem ignores
stock holding costs and admits backorders. Furthermore, our
problem deals with all-or-nothing assumptions, therefore at
each time slot, the decision is whether and which type of
product should be manufactured, while the quantity of products
produced is determined by the production rate based on the
type of product.

To summarize, this study represents a contribution to extend-
ing the studies on small bucket production with setup times
and minimum batch sizes. Most DLSP models assume that
the setup state is lost. We consider setup state conservation,
inspired by the industrial application we are dealing with,
coherently with the research opportunities identified by Clark
et al. (2014). In fact, in real systems, it is often critical
to be able to stop batch production for a few moments
(e.g., because the buffer is temporarily full) and then restart
the same production without requiring additional setup time.
The proposed novel ILP considers an objective function that
indirectly allows idle times to be minimized, which is a key
feature for real cases and has been ignored by previous studies
(Andres et al., 2021). In the following sections, we describe
our case study and provide a mathematical model that will be
useful to understand the features of our approach.

3. CASE STUDY

This research deals with a real-life scheduling problem in the
context of production lines with a two-stage flow-shop config-
uration. Each line consists of an injection machine that feeds
the downstream assembly process, with a decoupling buffer
between them ensuring smooth and continuous operation of
the assembly process (as shown in fig. 1).

The injection process is triggered by demand from the
assembly phase with an update frequency of 5 minutes (which
means that demand for injection changes each 5 min). In addi-
tion, the changeovers of the injection machine affect the quality
conformity of the first products of a batch. Depending on the
type of material and colors that are used, the number of non-
conform products is subject to variability. In order to face these

two uncertainties the decoupling buffer between injection and
assembly is absolutely necessary. Thus, minimal and maximal
thresholds are imposed on the buffer level for each product in
such a way that the available buffer should always be kept in
this interval. The maximal buffer limitation corresponds to a
physical space limitation whereas the minimal one is called
stock coverage and corresponds to the quantity necessary to
meet the demand for the next 2 hours. This work represents
the first step in developing a reactive scheduling approach
aimed at absorbing demand fluctuation with high computation
frequency. There are shared crane resources carrying out mold
changes on the injection machines. A setup (or changeover) to
prepare the machine for a new batch production can consist
of dismounting a mold, mounting a new one, and cleaning the
machine (as a trial run for production). The cleaning process
is dependent on the change of color and/or material type being
injected, as any residual material from the previous production
run could contaminate the new batch. In addition, the mold
must be heated before starting the injection process, but this
operation can be done in masked time.

This work focuses on the injection process, as it feeds the
assembly machine that should never stop. Moreover, because
each injection resource has a unique set of assigned molds,
each product type can be manufactured by only one line. These
considerations prompted us to decompose the overall prob-
lem into several independent sub-problems, initially assuming
shared resources with unlimited capacity. Fig. 1 introduces all
the elements and their relationships within the scope of the
problem studied. Notice that each type of product stored in
buffers requires a proper configuration, which is schematized
as a mold-color combination. In addition, each configuration
presents a specific production rate, i.e. the number of products
released at each time slot when that product type is manu-
factured. A batch represents the number of identical products
that are manufactured over consecutive time slots, using the
same production configuration. Once the machine is set up
(with high product sequence-dependent setup times related
to tools changing and cleaning tasks), the production batch
duration is to be determined while respecting a minimum batch
size (depending on the product type), due to the technical
requirements of the molds. Essentially, the studied problem
turns out to be a batch sizing and sequencing problem. The
considered time horizon is 24 hours, which is divided into 5
minutes time slots.

Fig. 1: A schema of the plastic injection process



Currently, the company uses a manual spreadsheet procedure
based on Kanban control for scheduling the batch needed
based on real consumption. This process is extremely time-
consuming as re-scheduling is often needed and batch sizes
must often be adjusted manually in case of unexpected events.
Batch-size decisions are often based on human experience and
empirically determined. It typically consists of a standard 4
hours batch production. In addition, replenishment based on
the current buffer level without considering future consumption
does not allow any anticipation. Indeed, to avoid backorders,
schedulers are often forced to order urgent production batches
or to fill buffers with additional stock. Both cases represent an
extra cost for the company.

It is therefore evident there is a need for an efficient method
to determine a work schedule that can maximize demand
fulfillment while considering all the particular conditions de-
scribed above.

4. MATHEMATICAL FORMULATION

In this section, to address all the characteristics and ob-
jectives of this case study, a simultaneous batch-sizing and
sequencing model is formulated using a linear programming
model aiming at minimizing backorders and coverage stock-
outs while maximizing machine efficiency.

A. Problem description and assumptions

This model considers K physical products, each of them
requiring a specific configuration to be set on the machine,
over a discrete time horizon t ∈ [1, T ]. From a modeling point
of view, the terms configuration and product are synonymous
since in practice there is a unique correspondence between
them. Setups between products are known beforehand and are
sequence-dependent because cleaning operations depend on
the change of material and color injected between one batch
and the next one. There are a total of K ∗ (K − 1) possible
setups which include the time to remove a mold, mount a
new one and clean the machine. In addition, we consider K
fictitious dummy products which are used to indicate an idle
state of the resource even though a certain configuration is set.
Coherently, we define j ∈ J/J = [1,K2+K] the set of all the
possible states allowed on the resource where J is composed
of:

• Jk = [1,K] is the set of production states,
• Jc = [K + 1,K2] is the set of setup states,
• J i = [K2 + 1,K2 +K] is the set of idle states.
To be more explicit, we use the index k when j is in

Jk. Let dk,t be the demand for item k, which has to be
fulfilled from buffer at time slot t. For each product type
k, BMaxk represents the buffer capacity, while BMink,t

represents the stock coverage required at time t which is
calculated as the demand of the next 2 hours. Moreover, bk,t
represents the buffer level k at time t. In this model, backorders
are allowed, while holding costs are ignored by the company
given the considered short time horizon (Günther, 2014). The
nominal production rate qk represents the number of products
k that can be produced and released in the buffer at each
time slot, without waiting for the completion of the batch,
if the product k is running on the machine. If at time t no
production takes place but the machine was already set up
for a product k, i.e., the machine is in an idle state, then
the setup state is conserved, meaning no setup time should
be required to continue producing k after. A binary matrix
F(J×J) is introduced to define the rules of the machine states’

Table I. Nomenclature of the model

Indexes and sets
i, j Indexes of machine states
t Index of time slots
Jk Set of production states
Jc Set of setup states
Ji Set of idle states
J Set of all possible machine states
Data
dk,t Demand, i.e., the requirement for product k at time t
vj Minimum number of consecutive time slots the state j must

be active
qk Production rate for product k
Fj,i Binary matrix which regulates machine states transition
BMaxk Maximum buffer capacity for product k
BMink,t Stock coverage level of product k at time t
Ik,0 Initial buffer level for product k
i0 State of the machine before solving the problem
θh The unitary weight of backorders
θw The unitary weight of coverage stockouts
θb The unitary weight of products in the buffers
Decision variables
xj,t Binary variable which is 1 if state j is active at time t,

0 otherwise
hj,t Backorders of j ∈ Jk at time t
wj,t Units of coverage stockouts of j ∈ Jk at time t
bj,t Buffer level j ∈ Jk at time t

transition. If fj,j′ = 1 then for two successive time slots
the transition from the state j to the state j′ is allowed. On
the contrary, if fj,j′ = 0 it would be forbidden to switch
from state j to state j′ for the machine. In this model, a
batch corresponds to a consecutive number of time slots with
the same production state j ∈ Jk that is activated on the
machine such that a minimum batch size must be respected.
The number of products in a batch result from multiplying the
production coefficient qk by the number of consecutive time
slots a production state is activated. The vector vj represents
the minimum number of time slots associated with state j ∈ J .
It contains the information for minimum batch size and setup
times when we refer to a production or setup state, respectively.
However, vj = 1 for all the idle states j ∈ J i.

The optimization problem deals with the determination of
the optimal machine state at each time slot. In fact, at each time
slot, a single state is activated by a binary variable xj,t, which
is 1 if state j is activated at time t, 0 otherwise. Finally, the
variables hk,t represent the backorders of product k at time t
which we will try to satisfy at time t+1, and the variables wk,t

represent the number of products k missing from the buffer to
reach the desired stock coverage level. All relevant data for
the scheduling process are assumed to be deterministic which
is justified by having a very short-term operational problem on
hand.

B. Integer Linear Programming formulation

In order to build a mathematical model for the problem
described, we use the notation summarised in Table I. Thus,
the ILP model can be formulated as follows:

MIN
(∑

t∈T

∑
j∈Jk

(θhhj,t + θwwj,t) −
∑
j∈Jk

θbbj,T

)
(1)

1+vj∑
t=1

xj,t ≥ vjxj,1, ∀ j ∈ J (2)



t+vj∑
t′=t

xj,t′ ≥ vj(xj,t − xj,t−1),

∀ t ∈ {2, . . . , T − vj}, ∀ j ∈ J (3)

T∑
t′=t

xj,t′ ≥ (T − t)(xj,t − xj,t−1),

∀ t ∈ {T − vj + 1, . . . , T}, ∀ j ∈ J (4)

∑
j∈J

xj,t = 1, ∀t ∈ {1, . . . , T} (5)

∑
j∈J

fi0,jxj,1 ≥ 1, (6)

∑
i∈J

fi,jxi,t−1 ≥ xj,t − xj,t−1,

∀ t ∈ {2, . . . , T}, ∀ j ∈ J (7)

bj,1 = Ij,0 + qjxj,1 − dj,1 + hj,1, ∀ j ∈ Jk (8)

bj,t = bj,t−1 + qjxj,t − dj,t + hj,t,

∀ t ∈ {2, . . . , T}, ∀ j ∈ Jk (9)

wj,t ≥ BMinj,t− bj,t, ∀ t ∈ {1, . . . , T}, ∀ j ∈ Jk

(10)

bj,t ≤ BMaxj , ∀ t ∈ {1, . . . , T}, ∀ j ∈ Jk (11)

xj,t ∈ {0, 1}, ∀ t ∈ {1, . . . , T}, ∀ j ∈ J (12)

hj,t, wj,t, bj,t ∈ N, ∀ t ∈ {1, . . . , T}, ∀ j ∈ Jk (13)

The objective function (1) minimizes backorders and cover-
age stockouts while maximizing buffer levels. In other words,
the objective function tries to meet two conflicting criteria
as demand satisfaction and resource efficiency. It should be
noted that this function enables the reduction of setup and idle
states. The weights calibration of the three factors contained
in the objective functions allowed us to express their relative
importance.

Constraints (2), (3) and (4) make sure the continuation of
a certain state for a minimum number of consecutive time
slots to ensure the minimum batch size and the respect of
setup times. Constraints (5) ensure the activation of one and
only one state at each time slot. Constraints (6) and (7)
regulate the machine states transition, according to what is
the initial state and what has been defined in matrix F . We
are saying a state is always preceded by a compatible state.
Constraints (8) and (9) define the flow conservation constraints
that describe the evolution of buffer levels over the considered
time horizon. Constraints (10) define coverage stockouts, i.e.,
the stock coverage quantity used at each time slot to meet
demand. Constraints (11)-(13) define the range of variables.
The objective is to find a sequence of states to obtain a
production schedule that minimizes (1).

The computational complexity of this problem can be eval-
uated by considering the following special case:

• all minimum batch sizes are equal to 1: vj = 1 ∀j ∈ jk

• θw = θb = 0
• all initial buffer levels are equal to 0: Ij,t = 0 ∀j ∈ jk

Here, the problem of batch sizing and sequencing is reduced
to a single-machine scheduling problem, with job due date and
setup times and the objective is to minimize the number of
late jobs. Note that jobs are obtained by transforming input
demand. The complexity of scheduling problems with batch
setup times is investigated by Bruno and Downey (1978) and
Monma and Potts (1989), which have shown the feasibility
problem is NP-hard if setup times are not zero.

Because the sequencing problem, even for a single machine
with sequence-dependent setups and makespan as the objective
is equivalent to the traveling salesman problem (TSP) which is
NP-hard (Pinedo, 2012), the studied problem is therefore also
NP-hard.

5. COMPUTATIONAL EXPERIMENTS

In this section preliminary experiments are carried out to
validate the ILP and evaluate the model performances in terms
of running time. Indeed, to determine whether our proposal
can effectively optimize industrial problems in a reasonable
amount of time, we aim to investigate the effect of dataset
size on computational results. The following section shows
how data are generated, while the results of computational
experiments are presented in the final section.

A. Data generation

We randomly generated instances that combine the number
of products K and the number of time slots T since these
factors specifically define the size of our problem, i.e., the
number of decision variables and constraints of a class of
instances. A total of 250 instances are considered by randomly
generating 25 instances for each class analyzed. Table II is used
to report the details corresponding to each instance class.

Concerning the other parameters of the problem, their gen-
eration is independent of each class of instances and it has
been implemented as follows:

• The demand of a product k in a given time slot t, dk,t,
is an integer random number with a uniform distribution
within the interval [0, 4];

• The setup time needed to switch production from one
type of product to another is an integer that is uniformly
distributed between [4, 8] time slots;

• Similarly, minimum batch sizes are expressed in integer
numbers of consecutive time slots, uniformly distributed
within the interval [10, 14];

• Parameters vj when j ∈ J i, involved in the definition of
idle states, is set to one;

• The production rate for product k, qk, is a random integer
in the interval [4, 7];

• Maximum buffer capacities are integers uniformly dis-
tributed belonging to the interval [150, 300];

• The initial buffer levels are integers uniformly distributed
within the interval [0, 100].

• Stock coverage is set as 24 time slots of demand (2 hours);
• i0, the machine state before starting the simulation, is an

integer between [1,K2 +K];
• The weights of parameters in the objective function, θh,θw

and θb are respectively set to 100, 1 and 0.1.



Table II. Preliminary results of the analyzed instances

Class Number
of products

Number of
time slots

Number of
variables

Number of
constraints

CPLEX time
(sec)

Standard
deviation

1 3 72 1515 3949 2.04 1.77
2 4 72 2308 6101 5.62 5.68
3 5 72 3245 8683 10.64 11.88
4 6 72 4326 11695 18.81 21.47
5 7 72 5551 15137 35.27 54.57
6 8 72 6920 19009 47.81 65.55
7 5 90 4055 10861 55.61 70.50
8 6 90 5406 14629 211.34 246.35
9 5 108 4865 13039 436.40 453.37

10 6 108 6486 17563 993.26 1081.13

B. ILP numerical results

Computational experiments have been carried out to assess
the performances of the proposed ILP using CPLEX 12.5.1.
These experiments are run on a personal computer Dell Inc.
2022 with a Processor 12th Gen Intel(R) Core(TM) i5-1235U,
1300 MHz, 10 Core Logical Processor(s), and 16 GB RAM.
The model is coded in Java using Eclipse IDE. Table II
presents the experimental results obtained. Each row of this
table shows the average indicators over the 25 solved instances
for each class. The first five columns give the parameters of
each class. Column “CPLEX time (sec)” refers to the average
time in seconds that CPLEX took to solve ILP, while column
“Standard deviation” represents the dispersion of computation
times. For all the analyzed instances, the solver found the
optimal solution.

Overall, we observe that calculation times increase as K
and/or T increase. However, the computation time is not
strictly related to the size of the class, in terms of the number of
variables and constraints generated (for example, classes 6 and
10). This result is partly related to the intrinsic nature of the
optimization problem. Over a limited time horizon with respect
to the number of products to be manufactured, as we mainly
minimize backorders, there are fewer interesting combinations
of sequences and batch sizes to be made. In such cases, the
minimum batch size parameter, which is randomly generated
in the same way for all classes, may allow a faster convergence
on the best sequence of machine states.

As we can see in Table II, for the 72 time slot instances,
the ILP model achieves optimal results at a maximum of 48
seconds on average. Then, considering larger time horizons,
we note a consistent increase in the computation time required
to find optimal solutions. The largest class analyzed requires
on average more than 15 minutes to be solved. This can be
explained by the fact that adding one product while considering
the same relatively large horizon, considerably increases the
possible sequences and batch size combinations. Finally, the
large values for standard deviation may be due to the non-
negligible range of uniform distributions used and also it shows
that probably not all parameters generated regardless of class
size have the same impact on computational complexity.

These results represent a preliminary experiment that should
be deepened and they are significant in understanding the real
possibilities of implementing an optimal model in real-world
scheduling systems, where usually we have to deal with larger

instances.

Additionally, in Table III we analyzed a class of instances
that replicates the real-world data managed by the company on
a daily basis. We randomly generated 75 instances considering
24 hours time horizon (288 time slots) and an integer number
of products that are uniformly distributed between [8, 16]. All
the other parameters are identically generated as the before-
mentioned instances. Moreover, a time limit of 60 minutes was
set for the solver and an average duality gap equal to 31.18%
was obtained.

Table III. Computational results for real-world size instances

Number
of products

Number of
time slots

Cplex time
(sec)

Gap
(%)

[8,16] 288 3600 31.18%

From this experimental section, we conclude that the ILP
model is able to solve small and medium instances within
a reasonable amount of time. Nevertheless, regarding the
operational context related to the high rescheduling frequency
which is 5 minutes, a heuristic should be developed in order
to efficiently solve the problem.

6. CONCLUSIONS & FUTURE WORKS

In this paper, a real-world scheduling problem from a plastic
injection company has been studied and solved. Buffer capac-
ity, stock coverage, minimum batch sizes, different production
rates, and sequence-dependent setup times lead to a very
challenging optimization problem. A relevant feature of our
problem concerns the length and the granularity of the time
horizon. Given the internal demand to be met every 5 minutes,
we divided the daily time horizon into 5 minutes time slots.

We propose a novel Integer Linear Programming (ILP)
formulation that determines the optimal sequence of machine
states, aiming at minimizing backorders and coverage stock-
outs while maximizing resource efficiency. We distinguished
three possible states to define the global schedule: production,
setup, and idle states. The main contribution of this model
compared to others found in the literature is that it considers
a simultaneous batch and sequencing problem within a very
short time horizon with very small time slots and both setups
and minimum batches extend over several consecutive time
slots. The first experiments were carried out using CPLEX



solver to optimally solve small to medium size instances within
some minutes. For real-size instances, we set 60 minutes time
limit, and the average duality gap obtained leads us to conclude
that efficient heuristics should be developed to obtain near-
optimal solutions. The main limitation of this work lies in
the absence of comparison with other existing models and the
reduction of some practical aspects of the real case.

As the first step for future works, we believe that numer-
ical experimentation should be further investigated, as the
preliminary results obtained are worth further understanding,
given the specificity of our problem. In particular, it would
be interesting to include a sensitivity study on important
parameters or the weight of binary variables in this model.
Given the problem’s practical implications, we consider that an
interesting research direction is to implement multi-objective
hierarchical functions that can better prioritize industry goals.
Afterward, we will develop a meta-heuristic approach to deal
with large instances based on real data. The literature shows
that genetic algorithms, Lagrangian relaxation, and dynamic
programming represent excellent approaches for dealing with
such constrained systems (Wolsey, 2002), (Copil et al., 2017).
Moreover, incorporating demand (or process) uncertainty while
considering that scheduling in practice has to be done on
a rolling horizon basis is the main purpose of this project.
As future work, we also aim to extend our study to parallel
machine environments, that is, contemplate the existence of
common cranes and operators for setup operations. A further
extension of the model is considering multipart molds, that
is, simultaneously processing products of different shapes. In
literature, some bi-part injection molding problems were found
but to the best of our knowledge, there is no work dealing
with more than 2 references produced at the same time (Mula
et al., 2021). In conclusion, this study represents the first step
towards the development of a user-friendly Decision Support
System (DSS) to improve the company scheduling activities
and to address other realistic industrial problems.
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