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Let U be a Morse function on a compact connected m-dimensional Riemannian manifold, m ě 2, satisfying min U " 0 and let U " tx P M : U pxq " 0u be the set of global minimizers. Consider the stochastic algorithm X pβq pX pβq ptqq tě0 defined on N " M zU, whose generator is U ¨´β x∇U, ∇¨y, where β P R is a real parameter. We show that for β ą m 2 ´1, X pβq ptq converges a.s. as t Ñ 8, toward a point p P U and that each p P U has a positive probability to be selected. On the other hand, for β ă m 2 ´1, the law of pX pβq ptqq converges in total variation (at an exponential rate) toward the probability measure π β having density proportional to U pxq ´1´β with respect to the Riemannian measure.

Introduction

Stochastic global minimization algorithms taking into account the a priori knowledge of the minimal value of the objective function U are called fraudulent, since this minimal value is often not available in practice. Nevertheless some of their interests are presented in [START_REF] Miclo | On the convergence of global-optimization fraudulent stochastic algorithms[END_REF], where such a procedure was introduced when U is a Morse function defined on a compact manifold M of dimension m ě 2. The underlying stochastic process X pβq pX pβq ptqq tě0 , taking values in M , comes with a real parameter β which can be tuned to increase the relative importance of U with respect to the injected randomness. Two quantities β _ ě β ^P R (depending explicitly on the eigenvalues of the Hessians of U at its global minima, see Remark 4 below) were introduced so that β ą β _ implies the a.s. convergence of X pβq ptq as t Ñ 8, toward the global minima of U (and each of them attracts the algorithm with positive probability, when X pβq p0q is not a global minima), while for β ă β ^the probability that X pβq ptq a.s. converges toward a global minimum of U is zero.

Our goal here is to sharpen these result and describe completely the long term behavior of X pβq for all β ‰ β 0 , where β 0 m 2 ´1 is a universal (i.e independent of U ) critical value. We will show that for β ą β 0 , X pβq ptq a.s. converges toward a global minimizer of U and that each global minimizer has a positive probability to be selected. On the other hand, for β ă β 0 , the process converges in distribution toward a (unique) invariant distribution whose density (with respect to the Riemannian measure) is explicit. This result will be a consequence of the persistence/non-persistence approach presented in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF] and [START_REF] Benaïm | Stochastic Persistence[END_REF]. The paper is organized as follows. Section 2 sets the notation and presents the main results. Section 3 considers the situation where M is no longer a compact manifold but the Euclidean space R m . It allows to introduce the main ingredients of the proof in a simple setting. Section 4 is devoted to the proof of the main results. Certain additional points are discussed in appendix.

Notation and main result

We assume throughout that M is a compact connected Riemannian manifold having dimension m ě 2 and U : M Ñ R is a smooth function such that (this is the fraudulent assumption):

min M U " 0.
The zero set of U,

U

tp P M : U ppq " 0u, is then the set of global minimizers. We furthermore assume that every p P U is non-degenerate, meaning that the Hessian of U at p is non-degenerate. This assumption implies that U is finite. In particular, N M zU is a noncompact connected manifold. Let L β be the operator on C 2 pM q defined as

L β U ¨´β x∇U, ∇¨y (1) 
where , x¨, ¨y and ∇ stand for the Laplacian, scalar product and gradient associated to the Riemannian structure of M, and β P R.

A diffusion process generated by [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF], is a continuous-time Feller Markov process on M, X pβq " pX pβq ptqq tě0 , with infinitesimal generator L β and domain DpL β q Ă C 0 pM q (see e.g. Le Gall [START_REF] Gall | Brownian motion, martingales, and stochastic calculus[END_REF], Section 6.2, for the definitions of Feller processes, domains and generators) such that for all f P C 2 pM q :

f P DpL β q and L β f " L β f.
Since the mapping ∇U and ? U are Lipschitzian, due to the non-degeneracy assumption of the zeroes of U for the latter, such a diffusion process exists. More details are given in the appendix. In addition, given the initial distribution of X pβq p0q, say µ, the law of X pβq , P pβq µ , is uniquely determined by µ and L β . As usual, we write P pβq x for P pβq δx . By a mild (but convenient) abuse of notation we may write P x pX pβq P ¨q for P pβq x p¨q. We also let P pβq " pP pβq t q tě0 denote the semi-group induced by X pβq . It is defined, as usual, by @ t ě 0, @ x P M, P pβq t f pxq E x f pX pβq ptqq for every measurable, bounded or nonnegative, map f : M Ñ R.

The next proposition summarizes some basic properties of P pβq . Its proof, which relies on classical results, is given in the appendix.

Proposition 1 (i) P pβq leaves N and U invariant:

-For all t ě 0, P pβq t 1 N " 1 N . (ii) P pβq is Feller on M and strong-Feller on N :

-For all t ě 0 and f P C 0 pM q, P pβq t pf q P C 0 pM q; -For all t ą 0 and f : N Ñ R bounded measurable, P pβq t pf q is continuous on N . Note that P pβq is not strong Feller on M , as it can be seen by considering the indicator function of N . In order to state our main result we first associate, to each p P U, a certain Lyapunov exponent. Given a symmetric positive definite m ˆm real matrix A, and β P R, define the probability measure µ A,β on S m´1 , the unit sphere in R m , via

@ θ P S m´1 , µ A,β pdθq " 1 ZpA, 1 `βq xθ, Aθy ´1´β σpdθq (2) 
where, σ is the uniform probability measure on S m´1 , x ¨, ¨y the Euclidean dot product (not to be confused with the Riemannian metric on M ) and ZpA, 1 `βq is the normalization constant. Define the β-average eigenvalue of A as ΛpA, βq "

ż S m´1
xθ, Aθy µ A,β pdθq " ZpA, βq ZpA, 1 `βq .

Let λ 1 pAq ď . . . ď λ m pAq be the eigenvalues of A. Observe that ΛpA, βq only depends on these eigenvalues, because σ is invariant by orthogonal transformations and A is orthogonally conjugate to a diagonal matrix. Observe also that

λ 1 pAq ď ΛpA, βq ď λ m pAq. (4) 
Remark 2 Inequalities (4) are strict, except when λ 1 pAq " λ m pAq. Furthermore it can be shown (see the appendix Section 5.2) that for all numbers λ ´ă λ ă λ `, there exists, for m sufficiently large, a m ˆm definite positive matrix A such that λ 1 pAq " λ ´, ΛpA, βq " λ and λ m pAq " λ `. Given p P U, we let A p denote the diagonal matrix whose entries 0 ă λ 1 ppq ď . . . ď λ m ppq are the eigenvalues of the Hessian of U at p. Set

β 0 m 2 ´1.
Our main result is the following.

Theorem 3 Let x P N and β P R.

(i) If β ą β 0 , then

ÿ pPU P x « lim sup tÑ`8 lnpdpX pβq ptq, pqq t ď ´ΛpA p , βqpβ ´β0 q ff " 1,
where each term in the above sum is positive.

(ii) If β ă β 0 , then X pβq has, on N, a unique invariant probability distribution given by

π β pdxq 1 C β U pxq ´1´β pxq pdxq,
where C β is a normalization constant and pdxq stands for the Riemannian measure. Furthermore:

(a) X pβq is positive recurrent on N, meaning that for all f P L 1 pπ β q, P x a.s., lim tÑ`8 Remark 4 Theorem 3 is an improvement over the results of [START_REF] Miclo | On the convergence of global-optimization fraudulent stochastic algorithms[END_REF], which showed the a.s. convergence of X pβq toward elements of U (each being approached with a positive probability) only for β ą β _ ě β 0 with

β _ max pPU ř lP m λ l ppq 2λ 1 ppq ´1, (5) 
and the a.s. non-convergence of X pβq toward elements of U for β ă β ^ď β 0 , with

β ^ min pPU ř lP m λ l ppq 2λ m ppq ´1. (6) 
Remark

5
Here we restrict our attention to dimensions m ě 2, so that N is connected. The case m " 1 which corresponds to the circle is already treated in [START_REF] Miclo | On the convergence of global-optimization fraudulent stochastic algorithms[END_REF]. Remark 6 By Theorem 3, the diffusion X pβq on N is transient for β ą β 0 and positive recurrent if and only if β ă β 0 , due to the fact that ş N U ´1´β d " `8 for β ě β 0 . By standard results (see e.g. Kliemann [START_REF] Kliemann | Recurrence and invariant measures for degenerate diffusions[END_REF], Theorem 3.2 applied with C " N ), it is then either null recurrent or transient for β " β 0 . It would be interesting to investigate this situation.

Euclidean computations

This section considers a situation where the state space M is no longer a compact manifold but the Euclidean space R m , with m ě 2. We state a theorem (Theorem 7 below) analogous to Theorem 3 (i). This result is interesting in itself, and its proof allows us to explain, in a simple framework, how to characterize the attractiveness/repulsivity of a global minimum. The main idea is to expand a critical point to a sphere, using polar decompositions, following [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF].

Let U : R m Ñ R `be a smooth function with min U " 0. We assume that for each p P U U ´1p0q, Hess U ppq is positive definite. In particular, points in U are isolated and U is therefore countable.

For any fixed β P R, as in (1), we are interested in the operator L β defined on C 2 pR m q, via @ x P R m , L β rf spxq U pxq f pxq ´β x∇U, ∇f y pxq [START_REF] Gallot | Riemannian geometry. Universitext[END_REF] where , x¨, ¨y and ∇, respectively denote, the Euclidean Laplacian, scalar product and gradient. Throughout all this section }x} " a xx, xy denotes the Euclidean norm of x. Associated to [START_REF] Gallot | Riemannian geometry. Universitext[END_REF] is the stochastic differential equation dX pβq ptq " ´β∇U pX pβq ptqqdt `b2U pX pβq ptqqdB t [START_REF] Ichihara | A classification of the second order degenerate elliptic operators and its probabilistic characterization[END_REF] where B " pB t q tě0 is a standard Brownian motion on R m . By local Lipschitz continuity of ∇U and ? U , there exists, for each x P R m , a unique solution X pβq : r0, τ 8 q Ñ R m starting from x, (i.e. X pβq p0q " x). Here, 0 ă τ 8 ď 8, denotes the explosion time of X pβq and is characterized by

τ 8 ą t ô }X pβq ptq} ă 8.
The set R m zU is invariant, in the sense that for all t ě 0, x P R m zU, P x pX pβq ptq P R m zU |τ 8 ą tq " 1.

The proof of this last point is the same as the proof of Proposition 1 (i) given in the appendix.

Theorem 7 (i) Suppose β ą β 0 . Then, for all x P R m zU and p P U,

P x « lim sup tÑ`8 lnp}X pβq ptq ´p}q t ď ´ΛpA p , βqpβ ´β0 q ff ą 0 (9) 
where A p , ΛpA p , βq are defined as in Section 2.

(ii) Suppose β ą β 0 , and in addition, that there exist positive constants α, r (possibly depending on β) such that

2β 0 U pxq ´βx∇U pxq, xy ď ´α}x} 2 (10) 
whenever }x} ě r. Then, U is finite and for all x P R m zU,

ÿ pPU P x « lim sup tÑ`8
lnp}X pβq ptq ´p}q t ď ´ΛpA p , βqpβ ´β0 q; τ 8 " 8

ff " 1. (11) 
(iii) Suppose β ă β 0 . Then, for all p P U and x P R m ztpu

P x " lim tÑ8 X pβq ptq " p ı " 0.
Remark 8 The condition ( 10) is given for its simplicity. However, the conclusion [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF] holds true under the weaker assumption, implied by [START_REF] Kliemann | Recurrence and invariant measures for degenerate diffusions[END_REF] (see Lemma 9 below), that X pβq almost surely never explodes (i.e τ 8 " 8) and eventually enters a ball Bp0, rq containing U for some r ą 0. The remainder of this section is devoted to the proof of Theorem 7. We first recall some classical facts about diffusion operators, see e.g. Bakry, Gentil and Ledoux [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. The carré du champ Γ L associated to a Markov generator L defined on an algebra ApLq is the bilinear functional defined on ApLq ˆApLq via @ f, g P ApLq, Γ L rf, gs Lrf gs ´f Lrgs ´gLrf s

(we will denote Γ L rf s Γ L rf, f s).
The generator L is said to be of diffusion, if ApLq is stable by composition with smooth functions and if we have

Lrϕpf qs " ϕ 1 pf qLrf s `ϕ2 pf q 2 Γ L rf s (12) 
for any f P ApLq and any function ϕ smooth on the image of f . In this situation we also have, with the same notations,

Γ L rϕpf qs " pϕ 1 pf qq 2 Γ L rf s (13) 
The Markov generator given in ( 7) is of diffusion with ApL β q " C 2 pR m q. The corresponding carré du champ is given by

@ f P C 2 pR m q, Γ L β rf s " 2U }∇f } 2 . ( 14 
)
Our first goal is to show that, under condition (10), X pβq never explodes and always enter the ball Bp0, rq. For all s ě 0, we let τ s " inftt ě 0 : }X pβq ptq} ď su and τ s " inftt ě 0 : }X pβq ptq} ě su.

Note that these stopping times depend on β, but to shorten notation we omit this dependance in their definition.

Lemma 9 Under the condition (10), P x pτ 8 " 8; τ r ă 8q " 1 for all x P R m and r is as in [START_REF] Kliemann | Recurrence and invariant measures for degenerate diffusions[END_REF].

Proof

Let V : R m Ñ R be a smooth function coinciding with lnp}x} 2 q for }x} ě r. Using the formulaes ( 12) and ( 14) it comes that, for all }x} ě r,

L β pV qpxq " 2 }x} 2 p2β 0 U pxq ´β x∇U pxq, xyq ď ´2α.
In particular, for all x P R m , L β pV qpxq ď C where C " sup txPR m :}x}ďru |L β pV qpxq|. Thus, by Ito's formulae, for all k ě 1,

lnpk 2 qP x pτ k ď tq ď E x pV pX pβq pt ^τ k qq " V pxq `Ex « ż t^τ k 0 L β rV spX pβq psqqds ff ď V pxq `tC.
This shows that P x pτ k ď tq Ñ 0, as k Ñ 8. Hence P x pτ 8 ă 8q " 0.

Now, by Ito formulae again, the process pM t q tě0 defined as M t :" V pX pβq pt ^τr qq ´lnpr 2 q ´ż t^τr 0 L β V pX pβq psqqds ě 2αpt ^τr q is a nonnegative P x local martingale. A nonnegative local martingale may not be a martingale but is always a supermartingale (Le Gall [START_REF] Gall | Brownian motion, martingales, and stochastic calculus[END_REF], Proposition 4.7). Thus 2αE x pt^τ r q ď E x pM t q ď V pxq´lnpr 2 q. Hence E x pτ r q ă 8.

Our next goal is to investigate the behavior of X pβq around a critical point p P U. Without loss of generality, we assume that p " t0u. We let A " Hess U p0q. Fix P p0, 1q small enough so that U X Bp0, q " t0u. Write any x P Bp0, qzt0u under its polar decomposition x " ρθ with ρ P p0, q and θ P S m´1 . This decomposition induces the mapping

P : C 2 pBp0, qq Q f Þ Ñ P rf s P C 2 pp0
, q ˆSm´1 q with @ pρ, θq P p0, q ˆSm´1 , P rf spρ, θq f pρθq

Endow S m´1 with its usual Riemannian structure, inherited from R m , and denote x ¨, ¨yθ , ∇ θ , div θ and θ the corresponding scalar product, gradient, divergence, and Laplace-Beltrami operator. Note that x ¨, ¨yθ is just the restriction of x ¨, ¨y to the tangent space of S m´1 at θ.

Classical computations in polar coordinates show that for any f, g P C 2 pBp0, qq, we have on p0, q ˆSm´1 , P rx∇f, ∇gys " B ρ P rf sB ρ P rgs `1

ρ 2 x∇ θ P rf s, ∇ θ P rgsy θ , P r f s " B 2 ρ P rf s `m ´1 ρ B ρ P rf s `1 ρ 2 θ P rf s.
It leads us to introduce the operator L β on C 2 pp0, q ˆSm´1 q defined by

L β ¨ U ˆB2 ρ ¨`m ´1 ρ B ρ ¨`1 ρ 2 θ ¨˙´β ˆpB ρ UqB ρ ¨`1 ρ 2 x∇ θ U, ∇ θ ¨yθ ˙(16)
where U P rU s. Indeed, on C 2 pBp0, qq, we have the intertwining relation

L β ˝P " P ˝Lβ .
Lemma 10 The operator L β extends to a diffusion operator, still denoted L β , on C 2 pr0, q ˆSm´1 q, whose associated diffusion process X pβq leave t0u ˆSm´1 invariant. On t0u ˆSm´1 , identified with S m´1 , X pβq admits for generator the operator G β acting on C 2 pS m´1 q via

@ f P C 2 pS m´1 q, G β rfs 1 2 Ψ 1`β A div θ pΨ ´β A ∇ θ f q (17)
where @ θ P S m´1 , Ψ A pθq " xθ, Aθy . Furthermore, G β has a unique invariant probability measure on S m´1 , given by µ A,β (see Equation (2)).

Proof

Our assumptions on U imply that, uniformly over θ P S m´1 , It is easily checked that G β can be rewritten under the divergence form given by (17). This divergence form implies that the probability measure µ A,β defined in (2) is invariant. By ellipticity of G β there is no other invariant probability measure.

lim ρÑ0 `Upρ, θq ρ 2 " 1 2 xθ, Aθy , (18) 
Lemma 11 Suppose β ą β 0 and 0 ă λ ă ΛpA, βq. There exists 0 ă 0 ď with the property that for all 0 ă η ď 1, there exists 0 ă 1 ă 0 such that for all }x} ď 1 ,

P x « lim sup tÑ`8
lnp}X pβq ptq}q t ď ´λpβ ´β0 q; τ 0 " 8 ff " P x rτ 0 " 8s ě 1 ´η.

If now, β ă β 0 , then for all x P R m zt0u,

P x " lim tÑ`8
}X pβq ptq} " 0  " 0.

Proof

The proof follows from the stochastic persistence approach used in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF], [START_REF] Benaïm | Stochastic Persistence[END_REF]. Let V be the function defined on p0, q ˆSm´1 via Vpρ, θq ´lnpρq.

We claim that:

[a] L rVs can be extended into a continuous function H β on r0, q ˆSm´1 ;

[b] Γ L β rVs is bounded on p0, q ˆSm´1 ; and

[c] µ A,β rH β p0, ¨qs " ΛpA, βqpβ ´β0 q.

Using the form of L β (equation ( 16)) and the equalities (18), ( 19), paq holds true with

H β p0, θq " pβ ´β0 q xθ, Aθy (24) 
and pcq directly follows from the definition of ΛpA, βq. For pbq, the definition of L β and Γ L β , lead to

@ f P C 2 pp0, q ˆSm´1 q, Γ L β rf s " 2U ˆpB ρ f q 2 `1 ρ 2 |∇ θ f | 2 ˙.
Thus,

Γ L β rVs " 2 Upρ, θq ρ 2
which is bounded in view of (18). This concludes the proof of the claim. If β ą β 0 , µ A,β rH β p0, ¨qs ą 0 and the first assertion of the lemma follows from Theorem 5.4 in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF] (to be more precise, this follows from the proof of Theorem 5.4 in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF], because the formulation of Theorem 5.4 in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF] doesn't specify that η can be chosen arbitrary close to one). If β ă β 0 , µ A,β rH β p0, ¨qs ă 0 and (see e.g. [START_REF] Benaïm | Stochastic Persistence[END_REF], Proposition 8.1 or the proof of Theorem 3.2 (iii) in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF]) there exist positive constants 1 ď , C such that E x pτ 1 q ď C| lnp}x}q| ă 8 for x P Bp0, 1 qzt0u.

We can now conclude the proof of Theorem 7. We start with assertion piiq. Fix β ą β 0 . For n P N sufficiently large (so that ΛpA p , βq ą 1 n ) and p P U, let E n ppq be the event defined as

E n ppq " # lim sup tÑ`8
lnp}X pβq ptq ´p}q t ď ´pΛpA p , βq ´1 n qpβ ´β0 q

+ ,
and let

E n " ď pPU E n ppq.
The set U is finite, since [START_REF] Kliemann | Recurrence and invariant measures for degenerate diffusions[END_REF] cannot be satisfied by a point x P U and by consequence U is included into the compact ball centered at 0 and of radius r. Thus there exists, by Lemma 11, 1 ą 0 such that

P x pE n ppqq ě 1 2
for all x P Bpp, 1 q and all p P U. Let U 1 ď pPU Bpp, 1 q and τ U 1 inftt ě 0 : X pβq ptq P U 1 u. By ellipticity of L β on R m zU, U is open and accessible from all x P R m , in the sense that P x pX pβq pt x q P U 1 q ą 0 for some t x ě 0. Thus, by Feller continuity and compactness of Bp0, rq, there exists δ ą 0 such that P x pτ U 1 ă 8q ě δ for all x P Bp0, rq. Combined with Lemma 9, this proves that P x pτ U 1 ă 8q ě δ for all x P R m . Thus, P x pE n q ě δ{2 for all x P R m . The strong Markov property, implies that P x pE n q " 1. Hence

P x p č n E n q " 1.
This concludes the proof of piiq.

We now pass to the proof of piq. Fix β ą β 0 and assume without loss of generality that p " t0u. Let Ũ : R m Ñ R `be a smooth function which coincides with x Þ Ñ U pxq on a neighborhood of 0, with x Þ Ñ }x} 2 for }x} ě 1, and such that U ´1p0q " t0u. Let Xpβq be solution to the stochastic differential equation given by [START_REF] Ichihara | A classification of the second order degenerate elliptic operators and its probabilistic characterization[END_REF] with Ũ instead of U and pB t q tě0 the Brownian motion governing X pβq . The process Xpβq satisfies [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF] because Ũ satisfies [START_REF] Kliemann | Recurrence and invariant measures for degenerate diffusions[END_REF]. Thus, by Theorem 7 piiq (applied to Xpβq ) and Lemma 11 (applied to X pβq ), there exist 0 ă 1 ă 0 ď such that whenever }x} ď 1 ,

1 2 ď P x rτ 0 " 8s " P x,x « lim sup tÑ`8
lnp} Xpβq ptq}q t ď ´ΛpA, βqpβ ´β0 q; τ 0 " 8

ff " P x « lim sup tÑ`8
lnp}X pβq ptq}q t ď ´ΛpA, βqpβ ´β0 q; τ 0 " 8 ff .

Here P x,x stands for the law of pX pβq , Xpβq q starting from px, xq. Since P x pτ 1 ă 8q ą 0 for all x P R m zt0u, the proof of (9) follows. Finally (iii) is an immediate consequence of the second part of Lemma 11 (recall that 0 was an arbitrary point of U, up to a translation).

4 Proof of Theorem 3

Proof of Theorem 3 piq

The proof is similar to that of Theorem 7. We begin by proving a Riemannian version of Lemma 11. The proof of Theorem 3 piq will then follow by an argument similar to that given at the end of Section 3.

Let y P U and let B M py, q be the Riemannian ball with center y and radius , where ą 0 is sufficiently small so that

• the only critical point for U in B M py, q is y,

• the exponential mapping exp y : T y M Ñ M is a diffeomorphism between the tangent ball Bp0, q of T y M and B M py, q.

Recall that the exponential mapping exp y : T y M Ñ M associates to any tangent vector v P T y M the point x P M which is the position at time 1 of the (constant speed) geodesic starting at time 0 from y with speed v.

Consider pe 1 , e 2 , ..., m q an orthonormal basis of T y M consisting of eigenvectors associated to the eigenvalues pλ 1 , λ 2 , ..., λ m q of the Hessian of U at the critical point y. A priori this Hessian is a bilinear form on T y M , but the Euclidean structure of T y M enables us to see it as a symmetric endomorphism on T y M , and pλ 1 , λ 2 , ..., λ m q and pe 1 , e 2 , ..., e m q correspond to its spectral decomposition.

Let pv 1 , v 2 , ..., v m q be the coordinate system associated to pe 1 , e 2 , ..., e m q on Bp0, q. Such a coordinate system based on the exponential mapping is said to be a normal. From now on and until the end of this section, we identify a map f : B M py, q Ñ R with f ˝exp y : Bp0, q Ñ R, and write f pvq for f ˝exp y pvq. Under this identification, the matrix corresponding to the Hessian at y admits the classical form

pB k,l U p0qq k,lP m where B k is a shorthand for B Bv k
The introduction of the lecture notes of Pennec [START_REF] Pennec | Probabilities and statistics on Riemannian manifolds : A geometric approach[END_REF] is a convenient reference for these assertions (a more thorough exposition can be found in the book of Gallot, Hulin and Lafontaine [START_REF] Gallot | Riemannian geometry. Universitext[END_REF]).

A first interest of the normal coordinate system pv 1 , v 2 , ..., v m q on Bp0, q is that we can consider the corresponding polar decomposition as in the previous section: each v " pv 1 , v 2 , ..., v m q P Bp0, qzt0u can be uniquely written under the form ρθ with ρ P p0, q and θ P S m´1 , where the basis pe 1 , e 2 , ..., e m q enables us to identify T y M with R m .

Before going further, let us recall some other traditional notations and facts from Riemannian geometry. For any v P Bp0, q, denote gpvq pg k,l pvqq k,lP m the matrix of the pull-back of the Riemannian metric: for any vectors b and r b from T exp y pvq M , identified with their coordinates pb k q kP m and p r b k q kP m in the basis pB k q kP m , we have

A b, r b E v " ÿ k,lP m g k,l pvqb k r b l
The determinant of gpvq and the inverse matrix g ´1pvq are respectively denoted |g|pvq and pg k,l pvqq k,lP m . For any smooth function f, the expressions of its gradient and Laplacian are given by ∇f pvq "

¨ÿ lP m g k,l pvqB l f pvq 'kP m f pvq " 1 a |g|pvq ÿ k,lP m B k ´a|g|g k,l B l f ¯pvq " ÿ k,lP m g k,l pvq ¨Bk,l f pvq ´ÿ jP m Γ j k,l pvqB j f pvq '
where Γ j k,l pvq are the Christoffel symbols at v, see for instance the listing [START_REF]List of formulas in Riemannian geometry -Wikipedia, the free encyclopedia[END_REF] (again we abuse notation in the r.h.s by identifying f with its formulation in the coordinate system v " pv 1 , v 2 , ..., v m q).

A second interest of the normal coordinate system is that at 0, we recover the usual notions: gp0q is the identity matrix and the Christoffel symbols all vanishes at 0.

The above expressions lead to the following formulation of the generator L β defined in (1):

L β ¨" U ÿ k,lP m g k,l ¨Bk,l ¨´ÿ jP m Γ j k,l B j ¨' ´β ÿ k,lP m g k,l B k U B l ¨(25)
Again we are slightly abusing notations by calling it L β too, especially as we see it as only defined on C 2 pBp0, qq.

The associate carré du champ is given as

Γ L β ¨" 2U ÿ k,lP m g k,l B k ¨Bl ¨(26)
(this is a of the algebraic relation

Γ B k B l ¨" 2B k ¨Bl ¨, even if B k B l is not a Markov generator, i.e. when k ‰ l).
Consider the mapping P associated in [START_REF] Daniel | Stroock An Introduction to the Analysis of Paths on a Riemmanian Manifold[END_REF] to the polar decomposition. Since P is invertible from C 2 pBp0, qq to C 2 pp0, q ˆSm´1 q, there is a unique diffusion generator L β acting on C 2 pp0, q ˆSm´1 q such that L β ˝P " P ˝Lβ To compute L β , let us write that for any v P Bp0, qzt0u,

ρ " d ÿ kP m v 2 k @ l P m , θ l " v l ρ
It follows that for any k P m ,

B k ρ " v k ρ " θ k @ l P m , B k θ l " δ k,l ρ ´vl ρ 2 B k ρ " 1 ρ pδ k,l ´θk θ l q
where δ k,l is the Kronecker symbol. It follows that

B k " θ k B ρ `1 ρ ÿ lP m pδ k,l ´θk θ l qB θ l ( 27 
)
and by composition, for any k, l P m , we can also write B k,l in terms of B ρ , B 2 ρ , B θ i and B θ i ,θ j , for i, j P m . Replacing these expressions in (25), we get the formula for L β in terms of differentiations of order 1 and 2, with respect to ρ and the θ l , l P m .

In order to apply the general method of [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF] as in Section 3, we need to check the three facts respectively listed in the following lemmas.

Lemma 12 For any F P C 2 pr0, q ˆSm´1 q, we have, uniformly over θ P S m´1 , lim ρÑ0 `Lβ rF spρ, θq " G β rF p0, ¨qspθq where G β is given in (17).

Proof

We have Γ L β rVs " P rΓ L β rV ss with V pvq " ´1 2 lnp ř kP m v 2 k q, so it is sufficient to see that Γ L β rV s is bounded on B M py, qztyu. Expanding U pvq near 0 in the normal coordinate system v " pv 1 , v 2 , ..., v d q, we get for v small

U pvq " 1 2 ÿ lP m λ l v 2 l
Hence, using (26),

Γ L β rV spvq " ř lP m λ l v 2 l p ř lP m v 2 l q 2 ÿ k,lP m g k,l p0qv k v l " ř lP m λ l v 2 l ř lP m v 2 l .
(see also [START_REF] Miclo | On the convergence of global-optimization fraudulent stochastic algorithms[END_REF]). This proves the wanted boundedness.

For the wanted convergence, in view of the computations of the previous section, it is sufficient to see that (28) holds with F replaced by V. Note that when applied to a function only depending on ρ, as V, (27) reduce to B k " θ k B ρ . It follows that B k V is of order 1{ρ and B k,l V is of order 1{ρ 2 . This observation enables us to use the same arguments as in the end of the proof of Lemma 12 to conclude that (28) holds with F replaced by V.

A Riemannian version of Lemma 11 follows directly from the preceding lemma, the proof being exactly the same as the proof of Lemma 11. The proof of Theorem 3 piq then follows (almost) verbatim along the lines of the arguments given in the preceding section just after the proof of Lemma 11.

Proof of Theorem 3 piiq

Let V : N Ñ R, x Þ Ñ lnpU pxq ´β q.
Observe that for all f P C 2 pN q, divpe V ∇f q " e V px∇V, ∇f y `∆f q " U ´β´1 L β f. Let C 2 c pN q be the set of f P C 2 pN q having compact support. Then, for all

f P C 2 c pN q, ż N L β f d β " 0,
where β is the measure on N defined as β pdxq U pxq ´p1`βq pdxq.

Let p P U. By Morse's lemma, there is a smooth chart at p such that, in this chart system, U writes

x Þ Ñ }x} 2 " ř m i"1 x 2 i . Since the map x Þ Ñ }x} ´2pβ`1q is locally integrable (i.e. in a neighborhood of 0 R m ) if and only if 2pβ `1q ă m, it comes that ş N U pxq ´p1`βq pdxq ă 8 if and only if 2pβ `1q ă m, that is β ă β 0 .
Assuming β ă β 0 , the probability measure

π β pdxq 1 C β β pdxq (where C β is a normalization constant) satisfies ż N L β f dπ β " 0 (29) 
for all f P C 2 c pN q. Observe that there is no evidence that the set C 2 c pN q is a core for L β , so that we cannot immediately deduce from (29) that π β is an invariant probability measure of X pβq . However, by Theorem 9.17 page 248 in Ethier and Kurtz [START_REF] Stewart | Markov Processes, Characterization and Convergence[END_REF] (originally due to Echeverria [START_REF] Echeverria | A criterion for invariant measures of Markov processes[END_REF]) the following properties paq ´pdq below ensure that π β is invariant:

(a) The space N is a separable locally compact metric space (for which the space ĈpN q of continuous function "vanishing at infinity" coincide with tf P C 0 pM q : f | U " 0u);

(b) The set C 2 c pN q is an algebra dense in ĈpN q; (c) The operator L β : C 2 c pN q Ñ ĈpN q, satisfies the positive maximum principle; (d) The martingale problem for pL β , C 2 c pN qq is well-posed: for all x P N, P β x (the law of X pβq starting from X pβq p0q " x) is the unique probability on Dpr0, 8q, N q such that f pXptqq şt 0 L β f pXpsqqds is a P β x -martingale and P β x rXp0q " xs " 1, where pXptqq tě0 is the canonical process on Dpr0, 8q, N q.

Properties paq ´pcq are easy to verify. Property pdq follows from, on one hand, that for any ą 0 sufficiently small, the stopped martingale problem on N tx P M : U pxq ě u is well-posed by uniform ellipticity of L pβq on N , and on the other hand, that these localized martingale problems can next be extended to the whole state space N . For instance, corresponding precise statements are found in Ethier and Kurtz [START_REF] Stewart | Markov Processes, Characterization and Convergence[END_REF], see Theorem 5.4 page 199, providing the existence of a solution of the stopped martingale problem on the N , but also of the martingale problem on N , Theorem 4.1 page 182 for the uniqueness of stopped martingale problems on the N , and Theorem 6.2 page 217, for the deduction of the uniqueness of the solution of the martingale problem on N by localization.

'piiqpaq : follows from the fact that a strong Feller process on a connected space having an invariant probability measure with full support, is positive recurrent (see e.g. [START_REF] Benaïm | Markov Chains on Metric Spaces A Short Course[END_REF], Corollary 7.10 for a statement on discrete time Markov chains and Proposition 4.58 (ii) for the application in continuous time). In particular, it is uniquely ergodic (i.e. its invariant probability measure is unique). Here the strong Feller property of X pβq on N follows from Proposition 1.

'piiqpbq :

The following lemma is a consequence of Lemma 13 and the stochastic persistence approach exposed in [START_REF] Benaïm | Stochastic Persistence[END_REF], [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF].

Lemma 14 Assume β ă β 0 . Then, there exist a continuous map W : N Ñ R `, 0 ď ρ ă 1, χ ą 0, κ ě 0 and T ą 0 such that (i) W pxq " dpx, Uq ´χ on a neighborhood of U, (ii) P pβq T W ď ρW `κ.

Proof

For y P U, and ą 0 sufficiently small, let V y : M ztyu Ñ R `be a smooth map such that P rV y ˝exp y spρ, θq " Vpρ, θq :" ´lnpρq whenever ρ ă , where, using the notation of Section 4.1, V : p0, q ˆSm´1 Ñ R is as in Lemma 13 and P is the mapping induced by the polar decomposition as in [START_REF] Daniel | Stroock An Introduction to the Analysis of Paths on a Riemmanian Manifold[END_REF]. Because Γ L β rVs is bounded on p0, q ˆSm´1 and µ A,β rH β p0, ¨qs " ΛpA, βqpβ ´β0 q ă 0, it is possible, for sufficiently small, to find numbers χ, T ą 0, κ and 0 ď ρ ă 1 such that P pβq T pe χVy q ď ρe χVy `κ on M ztyu (see [START_REF] Benaïm | Stochastic Persistence[END_REF], Proposition 8.2). The mapping W : N Ñ R `, defined as W pxq " ř yPU e χVy satisfies the conditions of the lemma.

By ellipticity of L pβq on N , every point p P N is an accessible Doeblin point for P pβq T . Combined with the preceding lemma this proves assertion piiqpbq of Theorem 3 (see e.g. Theorem 8.15 in [START_REF] Benaïm | Markov Chains on Metric Spaces A Short Course[END_REF]).

Proof of Theorem 3 piiiq

It follows from compactness of M and Feller continuity of X pβq that, with P x probability one, every limit point (for the weak* topology) of the family

" 1 t ż t 0 δ X pβq s ds * tě0
is an invariant probability of X pβq (see e.g. [START_REF] Benaïm | Markov Chains on Metric Spaces A Short Course[END_REF], Theorem 4.20 combined with Propositions 4.57 and 4.58). It then suffices to show that for β " β 0 , every invariant probability of X pβ 0 q is supported by U, or equivalently, that every ergodic probability measure of X pβ 0 q is a Dirac measure δ p for some p P U.

We proceed by contradiction. Suppose that there exists an ergodic probability measure of X pβ 0 q , µ with µpN q ą 0. Then µpN q " 1 (by invariance of N ) and, by ellipticity of X pβ 0 q on N, µ is absolutely continuous with respect to pdxq, hence also with respect to β 0 pdxq. That is µpdxq " f pxq β 0 pdxq with f ě 0 measurable and β 0 rf s " 1. We claim that f is almost surely constant. This is in contradiction with the fact that β 0 pN q " 8. It remains to prove the claim. First assume that }f } 8 " sup xPN |f pxq| ă 8. Then, f P L 2 p β 0 q because β 0 rf 2 s " µrf s ď }f } 8 . Thus,

β 0 rpP β 0 t f ´f q 2 s " β 0 rpP β 0 t f q 2 `gs
where g f 2 ´2f P β 0 t f P L 1 p β 0 q and β 0 rgs " ´µrf s. Thus,

β 0 rpP β 0 t f ´f q 2 s " β 0 rpP β 0 t f q 2 s ´µpf q " β 0 rpP β 0 t f q 2 ´f 2 s ď 0
where the last inequality follows from Jensen's inequality. This shows that β 0 -almost surely, P β 0 t f " f , and also µ-almost surely. By ergodicity f is µ-almost surely constant. Suppose now that }f } 8 " 8. Set f n " mintf, nu and µ n pdxq " f n pxq β 0 pdxq. For every Borel set A Ă N, pµ n P β 0 t qpAq " µ n P β 0 t pAXtf ď nuq`pµ n P β 0 t qpAXtf ą nuq ď pµP β 0 t qpAXtf ď nuq`np β 0 P β 0 t qpAXtf ą nuq " µpA X tf ď nuq `n β 0 pA X tf ą nuq " µ n pAq.

This shows that µ n is excessive, hence invariant because every finite excessive measure is invariant (see e.g. [START_REF] Benaïm | Markov Chains on Metric Spaces A Short Course[END_REF], Lemma 4.25). By what precedes, f n is µ-almost surely constant. Thus f is µ-almost surely constant. This concludes the proof of the claim.

Appendix

The diffusion process generated by L β and Proposition 1

Here we briefly explain how the diffusion X pβq can be constructed and give a proof of Proposition 1. By Nash's embedding theorem, we can assume without loss of generality that M is a Riemannian submanifold of R n (equipped with its Euclidean scalar product x , y) for some n sufficiently large. For reasons that will become clear shortly, we write ∇ M , M , div M the gradient, Laplacian, and divergence on M, and ∇, div, the gradient and divergence on R n . If F is a smooth vector field on M and F a smooth globally integrable vector field on R n such that F | M " F, then F and F , induce operators on C 1 pR n q and C 1 pM q respectively defined by:

F p f qpxq " x∇ f pxq, F pxqy " dp f ˝Ψt pxqq dt | t"0
for all f P C 1 pR n q, and x P R n ;

F pf qpxq " x∇ M f pxq, F pxqy " dpf ˝Ψt pxqq dt | t"0
where B " pB 1 ptq, . . . , B n ptqq tě0 is a n-dimensional Brownian motion with Bp0q " 0.

Since the coefficients of (31) are globally Lipschitz and bounded, the following properties paq, pbq, pcq are classical (see e.g. Le Gall [START_REF] Gall | Brownian motion, martingales, and stochastic calculus[END_REF], Theorems 8.3 and 8.7 for paq and pbq, and Kunita [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF], Theorem 4.5.1 for pcq) :

(a) For all x P R n , there is a unique strong solution R `Q t Þ Ñ X pβ,xq ptq to (31) such that X pβ,xq p0q " x, (b) The process Xpβq :" pX pβ,xq q xPR n is a Feller Markov process on R n whose generator Lβ contains C 2 c pR n q, the set of compactly supported C 2 functions, in its domain and such that for all f P C 2 c pR n q,

Lβ p f q " ´βx∇ Ũ , ∇ f y ´1 2 x∇ r U , ∇ r f y `1 2 n ÿ i"1 r E i r r U s r E i r r f s `Ũ n ÿ i"1 Ẽ2 i p f q " ´β∇ Ũ p f q ´1 2 ∇ Ũ p f q `1 2 n ÿ i"1 r E i r r U s r E i r r f s `Ũ n ÿ i"1 Ẽ2 i p f q (32) 
(c) The map x Þ Ñ X pβ,xq ptq is an homeomorphism. In particular, @t ě 0, X pβ,xq ptq P R n zU ô Dt ě 0, X S i pXptqq ˝dB i ptq.

The vector fields ∇ Ũ and S i 's being tangent to N, this latter expression shows that N (hence M ) is invariant for X pβq . That is: @t ě 0, X pβ,xq ptq P N p resp. M q ô Dt ě 0, X pβ,xq ptq P N p resp. M q.

It then follows that X pβq :" pX pβ,xq q xPM is a Feller Markov process on M, leaving N invariant, whose generator L β contains C 2 pM q in its domain and such that L β f " Lβ f | M " L β f for all f P C 2 pM q and f P C 2 pR n q such that f | M " f. The last equalities follows from Lemma 15 and (32), since on M we have x∇ r U , ∇ r f y "

n ÿ i"1 r E i r r U s r E i r r f s
The strong Feller property on N follows from the ellipticity of L β on N (see e.g. Ichihara and Kunita [START_REF] Ichihara | A classification of the second order degenerate elliptic operators and its probabilistic characterization[END_REF][START_REF] Ichihara | Supplements and corrections to the paper: A classification of the second order degenerate elliptic operators and its probabilistic characterization[END_REF], Lemma 5.1).

On Remark 2

Given 0 ă λ ´ă λ `, and m ě 2, let Dpλ ´, λ `, mq be the set of diagonal matrices with entries λ ´" λ 1 ď λ 2 ď . . . ď λ m´1 ď λ m " λ `. The set tΛpA, βq : A P Dpλ ´, λ `, mqu is a compact interval rλ ´pm, βq, λ `pm, βqs (as the image by a continuous map of the compact connected set Dpλ ´, λ `, mq) contained in rλ ´, λ `s.

Let A P Dpλ ´, λ `, mq be the matrix with entries λ 1 " . . . λ m´1 " λ ´and λ m " λ `. Then Zpβ, Aq " ż rλ `θ2 m `λ´p 1 ´θ2 m qs ´β σpdθq " E » -˜λ`X 2 m `λ´p

ř m´1 i"1 X 2 i q ř m i"1 X 2 i ¸´β fi fl ,
where X 1 , . . . , X m are i.i.d. N p0, 1q random variables. By the strong law of large numbers and dominated convergence, this quantity converges, as m Ñ 8, toward λ ´β ´. Thus lim mÑ8 λ ´pm, βq " λ ´. Similarly, lim mÑ8 λ `pm, βq " λ `.

On spherical integrals

In (23) we could have considered another function V. Indeed, our first choice was r V ´lnpU q since it seemed somewhat more "intrinsic" with respect to U . It can be shown similarly that the points where we recall that A Hess U p0q. he sign of the quantity µ A,β r r H β p0, ¨qs can then be used to discriminate between the attractiveness and repulsivity of 0. In particular µ A,β rH β p0, ¨qs and µ A,β r r H β p0, ¨qs must have the same sign. We tried to prove directly (without success!) that A by-product of our computations is thus to show the validity of (34) and (35), which look as natural bounds on the corresponding spherical integrals for any given definite positive matrix A.

  [a] and[b] following (23) equally hold, with V replaced by r V and H β by r H β given on t0u ˆSm´1 by@ θ P S m´1 , r H β p0, θq ´trpAq `2p1 `βq @ θ, A 2 θ D xθ, Aθy

  2p1 `βqµ A,β rφ A s ą trpAq ô β ą m 2 ´1 (34) 2p1 `βqµ A,β rφ A s ă trpAq ô β ă

  If β " β 0 , then, for every neighborhood O of U, P x a.s.,

		1 t	ż t 0	f pX pβq psqqds " π β pf q
	(b) There exist positive constants a, b, χ (depending on β) with χ ă β 0 ´β, such that for all
	f : N Ñ R, measurable,			
	|E x rf pX pβq ptqqs ´πβ pf q| ď	ae ´bt dpx, Uq χ }f } χ ,
	where			
	}f } χ :" sup	|f pxq|dpx, Uq χ .
				xPN
	(iii) lim tÑ`8	1 t	ż t 0	1 tX pβq psqPOu ds " 1

  Denoting L β rF sp0, θq the r.h.s. enables us to see L β as a diffusion operator on r0, q ˆSm´1 , whose associated diffusion process X pβq leaves t0u ˆSm´1 invariant, and such that on t0u ˆSm´1 , identified with S m´1 , its generator coincides with the operator defined by

			lim ρÑ0 `Bρ Upρ, θq ρ	" xθ, Aθy ,	(19)
			lim ρÑ0 `∇θ Upρ, θq ρ 2		" Aθ ´xθ, Aθy θ.	(20)
	Indeed, by the usual expansion of U around 0, we have
	U pxq " U p0q `x∇U p0q, xy	`1 2	xx, Hess U p0qxy `˝pxx, xyq
	"	1 2	xx, Axy `˝pxx, xyq
	which translates into					
			Upρ, θq "	ρ 2 2	xθ, Aθy `˝pρ 2 q
	leading to the first announced limit (18). Similarly,
	∇U pxq " ∇U p0q `Hess U p0qx `˝p	a	xx, xyq
			" Ax `˝p	a	xx, xyq.
	G β pfq :" xθ, Aθy	ˆ1 2		θ fpθq ´β xbpθq, ∇ θ fy θ	ẇhere
	@ θ P S m´1 ,	bpθq	Aθ ´xθ, Aθy θ xθ, Aθy	"	1 2	∇ θ lnpxθ, Aθyq.

At x " ρθ with ρ ą 0, B ρ Upρ, θqθ is the radial part of ∇U pxq and ∇ θ Upρ, θq{ρ is the tangential part. It follows that B ρ Upρ, θq " x∇U pxq, θy , ∇ θ Upρ, θq ρ " ∇U pxq ´Bρ Upρ, θqθ, and we get B ρ Upρ, θq ρ " xθ, Aθy `˝p1q, ∇ θ Upρ, θq ρ 2 " Aθ ´xθ, Aθy θ `˝p1q, leading to the wanted second and third results (19) and (20). It follows that for any F P C 2 pr0, q ˆSm´1 q, we have, uniformly over θ P S m´1 , lim ρÑ0 `Lβ rF spρ, θq " 1 2 xθ, Aθy θ F p0, θq ´β xAθ ´xθ, Aθy θ, ∇ θ F p0, θqy θ (21)

  pβ,xq ptq P R n zU. Set S i pxq " b 2 Ũ pxq Ẽi pxq. On R n zU, (31) can be rewritten, using Stratonovich formalism, as

	dXptq " ˜p´β	´1 2	q∇ Ũ pXptqq	`1 2	i"1	S i pXptqqdB i ptq
	" p´β	´1 2	q∇ Ũ pXptqq	`n ÿ i"1

n ÿ i"1 DS i pXptqqS i pXptqq ¸dt `n ÿ

the grants SNF 200020-219913, ANR-17-EURE-0010 and AFOSR-22IOE016 are acknowledged.

Proof

For any v P Bp0, q, define @ k, l P m , r g k,l pvq δ k,l @ j, k, l P m , r Γ j k,l pvq 0 and in analogy with (25),

¨Bk,l ¨´ÿ

operator coincides with the restriction of [START_REF] Gallot | Riemannian geometry. Universitext[END_REF] to Bp0, q. It follows from (21) that uniformly over θ P S m´1 , lim ρÑ0 `r L β rF spρ, θq " G β rF p0, ¨qspθq where the operator r L β is such that r L β ˝P " P ˝r L β .

Thus to get the wanted result, it is sufficient to show that lim ρÑ0

`pL β ´r L β qrF spρ, θq " 0

This convergence is a consequence of the writing

and of the following facts, valid uniformly in θ P S m´1 as ρ goes to 0 `:

• According to (27), for any k, l P m , B k F is of order 1{ρ and B k,l F is of order 1{ρ 2 .

• Due to the regularity of g and of the Christoffel symbols, for any k, l P m , g k,l ´r g k,l and Γ j k,l ´r Γ j k,l are of order ρ. • By the assumption that y is a global minimal, U is of order ρ 2 and B k U is of order ρ, for any k P m .

We have seen in the previous section that G β is reversible with respect to the probability measure µ A,β defined in [START_REF] Benaïm | Stochastic Persistence[END_REF], where here A A y is the diagonal matrix whose entries are the eigenvalues of the Hessian of U at y P U. To continue the method of [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF], we also need the two following ingredients.

Lemma 13 Consider the function V defined on p0, q ˆSm´1 via Vpρ, θq ´lnpρq.

The function Γ L β rVs is bounded on p0, q ˆSm´1 and the function L β rVs can be extended into a continuous function H β on r0, q ˆSm´1 satisfying (24) and thus µ A,β rH β p0, ¨qs " ΛpA, βqpβ ´β0 q.

for all f P C 1 pM q, and x P M. In both formulae, pΨ i t q tPR denotes the flow on R n induced by F . A direct consequence of the right hand side equalities is that

for every f P C 1 pM q and f P C 1 pR n q such that f " f | M .

Let pe 1 , . . . , e n q be the canonical basis of R n . For i " 1, . . . , n and x P M, let E i pxq P T x M be the orthogonal projection of e i onto T x M. Let Ẽi be a smooth vector field on R n , having compact support, such that Ẽi | M " E i . It is not hard to show that such a vector field exists. One can, for example, proceed as follows. Let M Ă R n be a normal tubular neighborhood of M. Every point y P M writes uniquely y " x `v with x P M and v P T x M K . The map r : M Q x `v Þ Ñ x P M, is a smooth retraction. It suffices to set Ẽi pxq " ηpxqE i prpxqq if x P M and Ẽi pxq " 0 otherwise, where 0 ď η ď 1 is a smooth function with compact support in M such that η| M " 1.

The following, key property, is proved in Stroock [START_REF] Daniel | Stroock An Introduction to the Analysis of Paths on a Riemmanian Manifold[END_REF], Section 4.2.1. For the reader's convenience we provide an alternative short proof.

Lemma 15 For every f P C 2 pM q and f P C 2 pR n q, such that f " f | M , one has

Proof

Let F be a C 1 vector field on M, and F a C 1 vector field on R n such that F | M " F. For all x P R n div F pxq equals the trace of the Jacobian matrix D F pxq, while for all x P M, div M F pxq equals the trace of the d ˆd matrix pxD F pxqu i , u j yq i,j where u 1 , . . . , u d is an (arbitrary) orthonormal basis of T x M. This has the interesting consequence that div M pF q " divpF ˝rq| M where r : M Ñ M is the retraction defined above. Let f P C 2 pM q. Then,

Here we have used the fact that ∇pf ˝rq| M " ∇ M f for all f P C 1 pM q. Now, let Ũ : R n Ñ R `be a smooth function such that Ũ | M " U, a Ũ is Lipschitz and ∇ Ũ has compact support. For instance Ũ pxq " ηpxqU prpxqq `1 ´ηpxq for x P M and Ũ pxq " 1 otherwise, where η, r are as above. Here, the Lipschitz continuity of a Ũ follows from the fact that r is smooth and that, by assumption, the zeroes of U are non-degenerate.

Consider the stochastic differential equation on R n defined by Ẽi pXptqqdB i ptq (31)