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Abstract—Urbanization and the surge in vehicle numbers have
posed significant challenges, including tackling traffic congestion,
reducing ecological footprint, and enhancing safety. In the context
of developing efficient and sustainable transportation technolo-
gies, this research focuses on gaining insights into traffic patterns,
human behavior, and their impact on urban livability. Drawing
on field experience, this study investigates the intricate traffic
conditions in the regional shopping center of Saint-Quentin-en-
Yvelines using advanced SUMO simulations. By refining traffic
models and fine-tuning their parameters, the simulation strategy
is gradually adjusted to accurately simulate the traffic dynamics.
Generated data are then analyzed to ascertain the usefulness of
the whole approach in capturing realistic traffic patterns. The
outcomes pave the way for designing smart vehicular applications
to improve traffic flow in comparable urban contexts.

Index Terms—Traffic patterns, Simulation strategies, Model
refinement, Data visualization and analysis, SUMO package.

I. INTRODUCTION

The exponential urbanization and the escalating growth of
vehicles have given rise to a convoluted lattice of interlinked
challenges, including effective traffic congestion management,
accident prevention, and promoting environmental stewardship
and sustainability. Effectively tackling these matters requires
a focused examination of traffic patterns in specific congested
urban regions, which is a crucial aspect of contemporary traffic
engineering. The research work presented in this paper aims to
acquire a holistic comprehension of these challenges and offer
valuable insights into traffic patterns, human behavior (drivers,
riders and pedestrians), and their ramifications on urban living
standards. Additionally, this study operates within the context
of smart cities, prioritizing the development of powerful and
sustainable transportation technologies across diverse domains
such as energy supply systems, communication networks, and
data analytics. By embracing a systemic and interdisciplinary
approach, it becomes feasible to effectively investigate traffic
in densely urbanized regions. This endeavor sets the stage for
breakthroughs in future smart mobility.

This work is part of a two-stage PhD project. In the first
stage, the primary focus is on the development of a simulation-
based analytical approach to tackle the difficulties associated
with managing traffic jams in highly populated commercial
areas. The findings showcased in this paper represent the
results achieved during this phase. The objective of the second
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stage is to create a novel predictive simulation-based solution
by incorporating vehicular communication at both network and
application layers into the existing model. This involves the
development of IoV (Internet of Vehicles) [1], [2] application
utilities aiming at enhancing traffic conditions in the studied
area, while considering the requirements identified in the first
stage. Furthermore, particular emphasis will be placed on max-
imizing network performances by smartly distributing relevant
connectivity metrics, thereby ensuring real-time cooperation
throughout the IoV interconnected systems.

The simulation model discussed in this paper was designed
using the SUMO (Simulation of Urban Mobility) [3], [4]
toolkit. It is a powerful open-source traffic simulation software
widely used for modeling and analyzing urban transportation
systems. It offers a comprehensive set of features and tools to
simulate vehicle movements, traffic flow, and road networks.
SUMO enables researchers, engineers, and planners to study
traffic patterns, evaluate different scenarios, and appraise the
impact of various strategies on traffic management efficiency.
With its extensive user community and continuous develop-
ment, the tool has become a popular choice for transportation
systems design in both academia and industry.

The developed model is meticulously crafted, drawing upon
extensive field experience observations conducted within the
regional shopping center of Saint-Quentin-en-Yvelines (SQY)
agglomeration in Paris metropolitan area, during peak hours,
particularly on Saturday afternoons. By capturing the intricate
observation details of traffic patterns and dynamics, the model
provides profound insights into the challenges faced within the
congested environment of the considered shopping center. It
faithfully replicates approximate real-world conditions of traf-
fic congestion and bottlenecks encountered on major roads and
highways, ensuring an accurate portrayal of traffic conditions
within the studied region.

Through manipulation of key parameters in the simulation
model, the traffic flows were deliberately designed through an
iterative refinement procedure. Vehicle and pedestrian arrivals
and fluctuations were characterized using Poisson distributions
that underwent incremental adjustments. These distributions
were applied under microscopic car following, lane changing,
and junction traffic flow-specific schemes [4], [5]. Simulation
realism and effectiveness, stemming from this process, were
evaluated by tuning diverse parameters of these schemes.



Upon performing simulations using SUMO, we collected
a significant amount of data related to traffic behavior and
patterns. This data serves as a valuable resource for further
analysis and evaluation of our simulation strategy. Through the
graphical representation of generated data, we have confirmed
several of our apprehensions regarding various aspects such
as traffic densities and congestion levels across multiple zones
within the studied area. By performing data analysis, we are
able to assess how different parameters and adjustments affect
the overall traffic performance, thus identifying potential areas
for further improvement. Ultimately, this data analysis not only
validates our metodology, but also offers valuable insights that
shape the trajectory of the second stage of the project. As
previously mentioned, our objective in this subsequent phase is
to develop predictive simulation-based solutions by integrating
vehicular communications into the existing traffic model.

The structure of this paper is as follows. Section II provides
an overview of related works, offering insights into the existing
literature. Our research direction is outlined in Section III. In
Section IV, we present the foundational knowledge in traffic
engineering that underpins our contributions. The simulation
methodology and case study are both detailed and discussed in
Section V. Section VI delves into data visualization and analy-
sis. The manuscript concludes in Section VII by summarizing
the key findings and charting future research paths.

II. RELATED WORKS

In their work [6], the authors propose a framework aimed at
calibrating microscopic traffic simulations in order to faithfully
reproduce real-world traffic flow conditions. The framework
leverages a dataset gathered from the Ohio State University
campus bus service, encompassing GPS (Global Positioning
System) sensor data, to construct microscopic simulation mod-
els and capture traffic conditions using SUMO. To incorporate
variability, their approach introduces probabilistic traffic flow
generation. Besides, a communication interface is provided to
establish real-time hardware-in-the-loop simulations, enabling
virtual testing of advanced driver-assistance systems.

In [7], the authors employed a novel simulation approach
to emulate traffic in Jianghan Zone, located in Wuhan, China.
Instead of traditional data collection methods, they used geo-
graphic population distribution data from public sources. Sim-
ulations were carried out using the SUMO tool activitygen
allowing to produce realistic traffic flow. The accuracy of the
simulated traffic was evaluated face to real-time road condi-
tions and historical traffic predictions. The findings highlight
the valuable insights provided by the generated traffic data. By
employing refined model classifications, the simulated traffic
closely resembles real-world conditions.

The authors of [8] tackle the pressing problem of road traffic
in major cities, which is exacerbated by the growing global
population and the persistent need for transportation. They per-
form a microscopic traffic SUMO simulation of Coimbra city
in Portugal. Through various experimental scenarios involving
adjustments in simulated vehicle numbers and other variables,

the findings validate the simulator’s ability to accurately repro-
duce traffic conditions in Coimbra. The integration of origin-
destination matrices and routing algorithms based on real data
further enhances the simulator’s potential for future research
pertaining to the case study.

In [9], the authors introduce an object-level mobility traffic
perception module to Eclipse MOSAIC framework [10]. This
module uses advanced spatial indexing methods for efficient
access to traffic entities, particularly moving objects, within a
specified field of view. The computational performance of the
indexing techniques and their integration with SUMO are eval-
uated using TraCI [11]. Using this module, Eclipse MOSAIC
enables the evaluation of distributed applications that analyze
and share information about the close-by surroundings of each
object to enhance traffic state estimations.

The methodology presented in [12] describes the develop-
ment process of a comprehensive traffic simulation covering an
expansive area of approximately 400-km2 surrounding Turin,
Italy. Despite minor simplifications, the initial findings suggest
that it is possible to successfully model the traffic in such a
large-scale urban region. In [13], the authors introduce a traffic
scenario that meets essential criteria in terms of size, realism,
and duration, with the objective of establishing a standardized
foundation for assessments. They use data from Luxembourg
city, which exhibits a typical topology observed in European
medium-sized cities, and incorporates genuine traffic demand
and mobility patterns. The paper outlines the employed method
for constructing LuST (Luxembourg SUMO Traffic) scenario,
providing a compendious overview of its key features, along
with evaluations and validation results.

The authors of [14] propose a solution to reduce traffic con-
gestion at intersections through temporary control strategies
such as optimizing traffic signal timing, implementing two-
stage left turn boxes, and assigning traffic directions. Based on
a simulation-based optimization model, they estimate vehicle
travel time, jam lengths, and key indicators about intersection
performance. Analysis of peak hour traffic data from a main
intersection in Can Tho city, Vietnam, reveals the necessity
for temporary control strategies to address recurrent congestion
and mitigate traffic-related air pollution exposure. Their model
serves as a valuable tool for evaluating and exploring various
traffic scenarios prior to real-world implementation.

III. RESEARCH METHODOLOGY

As previously mentioned in the introduction, the contribu-
tions presented in this paper are an integral part of a doctoral
research project. The overarching objective is to establish
a tooled methodology that effectively tackles the challenges
related to traffic flow optimization and network connectivity
within IoV environments. In order to lay the foundation for the
entire project, the first stage places emphasis on the examina-
tion of practical and pertinent urban traffic scenarios involving
SUMO simulations. Specifically, it targets the issues associated
with congestion and traffic jams in crowded commercial zones.
The outcomes and findings detailed in this paper directly stem
from this particular phase of the project.



The objective of the second stage is to develop original pre-
dictive solutions by integrating networking layers into the ex-
isting simulation SUMO model using the multi-domain/scale
Eclipse MOSAIC framework [10], and network simulation
packages like OMNet++ [15]. This involves the development
of IoV applications aiming at enhancing traffic flow in the
studied traffic areas, while considering the requirements iden-
tified in the first stage of the project. Furthermore, particular
emphasis will be placed on network optimization through in-
telligent distribution of pertinent connectivity metrics, thereby
guaranteeing improved communication during simulations.

This second stage is twofold. Firstly, it entails generating
simulation datasets that capture the connectivity metrics of
the communicating entities (such as vehicles and roadside
equipment) over representative time periods while making
them in relation with traffic data. Secondly, we can harness
the power of machine learning techniques on these datasets in
order to forecast network performance and assess the quality
of service QoS for each scenario over extended time periods.
This process continues to be iterated until configurations align
with the desired system and network requirements.

IV. TRAFFIC ENGINEERING

Traffic flow is influenced by various factors such as drivers,
traffic regulation devices, and road geometry and signs. These
factors, along with their stochastic and unpredictable nature
poses challenges in providing theoretical descriptions of traffic
flow. As a consequence, simulations and quantitative analysis
techniques are commonly employed to study urban road traffic
and design more efficient transportation networks.

The study of traffic flow relies on different levels of mod-
eling: macroscopic, microscopic, and mesoscopic. The macro-
scopic level focuses on overall vehicle flow, including volume,
average velocity, density, road capacity, air quality, and travel
time. The microscopic level examines individual vehicles, con-
sidering their positions, speeds, spacings, accelerations, lane
changes, overtaking, pedestrian and cyclist characteristics, and
driver choices. The mesoscopic level serves as an intermediate
between the microscopic and macroscopic levels.

Traffic volume can be measured and studied daily or hourly.
Daily volume represents the average amount of traffic at a
specific location each day, while hourly volume captures the
traffic during a specific hour. Since traffic flow varies through-
out the day, daily volumes are inadequate for analyzing urban
traffic. Instead, focusing on hourly volume, especially during
peak hours, is essential for understanding and addressing urban
traffic issues. Peak hours reflect the heaviest traffic period and
offer valuable insights for policymakers to enhance efficiency,
road safety, and sustainability in urban transportation systems.

Fundamental traffic flow diagrams [16], [17] (see Figure 1)
depict relationships between vehicle density, speed, and flow
rate, providing valuable insights for the traffic dynamics and
infrastructure planning. These diagrams rely on fundamental
traffic flow models defined by Equations (1) and (2), outlining

Fig. 1. Fundamental diagrams

the relationship between flow, space-mean speed, and density
as per the Greenshields model.

q = u× k (1)

where q is the flow (in veh/h), u is the space-mean speed (in
mi/h or km/h), and k is the density (in veh/mi or veh/km).
The space-mean speed refers to the average speed of vehicles
along a designated road section, distinct from the time-mean
speed, which represents the mean speed measured at a specific
point over a time period:

u = uf (1−
k

kj
) (2)

where uf is the free-flow speed (in mi/h or km/h) and kj is
the jam density (in mi/h or km/h) when vehicles are stopped
on the road close to each other.

Traffic flow distributions in urban areas measure the vehicle
arrivals at a specific position. Vehicle arrivals are not uniformly
distributed, and statistical laws, such as the Poisson distribu-
tion (3), estimate the probability of observing exactly n vehicle
arrivals within a specified time interval t. It is important for
urban transport planning, real-time traffic management and
simulation, congestion prediction, and infrastructure design.

P (n) =
(λt)ne−λt

n!
(3)

The (negative) exponential distribution is derived from the
assumption of Poisson vehicle arrivals. It describes the prob-
ability of having headways (time intervals) between vehicle
arrivals longer than a specific duration t. The distribution is
defined by the following equation.

P (t) = e−λt (4)

Here, λ signifies the average rate of vehicle arrivals in veh/s,
the same parameter employed in Equation (3).

Given that our simulation model is built using SUMO, the
tool incorporates all the theoretical aspects discussed earlier.
This includes the effective capture of traffic flow distributions
such as Poisson and negative exponential distributions, along
with the incorporation of the Greenshields model.



Fig. 2. The regional shopping center of SQY agglomeration. People gathering points and stores (yellow): ACH (Auchan), MGP (Mon Grand Plaisir),
IKIA, BUT, ALPHA (Alpha Park), ONATION (One Nation). Arrival (leaving) directions towards (from) the shopping center (white): R2PS (Route des Deux
Plateaux, South), R2PN (Route des Deux Plateaux, North), PLSR (Plaisir), GRGN (Gare de Plaisir Grignon, Plaisir downtown), VLPR (Villepreux), LCSB
(Les Clayes-sous-Bois). Red arrows represent the entrances to the parking lots. Cyan arrows indicate the presence of significant pedestrian traffic.

This juncture provides an apt occasion to reinforce SUMO’s
selection. The toolbox is widely respected and used for traffic
simulation and modeling. However, toolkit choice hinges on
study requirements and goals. While there are alternative com-
mercial tools available like Vissim1, Aimsun2, Pramaics3 and
TransModeler4, each with its own strengths and weaknesses,
SUMO stands out for several reasons. Firstly, SUMO is an
open-source software, allowing for free access, customization,
and collaboration. Secondly, SUMO offers a modular and ex-
tensible framework, enabling the integration of custom models
and scenarios to address specific research questions. Thirdly,
SUMO benefits from an active community of users, providing
extensive documentation and support. Lastly, SUMO seam-
lessly integrates with other tools and frameworks, facilitating
comprehensive analyses of complex transportation systems by
incorporating, among others, traffic signal controllers, routing
engines, and communication simulators.

V. SIMULATION PROCESS

The simulation process encompasses several essential steps
aimed at accurately modeling and analyzing traffic behavior
(refer to [18] and [19]). To begin, a relevant traffic scenario is
carefully chosen – in this case, the study focuses on the peak
hours of Saturday afternoons at the regional shopping center
situated in the Saint-Quentin-en-Yvelines (SQY) agglomera-
tion within Greater Paris. Next, the road network is imported
from OpenStreetMap (OSM) and meticulously tailored using
netedit [20] (a tool of SUMO), guaranteeing an accurate
portrayal of the shopping center’s layout and its vicinity.

1https://www.ptvgroup.com/fr/solutions/produits/ptv-vissim/
2https://www.aimsun.com/aimsun-next-overview/
3https://www.paramics.co.uk/en/
4https://www.caliper.com/transmodeler/default.htm

Subsequently, both vehicle and pedestrian flows are defined
and tailored. Finally, forming an essential part of the simula-
tion setup, an iterative refinement process is applied, driven by
repeated simulations, to fine-tune the average vehicle rate pa-
rameters (λ in Equations (3) and (4)) across the various flows.
This iterative approach culminates in the generation of traffic
behavior that closely resembles real-world conditions during
the designated peak hours. Together, these steps contribute to
a comprehensive and lifelike analysis of the traffic dynamics
in the selected regional shopping center.

Figure 2 illustrates the geographic extent of the regional
shopping center in SQY (as sourced from Google Maps). The
figure’s legend provides comprehensive information about the
primary stores, arrival (leaving) directions towards (from) the
shopping center, the entrances to parking lots, and the areas
marked by dense pedestrian footfall. The roads experiencing
the highest congestion levels are D11 and D13 (D representing
“Départementale”, which refers to departmental roads). The
study is particularly directed towards examining the traffic of
both vehicles and pedestrians along these roads.

A. Road network

The road network generated by osmWebWizard underwent
several editing steps using netedit. The aim was to declutter
the map by eliminating non-relevant parking, cycle and service
lanes. To guarantee the correctness of highway lane counts, a
deep verification process was conducted, correcting any errors
found in the imported map. Special attention was given to
resolving ambiguities in junction turnarounds (see the example
shown in Figure 3) to enhance the road network clarity and
precision. Moreover, adjustments were made to improve road
geometries with sharp turns, acute radii, and abnormal angles,
resulting in smoother and more realistic road layouts.

https://www.ptvgroup.com/fr/solutions/produits/ptv-vissim/
https://www.aimsun.com/aimsun-next-overview/
https://www.paramics.co.uk/en/
https://www.caliper.com/transmodeler/default.htm


Fig. 3. North junction of Avenue Lucie Aubrac: Google Maps (top left);
OSM imported ambiguous junction (top right); Corrected junction (bottom).

In response to abnormal speed reductions observed during
initial simulations, a comprehensive analysis was conducted.
Factors such as turning radius and angle were carefully exam-
ined to pinpoint areas of concern. By analyzing these factors,
necessary adjustments were made to improve the traffic flow.
In order to mitigate potential conflicts between left-turning
lanes at junctions, we resolved the issue by enlarging the radius
of critical junctions based on real map data. This modification
afforded vehicles greater space to navigate left turns, resulting
in a reduced risk of abnormal congestion.

By enacting these adjustments, our objective was to rectify
the problematic sections in the road network and improve the
simulation accuracy. These interventions enhance the fidelity
of portraying vehicle movement in the affected areas, capturing
the intricacies and dynamics of real-world traffic scenarios.

B. Vehicle types

Various approaches are available to define vehicular demand
in SUMO using existing input data. netedit can be employed
to visually design traffic demand, generating the corresponding
XML definitions. Alternatively, demand files can be textually
created and edited, as practiced in this work. The structure of
the XML demand specifications used for our simulation model
will be outlined later in Section V-C.

A single demand specification comprises two main compo-
nents: i) one vehicle type vtype (several ones could define
distinct physical properties and behavior patterns), and ii) the
definition of a vehicle or repeated vehicles (flow) including
the depiction of connected edges in a route entry represent-
ing the followed road. It is important to note that specifying a
vehicle type is optional, with a default type applied if omitted.
Route information can be directly included as origin (from)
and destination (to) edges within a trip (single vehicle) or a
flow, without the need for a complete embedded route entry.
In these situations, the simulation employs fastest-path routing
based on real-time traffic conditions. Note that the possibility
to define intermediate edges is available through via attribute.

The vTypeDistribution entry allows the combination of
multiple vehicle types (attribute vTypes). As previously stated,
these different vehicle types (vType entries) represent various
demand categories, each characterized by unique physical
attributes and traffic behavior. This feature permits designers
to assign weights to these types and combine them to influence
simulation outcomes. This is particularly useful for replicating
real-world traffic, where certain vehicle types may dominate
specific scenarios. Urban areas might see more passenger cars
with varying driving styles depending on the traffic conditions,
while industrial zones might experience consistent traffic flow
primarily involving trucks and freight vehicles. The subsequent
text outlines the descriptions of the distinct vehicle types we
established. These vehicle types are meant to be consolidated
into vTypeDistribution entries and assigned to the model’s
demand specifications.

Two global vehicle types t_pg and t_tg were defined to
represent two distinct demand categories: trucks and passenger
cars, respectively. These categories are characterized by these
attributes: accel (acceleration in m/s2), decel (deceleration in
m/s2), emergency deceleration emergencyDecel, length (the
vehicle’s length in m), maxSpeed (maximum velocity in m/s),
minGap (the distance to the rear of the leading vehicle in m),
sigma (driver imperfection ranging in [0, 1] with a value of
0 denoting perfect driving), and the individual speedFactor
which is the vehicles expected multiplier for lane speed limits
and the desired maximal speed (defined as truncated normal
distribution). Detailed attribute specifications for each vehicle
type can be found in [5], [21].

<vType id="t_cfm_k" carFollowModel="Krauss"/>
<vType id="t_cfm_wm" carFollowModel="Wiedemann"

estimation="0.5" security="0.5" />

Introducing our second set of vehicle types, we adopted the
Krauss car-following model [22], SUMO’s default microscopic
model, for simulations. This choice is based on its simplicity,
utilizing few parameters for computational efficiency and ease
of use. Derived empirically, the model captures common driver
behavior when following the preceding vehicle. Its versatility
spans urban and highway settings, balancing simplicity with
realism. Additionally, the model’s parameters can be calibrated
using real-world data to reproduce the desired traffic features
and the common driver actions. The attributes of the previously
introduced t_pg and t_tg are exploited by this model.

We also explored the Wiedemann model [23] with nearly the
same attributes, except for two scaled factors security and
estimation ranging in [0, 1]. The first sets the drivers’ desire
for security, and the second represents drivers’ ability to accu-
rately estimate the situation by anticipating the leading vehicle
behavior. This model accurately simulates human driving dy-
namics by considering factors like anticipation, reaction time,
and comfort. Despite expectations with moderate values, it
didn’t outperform the Krauss model. The simulation uncovered
unexpected traffic congestion in areas where a smooth traffic
flow was expected. Further research is planned to explore these
car-following model aspects more deeply.



<vType id="t_lcm_e_m" laneChangeModel="LC2013"
lcStrategic="0.5" lcCooperative="0.0"
lcSpeedGain="0.5" lcKeepRight="0.25"
lcOvertakeRight="0.0" lcOpposite="0.25" />

The vehicle type provided above employs the default lane-
changing model used in SUMO [24], exhibiting a moderate
lane-changing behavior. The attribute lcStrategic indicates
the inclination for strategic lane changes, with higher values
resulting in earlier changes. The attribute lcCooperative sig-
nifies the readiness for engaging in cooperative lane-changing,
where decreased values correspond to diminished cooperation.
A null value was assigned to it as this lane-changing mode is
presumed to be unfavored in the studied area. lcSpeedGain
is the eagerness towards lane-changing to increase speed, with
higher values leading to more lane-changing. lcKeepRight is
the willingness to comply with the “keep right” rule, resulting
in earlier lane-changing with higher values. The lcOpposite

attribute indicates the willingness for overtaking through the
counterflow lane. Higher values lead to more lane-changing.

A second vehicle type, t_lcm_e_kr, shares the default lane-
changing properties with the moderate type but features dif-
ferent values. It strictly adheres to ”keep right” rule, avoiding
lane changes whenever possible. The attributes lcStrategic,
lcCooperative, and lcSpeedGain are all set to 0, indicating
no strategic lane changes, cooperation, or speed gain. Con-
versely, lcKeepRight is set to 1, prioritizing keeping the right
lane. lcOpposite retains the same value as in t_lcm_e_m,
indicating a slight tendency for overtaking through counterflow
lanes. This will ensure that, especially in congested conditions
on fast roads, drivers promptly follow the practice of keeping
right, as elaborated further in Section V-C.

In contrast to the previous two types, the third, t_lcm_e_a,
embodies an assertive lane-changing behavior while utilizing
the same default lane-changing model. It exhibits a heightened
inclination for strategic lane changes (lcStrategic set to
0.75) and a stronger preference for more lane changes to gain
speed (lcSpeedGain also set to 0.75). However, both attributes
lcCooperative and lcKeepRight are retained at 0, reflecting
limited cooperation and a disregard for keeping right. As with
the previous types, lcOpposite maintains a value of 0.25.

It’s noteworthy that in all the three types, lcOvertakeRight
(probability of violating rules for overtaking on the right) is
consistently set to 0. This decision is motivated by our focus on
safe and compliant driving behaviors within the simulations,
aligning with real-world practices ideally adhering to rules.

<vType id="t_jm_m" impatience="0.25" jmCrossingGap="3"
jmIgnoreKeepClearTime="300" />

Concluding our definitions, the type t_jm_m defines mod-
erate driver behaviors at junctions. The impatience attribute
is set to 0.25, reflecting slight considerate driving with respect
to higher-priority vehicles [5]. jmCrossingGap, equal to 3m,
indicates the minimum gap to pedestrians when they approach
the vehicle’s trajectory. The last attribute means the cumulative
waiting time beyond which a vehicle enters a junction, despite
the possibility of generating traffic jam.

In contrast, the t_jm_a type characterizes aggressive junc-
tion behavior. The impatience attribute is set at 1, reflecting a
more assertive approach when interacting with higher-priority
vehicles. The value of jmCrossingGap is set to 1m, denoting a
minimal gap as pedestrians approach, leading to more daring
driving choices. jmIgnoreKeepClearTime is configured for
60s, indicating a threshold at which the vehicle proceeds into
an intersection without considering the risk of congestion.

<vTypeDistribution id="t_p_jm_m_lcm_e_kr"
vTypes="t_pg t_cfm_k t_jm_m t_lcm_e_kr"/>

<vTypeDistribution id="t_p_jm_m_lcm_e_m"
vTypes="t_pg t_cfm_k t_jm_m t_lcm_e_m"/>

<vTypeDistribution id="t_p_jm_a_lcm_e_kr"
vTypes="t_pg t_cfm_k t_jm_a t_lcm_e_kr"/>

<vTypeDistribution id="t_p_jm_a_lcm_e_a"
vTypes="t_pg t_cfm_k t_jm_a t_lcm_e_a"/>

<vTypeDistribution id="t_t_jm_a_lcm_e_a"
vTypes="t_tg t_cfm_k t_jm_a t_lcm_e_a"/>

As stated before, our goal was to allocate unique driving be-
haviors to the various defined vehicle flow entries in our sim-
ulation model. We have created various vTypeDistribution

entries by combining the established vehicle types, and care-
fully designed to encapsulate the diverse driving characteristics
within the simulated environment:

• The t_p_jm_m_lcm_e_kr entry involves moderate lane-
changing and cooperative junction behavior for passenger
cars, emphasizing right-lane adherence;

• The t_p_jm_m_lcm_e_m entry maintains a similar profile
while allowing moderate lane-changing behavior;

• The t_p_jm_a_lcm_e_kr entry showcases assertive junc-
tion behavior while prioritizing right-lane adherence and
cooperative lane-changing;

• The t_p_jm_a_lcm_e_a entry combines aggressive junc-
tion behavior and lane-changing;

• The t_t_jm_a_lcm_e_a entry expands assertive behavior
to trucks while retaining same junction behavior and lane
changes as the previous entry.

C. Demand specifications

Vehicle flows were defined, configured and XML-generated
over specific routes chosen from the “flow (embedded route)”
mode in the “Demand / Vehicle mode” menu of netedit. It’s
noteworthy that we intentionally avoided using the alternative
mode ”flow (from-to junctions)”. This choice was influenced
by the observation that vehicles operating under this mode
tend to compute alternate routes to bypass congestion and
expedite their arrival at destination junctions. Resultant vehicle
trajectories from such flow types would not faithfully depict
actual traffic behaviors.

By initially selecting embedded routes, we aimed to capture
a more realistic depiction of traffic behavior. Drivers tend to
stick to well-known and frequently used routes, often relying
on GPS navigation apps on their mobile devices. Deviations
from these established routes are typically minimal. That is
why embedded routes flow type align better with real driving
practices, enhancing the precision and realism of our portrayal
of traffic dynamics.



The XML code below represents the demand element auto-
matically generated by netedit for one of the flows linking
R2PS and ACH (see Figure 2). The average arrival rate λ of
the flow, specified as a Poisson distribution (see Section IV),
can be expressed using the attribute period="exp(λ)" [25]
where λ is the average arrival rate in veh/s. begin="0.00" and
end="3600.00" indicate that the flow is designed to span at
least one hour (3600s), specifically at the peak hour. To capture
the peak traffic hour and gain valuable insights on traffic issues
of the studied area, we specifically analyze the hourly traffic
between 2:30 PM and 3:30 PM on Saturdays (see Section IV).
This timeframe, drawn from our field experience and Google
statistics, offers essential help to emulate the traffic patterns
during peak hours.

<!-- Manually defined -->
<flow id="f_r2ps_to_ach" type="t_p_jm_a_lcm_e_kr"

begin="0.00" end="3600.00" color="white"
departLane="random" departSpeed="max"
period="exp(0.034)">

<route edges="814259719 689277284#0 689277288#0
689277288#1 689277288#2 881567591#0
881567591#1 881567591#2 542209564#3
542209564#4 542209564#5 542209564#6
542209564#7 760744245"/>

</flow>
<!-- Randomly generated -->
<trip id="veh677" type="t_p_jm_a_lcm_e_a"

depart="1947.11" departLane="best"
departSpeed="max"
from="-88439574#1" to="44419464#0"/>

The application of the t_p_jm_a_lcm_e_kr distribution to
the given flow f_r2ps_to_ach captures its specific driving
attributes. This distribution is characterized by assertive junc-
tion behavior, prioritization of the right lane, and cooperative
lane-changing. The complete list of flows, along with their
corresponding type distributions and attributes, is available for
download. The link to access this detailed configurations will
be provided in a later section of the paper.

In the randomly generated passenger car trips, the default
type has been replaced with t_p_jm_a_lcm_e_a. This modi-
fication is particularly significant as it seeks to embody their
assertive junction behavior and lane changes. The usage of
random traffic with this specific assertive behavior in this
scenario mirrors the traffic patterns of the local residents, who
possess an intimate familiarity with the area and knowledge of
the surroundings, especially during peak hours. Their driving
behavior tends to be assertive, reflecting their comfort and
circulation expertise.

<vType id="t_d_a" speedFactor="norm(1,0.1)" impatience="1" />
<vType id="t_d_m" speedFactor="norm(1,0.1)" impatience="0.5" />

<personFlow id="p_ach_to_mgp_1" type="t_d_a" color="red"
begin="0.00" end="3600.00" period="exp(0.03)">

<personTrip from="E5" to="1084069664#3" lines="ANY"/>
<personTrip from="1084069664#3" to="E5" lines="ANY"/>

</personFlow>

<personFlow id="pf_bus_to_onation" type="t_d_m" color="red"
begin="0.00" end="3600.00" period="exp(0.02)">

<personTrip from="E53" to="E52" lines="ANY"/>
<personTrip to="E53" from="E52" lines="ANY"/>

</personFlow>

The preceding XML entries represent the structure of pedes-
trian flows. Our selection of the default pedestrian behavior
model, namely striping, facilitates pedestrian interaction and
collision avoidance. Alternatively, the non interacting model
is an alternative choice where pedestrians don’t interact with
vehicles or other pedestrians, optimizing execution speed. This
model might be advantageous in scenarios where pedestrian
dynamics play a less pivotal role in the simulation [26].

Attribute impatience determines the extent to which pedes-
trians are willing to cross the street at an unprioritized cross-
ing, even if it requires vehicles to brake. It takes values from 0
to 1, with 0 representing patient pedestrians and 1 representing
impatient pedestrians. In our simulations, most of the pedes-
trian flows are defined as impatient, except for a few specific
ones (particularly the flows near ONATION) which are set to
have a moderate level of impatience (impatience="0.5").

D. Gradual fine-tuning of the flows’ average arrival rate

As discussed in Section III, our main objective is not to
carry out an exhaustive study of vehicular traffic in the specific
area under investigation. Rather, our focus is on establishing
a method for developing intelligent IoV applications, aiming
at enhancing the flow of vehicles in densely crowded areas.
While conducting a real-world case study on vehicular traffic
holds significance, our main interest lies in building realistic
simulation models within SUMO. These models will serve as a
robust foundation for creating the envisioned IoV application,
following a systematic scientific approach. Delving into an in-
depth analysis of challenges related to traffic takes a secondary
position in terms of importance. Instead, our methodology is
driven by the aim to design effective IoV applications focused
on improving the smoothness of traffic, ultimately aiming to
implement such applications in large-scale real-world projects.

The absence of actual data regarding average vehicle flows
in the examined area introduces an additional challenge when
investigating traffic dynamics within this case study. However,
this limitation offers an important opportunity to harness sim-
ulation and modeling tools like SUMO, enabling virtual mir-
roring of the real-world traffic. Through meticulous calibration
of simulated traffics with genuine parameters and validating
them against existing data, we obtain crucial insights on traffic
patterns, useful to assess the effectiveness of IoV applications.
This approach enables the formulation of innovative strategic
solutions that can be further honed and executed in real-world
contexts, ultimately contributing to the development of more
efficient and sustainable transportation systems.

To address the absence of actual data concerning the average
vehicle rates λ (refer to Section III) of the different considered
flows within the studied area, our proposed approach involves
an iterative calibration procedure. Here, we make adjustments
to the λ parameter’s value of each of the traffic flows defined in
the simulation model. Through a comparison of the simulated
traffic patterns with any available data (such as Google Maps
travel time statistics or practical experiences), we can gradually
fine-tune the λ values until they closely fit to real-world traffic.
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Fig. 4. Refinement of average arrival rates λ. IVFL (incoming vehicle flows
list), OVFL (outgoing vehicule flows list), PFL (pedestrian flows list).

By methodically modifying λ parameters, we can simulate
multiple scenarios, evaluate different modeling strategies, and
gauge their impact on traffic realism. For the sake of clarity, we
have introduced a SysML [27] activity diagram (see Figure 4)
to illustrate the steps of the procedure, outlined as follows:

1) The process starts by gradually adding flow entries to the
model in a specific sequence: beginning with incoming
vehicular flows (IVFL), then the outgoing flows (OVFL),
and finally pedestrian flow entries (PFL).

2) Subsequently, simulations under SUMO are performed,
accompanied by observations and comparisons against
available real-world data and field experiences.

3) If not all the flows are included and traffic is unrealistic,
two scenarios arise: (a) if the most recently added flow
appears unrealistic, its λ parameter value is adjusted (by
adding or subtracting a step δ), and revert to step (2); (b)
if the previously added flows are disrupted, an automated
Python script is used to fine-tune the affected flows in a
similar way as (a), and the process returns to step (2).

4) If not all flows are included, but the traffic patterns are
realistic, the process loops back to step (1).

This procedure iterates until all flows are fully added and
assessed. Following these steps guarantees a comprehensive
and systematic enhancement of the traffic simulations process.
The SUMO model input files are accessible for download5.

5https://github.com/Jean-Tshibangu-jtm/sumo_ccr_sqy

VI. DATA ANALYSIS

Our study employs a carefully conducted data analysis, serv-
ing as the final step to derive insights from the simulation data
we have gathered. This analysis involves pattern recognition
and correlation examinations to systematically uncover trends
and relationships within the generated dataset. This approach
validates hypotheses and draws informed conclusions from the
simulation results. This analysis taps into our simulation data’s
potential, contributing to our study’s objectives.

While acknowledging the significance of data analysis, it is
crucial to grasp that this phase occupies a subordinate position
compared to the intricate simulation process, which constitutes
the cornerstone of our work. The demanding nature of refining
the simulation process absorbed the most significant part of our
time, owing to its inherent complexity. Ensuing data analysis,
while pivotal, primarily serves to corroborate the observations
gleaned from the simulation.

Our data metrics undergo meticulous selection, guided by
a comprehensive criteria. The foremost among these criteria
include relevance, which ensures that each metric effectively
evaluates the specific phenomenon or objective at hand. In
our context, this translates to accurately assessing congestion
levels within the studied area. Sensitivity to traffic variations
stands as the second criterion, spotlighting a metric’s capacity
to promptly capture data shifts. This criterion holds particular
significance within our framework, as it empowers the detec-
tion and quantification of congestion fluctuations. Progressing
to the third criterion, granularity, we examine a metric’s ability
to deliver finely nuanced measurements. This attribute supports
precise analysis by furnishing information at a level of detail
that aligns with our needs.

Three types of detectors were utilized to generate data: lane
area detectors, induction loop detectors, and edge data, each
contributing unique information essential for studying traffic
patterns, congestion, and the effectiveness of the simulation
strategies [28]. Lane area detectors replicate real-world traffic
measurement devices placed in specific areas or lanes of a road
segment to provide data about vehicle movement. These de-
tectors are valuable for studying lane-specific traffic patterns,
densities, and lane-changing behavior, allowing the simulation
of various traffic scenarios. Induction loop detectors represent
real-world traffic sensors to monitor vehicular movements on
the road network, offering essential traffic data for analyzing
behavior, congestion, vehicles speed, travel times, and more.
Edge dataset [29] refers to macroscopic information collected
from specific road segments (edges), including various metrics
like vehicle counts, density, mean speed, and occupancy rates.

Figure 5 showcases the seamless integration of the men-
tioned detectors into our simulation model. It is important
to mention that although edge data entries are not explicitly
shown in the figure, they are textually included as additional
in osm.sumocfg (SUMO configuration file). The most critical
congested paths include R2PS to RA2 via RA1, PLSR to RA1,
RA3 to/from RA4, CCB to RA4, and RA5 to RA4. The plots
presented below are restricted to these paths.

https://github.com/Jean-Tshibangu-jtm/sumo_ccr_sqy
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Fig. 5. Detectors added to our simulation framework. CCB stands for “Chemin de la Croix Blanche” and RAx represents Roundabout n°x (refer to Figure 2
for the rest of acronyms).

Fig. 6. Maximum jamming lengths (top), and space-mean speeds experienced
(below) along the identified routes (bottom).

The data depicted in Figure 6 (top) illustrates The length
of the longest observed traffic jam during the simulation time,
including the gaps between blocked vehicles. This initial plot
reveals that the lengthiest congestion occurs along the routes
R2PS to RA2 through RA1 and PLSR to RA1, which aligns
with our observations.

The plot in Figure 6 (below) shows the evolution of space-
mean speeds (see Section IV) experienced along the identified
routes. Only the speed recorded on route RA3 to RA4 remains
non-null at the end of the simulation. This phenomenon can
be attributed to the release of vehicles obstructed by traffic
congestion at the MGP parking exit around RA2. As all flows

are exhausted, these vehicles are eventually liberated, and their
presence becomes detectable only by the RA3 to RA4 detector.
We can also note that the average speed drops significantly as
detected on the routes R2PS to RA2 through RA1 and PLSR
to RA1, which is consistent with the high jam lengths observed
on these routes.

Fig. 7. CCB to RA4: maximum jamming lengths vs. space-mean speed (top),
and vs. mean time loss (bottom).

The data meanTimeLoss is the average time loss per vehicle
in the corresponding interval. The total time loss is computed
by multiplying this value with nVehSeen, which represents the
count of vehicles that were present at the detector during the
simulation timeline. The correlations between the maximum
jam length observed on the CCB to RA4 route and both the
space-mean speed and time loss are evident (see Figure 7).



Fig. 8. Density (refer to Section IV) recorded respectively on paths R2PS to
RA2, RA3 to RA4, and RA5 to RA4 (top). Fundamental diagram of density
vs. space-mean speed for the path R2PS to RA2 (bottom).

In Figure 8 (top) we can see the evolution of densities for
the routes R2PS to RA2 through RA1, RA3 to RA4, and RA5
to RA4. Density signifies the filling capacity of the road rather
than the length of congestion. This is why the density of the
edge RA5 to RA4 is higher than that of edge R2PS to RA2. In
the middle of the simulation, the edge RA5 to RA4 remains
consistently filled, while the edge R2PS to RA2 becomes less
congested, causing lower density (refer to the video recording
in Github). Figure 8 (bottom) shows an empirical plot of the
fundamental diagram (see Figure 1) relating density to space
mean-speed of the route R2PS to RA2 via RA1.

VII. CONCLUSIONS AND PERSPECTIVES

Our research makes substantial strides in addressing the
complexities of studying urban traffic congestion, particularly
in densely populated commercial zones. Our meticulous devel-
opment and refinement of a simulation-based approach have
yielded valuable insights into the intricate interplay of traffic
patterns and behaviors. This study’s significance is heightened
as it resonates within the realms of smart cities, vehicular
networks, and data analytics. By delving into these challenges,
our work lays a robust foundation for implementing transfor-
mative solutions through IoV applications and machine learn-
ing techniques, promising enhanced smarter urban mobility.
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