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Abstract—Cooperative messages play a vital role in vehicle-to-
everything (V2X) applications by enhancing situational aware-
ness, supporting collision avoidance and improving traffic effi-
ciency. Additionally, they contribute to Vulnerable Road Users
(VRU) safety by increasing environment perception. The purpose
of this paper is to introduce a novel Q-Learning technique that
can improve the selection of cooperative messages’ type, size and
frequency. The methodology is based on leveraging the diversity
of existing messages in vehicular networks to determine the
best message type with the appropriate size while adjusting its
transmission frequency according to the environmental context
in order to efficiently manage network resources. In addition
to alleviating the network overload and decreasing the number
of messages sent simultaneously, our method could result in
significant energy savings when applied to VRUs when they are
identified by Connected and or Autonomous Vehicles (CAV).

Index Terms—V2X communications, Reinforcement Learning,
VRU’s safety, MEC.

I. INTRODUCTION

Vehicular networks are an emerging field that integrates
vehicles and communication technologies to enable seamless
communication between cars as well as vulnerable road users
(VRUs) and roadside infrastructure. Different communication
messages exist including VRU Awareness Messages (VAM)
for VRUs, Cooperative Awareness Messages (CAM), Decen-
tralized Environmental Notification Messages (DENM) and
Basic Safety Messages (BSM) for vehicles, and Collective
Perception Messages (CPM) for vehicles and infrastructure
[1]. Taking advantage of the diversity of existing messages in
vehicular networks can be a key enabler to optimizing network
resource management and addressing scalability problems
while meeting safety application requirements. However, the
matter of choosing the optimal message type based on network
conditions and environmental context is yet to be addressed
to ensure optimal performance and efficiency of vehicular
networks and particularly road safety applications [2]. More-
over, the consideration of VRUs as active participants within
safety applications by their exchanging continuous awareness
messages with their environment raises the question of how
to design an effective and fair communication framework that
considers the limited battery resources of VRUs while ensuring
their safety [3]. On top of that, the system should be scalable
and able to support the large number of communicating road
users to avoid overloading the network. All the aforementioned
challenges pushed us to conceive a solution that leverages
artificial intelligence and machine learning [4]. Reinforcement

learning (RL) techniques are a promising solution to address
the challenges faced in vehicular networks [5], particularly
regarding load balancing and network resource management.
In this paper, we suggest a frequency-adjusting RL algorithm,
that relies on smart clustering, to streamline the process of
determining which message type would be most advantageous
for transmission in vehicular networks. The remainder of this
paper is organized as follows: in the following section, we
delve into the relevant literature. In section III, the utilized
system model is outlined. Details of the RL algorithm can be
found in section IV. In section V, we analyze and present sim-
ulation results for performance evaluation purposes. Finally,
section VI provides our future directions and concludes the

paper.
II. RELATED WORK

The current regulations for generating collective perception
messages have been found to create an excessive amount
of messages, each reporting on only a few detected objects.
This results in increased communication overhead and de-
creased reliability of V2X communications and perception
capabilities. An algorithm is proposed in [6] that reorganizes
how information about detected objects is transmitted, thereby
reducing the number of collective perception messages per
second. It aims to decrease communication load and overhead
while enhancing both V2X communications reliability and
cooperative perception by modifying the content of CPMs
using prediction. In [7], [8], the authors put forth a plan for
optimizing communication for CAVs. If one vehicle receives
updated information about an object from another vehicle, it
won’t need to rebroadcast that same information. This would
decrease redundancy and lessen the burden of communication.

In addition to the aforementioned prediction and redundancy
mitigation techniques, Q-learning is a commonly used rein-
forcement learning method that can be employed to address
network scalability issues and reduce network overload. For
instance, [9] explores how reinforcement learning can be
utilized as a substitute for the existing optimization technique
in managing network resources in vehicular networks. A
collaborative edge computing framework is developed in [10]
to reduce service latency and improve reliability. The learning
algorithm can predict network traffic demands based on net-
work performance metrics (such as latency, packet delivery
ratio (PDR), channel busy rate (CBR), etc.) to orchestrate
the radio resources efficiently and solve congestion problems.



Authors of [11] use RL to determine transmission param-
eters according to present channel conditions, offering an
adaptive remedy for congestion control. The work showcases
how RL techniques can create an appropriate reward system
that balances the conflicting goals of congestion control and
recognizing surrounding circumstances. To the best of our
knowledge, there exists a wide range of message types that
facilitate the communication of vehicles’ relevant information.
However, while regulations are in place for each type of
message individually, there is a need for specific guidelines
addressing their collective utilization due to the similar data
they share. For instance, the following questions are intriguing
our curiosity:

1) Under what circumstances should a CPM be generated
in lieu of a CAM?

2) Is it feasible to generate both a CPM and a CAM
concurrently?

3) When deciding between the CPM and CAM, does the
size of the CPM take precedence over the CAM’s size
for transmission?

4) Can this selection between CPM and CAM be cus-
tomized based on the specific situation?

5) Can one CPM totally replace the transmission of other
CAMs and VAMs for VRU:s if they are detected by the
CPM-generating vehicle?

6) To what extent does the number of detected objects
impact this decision, considering that a high number of
objects contributes to a heavier message size?

Therefore, we believe that this paper represents an initial effort
to propose the utilization of various existing messages with
an adaptive approach to answer the aforementioned questions.
The aim of this work, built upon our prior research [12]
and inspired by the previously mentioned works, is to em-
ploy reinforcement learning techniques for improving resource
allocation by leveraging the range of available awareness
messages. This involves identifying the appropriate message
type with optimal size and adjusting transmission frequency
based on network conditions in order to optimize network
resource management to solve scalability issues without de-
grading safety application requirements.

ITII. SYSTEM MODEL
In this section, the reinforcement learning algorithm for
the joint adaptation of message type, size and frequency is
introduced.
A. Q-Learning Framework
The Q-learning update equation is given by:
Qi(st;at) = (1 — a)Qi—1(s1, ar)
+a | re+ ymin Qs+, a)

6]

where Q;(s¢,a;) is the Q-value [13] for state-action pair
(8¢, az), Te+1 is the reward obtained after taking action a; in
state s; and transitioning to state sy, « is the learning rate,

and ~y is the discount factor. The discount factor + , which falls
between 0 and 1, is used to weigh the importance of immediate
versus future rewards. The learning rate «, also within the
range of 0 to 1, determines how much weight should be given
to new knowledge as opposed to old information (e.g. when «
equals to 1 only the latest new information will be considered).

B. Overview of Q-Learning-Based Adaptive Algorithm

As shown in Fig. 1, the framework of reinforcement learning
consists of the agent interacting with the environment in a
centralized architecture inspired by [14]. The details of this
proposed framework are outlined below:

Optimization function: In this work, a centralized RL-based
message type and size with frequency adaptation is designed
to handle the scalability problem by minimizing the network
overload while not impacting the performance of the road
safety application. The constrained minimization problem is
defined as follows:

N
min Z bi—)mec
i=1
N
Z thi—)mec * bi—)mec S C (2)
i=1
s.t. N

Z di—)mec * bi—)mec S D

i=1
bi%mec S {07 1}

where: N is the total number of road users; b;_sec 1S
a binary decision variable that indicates whether a vehicle
i sends a message to the MEC server or no; th;_,mec 1S
the individual throughput sent from a vehicle ¢ to the MEC
server; C' is the maximum aggregated throughput that can be
handled by the MEC server, taking into account the network
bandwidth and processing capacity; d;—me. represents the
maximum allowable delay for transmitting a message from a
vehicle ¢ to the server; D represents the maximum allowable
delay for transmitting a message, taking into account the QoS
requirements of the network.

The objective function is the total network overhead ob-
tained by summing up the number of messages sent by all
vehicles and VRUs. The first constraint limits the aggregated
throughput which is the sum of all the individual throughputs
of vehicles, CAVs, and VRUs, considering the used periodicity,
ensuring that the network capacity is not exceeded. The second
constraint limits the delay for transmitting a message from any
road user to the server, ensuring that the QoS requirements
are met. The third constraint limits the values of b;_ec tO
either 0 or 1, indicating whether a VRU/vehicle will send a
message (VAM/CAM if it is not perceived by a CAV in the
neighborhood, CPM if it is identified as a reporting CAV),
or not in case its data is reported in a CPM by another
reporting vehicle. Therefore, the proposed algorithm tends to
find the best message type, size and frequency configuration to
balance the network load considering the environment context.
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Fig. 1: An illustration of the RL framework for efficient message collection.

It should be noted that this model is still simplified and
presupposes that the mode of communication used involves
vehicle to infrastructure (V2I) and VRU to infrastructure
(V2VRU).

Agent: One central MEC server that takes advantages of the
global view of the network with access to traffic history, road
users messages, infrastructure sensors and cameras collected
data. It can capture the network state to take actions based on
a policy, which is a mapping from the state space S to the
action space A.

Environment: The overall vehicular network system con-
taining RSU, the MEC server, vehicles and vulnerable road
users communicating via their smartphones. This environment
takes at time ¢ the state s; and calculates from the action taken
by the agent the new state s;;; and the corresponding reward,
which is transmitted to the agent and so on. This succession
of events is a step. At each step, the agent observes the state
s¢ from S and accordingly takes action a; from A.

State: A collection of information that uniquely identify
the situation of the environment. In our case, it is defined
as a 3-tuple including a combination of three surrounding
context information each one with three values to represent
low, medium, and high variation categories: (i) the velocity
variation: 1is the average velocity of all the road users in the
coverage area of the MEC server divided by the maximum
allowed velocity, (ii) the neighboring rate: 1is the average
neighbors divided by the maximum number of perceived
vehicles/VRU to be included in a CPM message, and (iii) the
network density: is the current number of road users divided
by the maximum supported number by the MEC server.

Actions: All the possible agent actions for each state
when interacting with the environment. The action space is
discretized and indexed. On the application layer, at each step,
the agent takes an action, consisting of a two-dimensional

matrix that combines the period at which cooperative messages
are sent, and a threshold representing the minimum number of
approximate road users a vehicle must have to be designed as a
reporting vehicle as represented in Fig. 1. The threshold is used
to group vehicles and/or VRU according to their proximity
in their communication range, where the elements inside the
same group won’t send either CAM or VAM because the
reporting selected CAV will send a CPM instead containing
the data (relative position, speed, etc.) of its neighbors. The
other vehicles or VRU that do not belong to any group will
send a CAM/VAM. Thus, the threshold is used to adjust the
message size by defining the minimum number of perceived
objects to include in a CPM.

The solution search space exploration is ensured by choos-
ing the periodicity and the number of perceived objects
that have a minimum Q-value, following the epsilon-greedy
strategy. Thus, given a probability value of epsilon, € in [0, 1]
and a random number r in [0, 1] generated in each learning
round, the action a; is selected as:

|

Reward: The reward function that guides the learning, it
should be consistent with the learning objectives. The agent
selects the best threshold and period parameters according to
the overall network context information while respecting the
safety application constraints. The goal is to minimize the
network load, considering the environmental context infor-
mation, without degrading the safety application requirements
by reducing simultaneous message sending while providing
necessary road user data through CPM or CAM for a reliable
collision avoidance algorithm used by the MEC server.

ifr>1—¢
otherwise

Random action,

argmin, Q+(s, a),

3)

reward; = wi * Ny, + we * Ny

“4)



Ng=8,/Max, (5)
N = Ath/Maxth (6)

Where S, is the selected periodicity and Mazx), is the maxi-
mum period that corresponds to 1000 ms. Ay is the aggre-
gated throughput which is the sum of all individual throughput,
Maz,y, is the maximum throughput if the maximum number
of vehicles handled by the same MEC server send individual
CAM in each selected periodicity. w; € [0, 1] represents the
weight of the normalized aggregated throughput Ny, and wo
represents the weight of the normalized average end-to-end
delay V4. For safety applications, we can set wo relative higher
than w;, since applications require lower delay time. For non-
safety applications, wy can be adjusted higher.

Episode: An episode represents a period of trial when an
agent makes decisions and gets feedback from its environment.
It ends when the simulation time is reached.

Hyperparameters: are variables that control the perfor-
mance of the agent during training. (i) The learning rate:
is a hyperparameter that controls how many new experiences
are counted in learning at each step. (ii) The discount factor:
determines the level of importance given by the reinforcement
learning agent to the rewards that are expected in the far future,
as compared to those that can be received immediately.

IV. ADAPTIVE Q-LEARNING ALGORITHM

Our proposed method evolves through two stages; the
training stage and the test stage. The environment simulation
contains routes populated with vehicles and VRUs. We model
a VRU as a vehicle with lower velocity and able to commu-
nicate through VAM. To simplify matters and since our focus
is solely on the essential components of these messages, we
assume that VAM and CAM share identical sizes due to their
matching mandatory fields [2]. With the frequency selection
that corresponds to a certain network state, the simulator
can provide the next state and the reward to the agents. In
the training stage, the Q-learning policy used in each action
selection is random at the beginning and gradually improved
with the updated Q-networks, as described in Algorithm 1.

In the testing stage, the actions of selecting messages’
transmission frequencies are chosen with the minimum Q-
value given by the trained Q-networks, based on which the
evaluation is obtained.

V. PERFORMANCE ANALYSIS

In this section, we present simulation results to demonstrate
the performance of our proposed adaptive approach.

A. Performance metrics

Our Q-learning algorithm for Cooperative Messages Type,
Size and Frequency Adaptation was assessed based on several
factors including message latency, aggregated throughput (as
detailed in section III-B) in terms of number of CAM and
CPM, and the quantity of messages transmitted to the MEC
server. This evaluation included a comparison between out-
comes with and without reinforcement learning using ETSI
standard like fixed 10 H z beaconing rate [3].

Algorithm 1 Q-Learning Training Algorithm
Input: ¢, ¢, 7, simulation environment
Output: Q-table
Training Algorithm():
Initialize the model:
Q(s,a)=0 for all s € S, a € A.
Start environment simulator and generate vehicles and VRUs.

for each episode do

Initialize S
for each step do

- Capture the required parameters from the environment
to compute the current state.
- Determine the neighboring vehicles/VRU and
identify the reporting vehicles.
- Select the periodicity and the neighboring threshold
using the e-greedy strategy.
- Capture the next state and the reward generated by
the environment based on the selected action.

- Save the (reward, old-state, action, new-state).
- Update the Q-table using:
Qt (St, at) < (1 —
alry +ymingea Q(st+1,a)]

a)Qi-1(st,ar) +

end

end
return Q-table

B. Simulation Setup

TABLE I: Experiment setup

Parameter Value
Training time ~2 days
SUMO play ground size in m? 2500%2500
CAM size (3GPP Model) [15] 190 Byte
CPM fixed part size in Byte [16] 121 Byte
Size per included perceived object [16] | 35 Byte
Learning rate 0.9
Discount Factor 0

epsilon 0.3
Communication range (C-V2X) 500 m

Table I illustrates the crucial aspects of our simulation to
provide better comprehension. We developed the simulation
model with Python and SUMO simulator [17], incorporating
a road network from VANET project in San Francisco covering
an area of 2500 m x 2500 m inspired by [14] for improved
reliability. As we only focus on the immediate reward, we
set the discount factor to zero. To maintain balance between
exploration and exploitation, we employed e-greedy policy
while utilizing MEC server for hosting the learning algorithm
linked to an RSU at the center point of the map. Due to
its resource-intensive nature, Grid5000 [18] was utilized to
execute the training algorithm, and we allocated computing for
the weekend, otherwise the job is killed. In this experiment,
we set the maximum number of road users communicating
simultaneously supported by one MEC server to 1000. For
each network state, we have four values of periodicity 100,
400, 700 and 1000 ms and five values of thresholds 5, 7,
10, 12 and 15 perceived objects. For delay sensitive safety



Algorithm 2 Q Learning Joint Cooperative Messages Type,
Size and Frequency Adaptation Testing Algorithm
Input: Q Table, simulation environment
Output: Evaluation results
Testing Algorithm():
Initialize the model:
Q(s,a)=0 for all s € S, a € A.
Load the Q-network model.
Start environment simulator and generate vehicles and
VRUs.

- Load the Q-Table.
- Start environment simulator and generate vehicles and
VRUs.

for each step do
- Get current neighbouring rate;

- Get current network density;

- Get current average speed;

- Compute the current state using the same indexing
function in the training;

- Map the current state to QTable states;

- Select the frequency by choosing the action with
the largest Q-value;

end
return Evaluation results

TABLE II: States space

State Velocity Neighboring Vehicular
Variation (%) rate (%) density (%)

0 [0, 33[ [0, 33[ [0, 33[

1 [0, 33[ [0, 33[ [33, 66[

2 [0, 33[ [0, 33[ [66, 100]

6 [0, 33[ [33, 66[ [0, 33[

26 [66, 100] [66, 100] [66, 100]

applications, we can choose lower periods to minimize the
delay. To reduce complexity in the state space, we establish 3
tiers for each element of the 3-tuple state. These tiers comprise
low, medium and high levels as represented by table II. The
assumption is that the MEC server possesses comprehensive
network knowledge and is aware of the vehicles capable of
transmitting a CPM.

C. Simulation Results

Fig. 2 plots the state variations in each simulation step
when Fig. 3 shows the selected period by the RL algorithm
during the testing scenario example. The algorithm’s decision-
making process in selecting a periodicity is impacted by the
reward function assigned to each state. In order to minimize
latency and the aggregated throughput, the algorithm aims to
determine an appropriate threshold value that represents the
number of perceived objects to include in a CPM.

As shown in Fig. 4, by decreasing the number of sending
vehicles/VRUs and incorporating neighboring vehicles’ data
using a 35-byte field per detected object in CAVs CPM

2 1 —— Velocity-variation-state
Neighbouring-rate-state
—— Vehicular_density-state

Simulation-states
—
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Fig. 2: The testing scenario states.
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Fig. 3: Selected periodicity.

messages, significant improvements in throughput have been
achieved. Furthermore, adjusting message periodicity based
on network conditions rather than individually sending CAM
every 100 ms has resulted in reduced throughput.

For instance, consider the steps from O to 5. In this case, the
decrease in overall throughput, compared to a fixed beaconing
rate of 10 Hz with each user sending an individual message
every 100 ms, can be attributed to the use of high period
and also the presence of a high neighboring rate state. This
state suggests that there is a significant number of CAVs

10 1 —— RL_throughput

Expected_throughput

Throughput in Mbit/period

IRYAT N

T T
0 5 10 15 20 25
Simulation-steps

Fig. 4: RL vs expected throughput using 10 Hz fixed beaconing.
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Fig. 5: The number of messages in CAM and CPM using RL
along with the anticipated number of messages using 10 Hz fixed
beaconing.

transmitting periodic messages containing data from other
users. This is confirmed in Fig. 5 where the number of CPMs
is the highest compared to CAMs in this steps’ interval.
Moreover, the utilization of a high period can be attributed
to the low velocity variation state. Additionally, since the goal
is to decrease the aggregated throughput, the algorithm tends
to prioritize selecting longer periods. Furthermore, the RL
algorithm can be beneficial for battery-dependent VRUs by
reducing the number of CAMs where the VRUs no longer
need to transmit their information since it is reported by nearby
CAVs in a CPM.

VI. DISCUSSION

The proposed RL algorithm aims to prioritize sending CPM
whenever possible, so its performance depends on the number
of reporting CAVs that are capable of transmitting CPM in
the network. In our implementation, we ensured that each
object’s data is not redundant if it is detected simultaneously
by multiple reporting CAVs. However, in reality, redundancy
control becomes more complex if it has to be done at the
level of each reporting CAV. A potential resolution involves
the MEC server identifying redundant data for the same object
and sending a message to a reporting vehicle, instructing it not
to include that data in the next transmission.

VII. CONCLUSION

In this article, we put forward a Q-Learning method for
combined Cooperative Messages Type, Size and Frequency
Adaptation. The aim is to determine the suitable message
type with optimum size and regulate transmission frequency
according to network conditions in order to reduce network
overload. Our technique has potential benefits for VRUs by
reducing their energy consumption when detected by reporting
CAVs. To evaluate our approach, we carried out tests using
an actual vehicular trace dataset and found that the algorithm
satisfies the optimization function objectives. We believe that
resorting to reinforcement learning instead of relying exclu-
sively on heuristics or algorithms presents noteworthy benefits
in terms of execution time. When envisioning an algorithm

that evaluates network modifications whenever it receives a
message, one encounters heightened complexity, resulting in
additional latency during execution. Nevertheless, by pretrain-
ing our model and leveraging a Q-table that provides the
MEC server with the optimal action for each corresponding
network state, we can reach significant advantages such as
low complexity, execution time, and computational resources.
In future works, we aim to enhance the reward function
by factoring in other network parameters. Furthermore, our
research endeavors to examine the reliability of collision
detection algorithms by comparing an exclusive utilization of
CAMs with our suggested method which incorporates CPM
containing the relative kinematics of detected objects.
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