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1. Introduction

This paper is concerned with the relation between chaos theory and the dynamics
of Delone sets. Introduced by Delone in the context of mathematical crystallogra-
phy, Delone sets have been studied also from the viewpoints of arithmetics, topology
and foliated spaces. Let us recall the definition of a Delone set and some associated
constructions; the reader may consult standard references such as [5, 20] for further
details about these ideas.

Definition 1.1. Let ε, δ > 0. A subset S of a metric space X is (ε, δ)-Delone if,

(i) for every x ∈ X, there is some y ∈ S with d(x, y) ≤ ε (S is ε-relatively
dense), and

(ii) we have d(x, y) ≥ δ for every x, y ∈ S, x 6= y (S is δ-separated).

Given ε, δ ∈ R+, let Delε,δ denote the set of (ε, δ)-Delone subsets of Rn. The
set Delε,δ has a canonical, compact, metrizable topology (the local rubber topology)
such that the action of Rn given by

Rn ×Delε,δ −→ Delε,δ

(v, S) 7−→ S − v := { s− v | s ∈ S }

is a continuous action [8, Lem. 2.5]. Definition 1.1(ii) makes this action locally
free, so that the orbits inherit a canonical smooth structure compatible with the
topology.

There is a canonical way of obtaining a dynamical system from such a Delone set
[4, p. 10]. Let S ∈ Delε,δ and write [S] for the orbit S+Rn. Then [S], the closure of
[S] in the aforementioned topology, is a compact space endowed with an Rn-action.
Roughly speaking, it consists of the Delone sets whose bounded subsets have an
approximate replica in S; when S is repetitive, these are the Delone sets which are
locally indistinguishable from S, sometimes called the local isomorphism class of S
[18], but in general [S] contains more Delone sets than this local isomorphism class.
The main class of Delone sets we consider in this paper will not be repetitive. Since
S determines [S], we may think of dynamical properties of [S] as properties of S.

Chaos for group actions is usually characterized by three conditions [12]: topo-
logical transitivity, density of periodic orbits, and sensitivity on initial conditions,
of which the first one is trivially satisfied in our situation by the presence of a dense
orbit. In the case of dynamical systems generated by a continuous map on a metric
space, sensitivity on initial conditions follows from the topological transitivity and
density of periodic orbits [6]. This result was generalized to continuous actions of
topological semigroups on uniform spaces [24], which directly applies to our set-
ting. So we can omit this condition about sensitivity on initial conditions in our
definition of chaos, cf. [9]. Note that, as detailed in the previous paragraph, we will
be dealing with continuous group actions on compact spaces, so the definition of
periodic orbit used in [24] becomes simpler: a Delone set S is periodic if the orbit
[S] is compact; we may also say that the orbit [S] itself is periodic in this case.
This is easily seen to be equivalent to the stabilizer being a lattice in Rn.

This discussion leads us to the following definition, analogous to that in [7].

Definition 1.2. A Delone set S is almost chaotic if the union of the periodic orbits
is dense in [S]. We say that S is chaotic if it is almost chaotic and aperiodic; that
is, S − v 6= S for all v ∈ Rn \ {0}.
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To the authors’ knowledge, such Delone sets have not been studied before. How-
ever, the analogous definition in the case of shift spaces is satisfied for well-known
objects, such as subshifts of finite type (see [?] for the definition and a nice expo-
sition on the subject).

Also note that, by simple topological arguments, a repetitive tiling cannot satisfy
the obvious analogous condition. In particular, this immediately rules out examples
arising from familiar aperiodic constructions such as primitive substitutions and
non-singular canonical Euclidean cut-and-project schemes.

If S is almost chaotic, then [S] satisfies the aforementioned requirements of
topological transitivity and density of periodic orbits. We require aperiodicity in
our definition of chaos because almost chaotic Delone sets include the degenerate
case where there is a single compact orbit.

Recall that a property is topologically generic if it holds on a residual subset—i.e.,
a subset containing a countable intersection of open dense sets. This notion is well-
behaved for Baire spaces, which in particular include compact, metrizable spaces
by the Baire Category Theorem. The first main result of the paper establishes the
topological genericity of chaos for (ε, δ)-Delone subsets of Rn when ε ≥ δ.

Theorem 1.3. If ε ≥ δ, then being chaotic is a generic property in Delε,δ.

This result is similar to that obtained for colored graphs in [7]. The reason
why we impose the condition ε ≥ δ is that it is necessary for extension properties
(Lemmas 2.3 and 2.4) that are essential ingredients in our proof. It is also easy
to come up with examples where ε < δ and Theorem 1.3 does not hold—e.g., all
(δ/2, δ)-Delone sets in R are periodic.

The second aim of this paper is to obtain examples of chaotic Delone sets us-
ing a so-called cut-and-project construction on the Poincaré disk. Being discrete
subsets of manifolds, Delone sets lie in a sort of middle ground between geometry
and discrete mathematics. There are well-known examples of symbolic dynamical
systems satisfying the obvious analogue of Definition 1.2—e.g., a two-sided version
of Champernowne’s number [10]. A less trivial family of examples comes from the
symbolic coding of geodesics in hyperbolic surfaces. This research was initiated
by Hadamard in [14] and continued by Morse in [21, 22], among others. In the
particular case of the modular surface, there is an approach for symbolic coding of
geodesics that is closer to number theory. In [17] the reader can enjoy a nice expo-
sition of these methods and their historical development. All of the aforementioned
approaches take advantage of the well-known chaotic properties of the geodesic flow
in compact hyperbolic surfaces to construct chaotic symbolic dynamical systems.

Our method, while related to that described in the previous paragraph, is more
geometrical in nature, and naturally yields subsets of R instead of a coding of Z.
It is also inspired by the projection method in tiling theory, see [13]. In our case,
we will orthogonally project subsets of an orbit of torsion-free uniform lattices Γ
in the hyperbolic plane H2 onto a geodesic. This construction is not guaranteed
to produce Delone sets in the general case. We prove a necessary and sufficient
condition for this to hold, and present a specific example.

Let us fix a torsion-free uniform lattice Γ of PSL(2;R), a positive number ρ and a
point x on H2. For a geodesic ` on H2, let p` : E` → ` be the orthogonal projection
from the open tubular neighbourhood of ` of radius ρ, and define

S` = p`(E` ∩ Γx)
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(see Figure 1).

Figure 1. Construction of S` in H2.
The black dots represent points in Γx,
the blue area is E`, the red dots rep-
resent points in S`.

Figure 2. The
disks represent the
inverse image of
∆. The projection
of k1 to Σ has
one-sided tangency,
while the projection
of k2 to Σ does not.

In order to state our result, we need to fix the following terminology: From now
on, let Σ = Γ\H2 be a compact hyperbolic surface. Given a closed disk D on Σ, a
geodesic σ on Σ is said to have one-sided tangency with ∂D if σ is tangent to ∂D
at every point in σ ∩ ∂D, and we can take an orientation of the normal bundle of
σ so that the outward vector of ∂D at every tangential is positive. In Section 4 we
prove the following result.

Theorem 1.4. With the above notation, assume that the orbit of the geodesic flow
that consists of the unit tangent vectors of the projection of ` to Σ is dense in
S1(TΣ) and d(`, y) 6= ρ for every y ∈ Γx. Then S` is Delone if and only if:

(A) We have ρ < inj(Σ, x0). Here x0 = Γx and inj(Σ, x0) is the injectivity
radius of Σ at x0, which is clearly equal to 1

2 min{ d(y, z) | y, z ∈ Γx, y 6=
z }.

(B) Any geodesic on Σ intersects the closed disk ∆ of radius ρ centred at x0,
and there exists no geodesic with one-sided tangency with ∂∆.

If S` is Delone, then it is chaotic.

By Hedlund’s theorem ([15], see also [16] and references therein), the orbits of
the geodesic flow that are dense in the unit tangent bundle of Σ form a conull set
in the space of geodesics.

It is not easy to check Condition (B) in the last theorem with given Γ, ρ, x and
`, but it is possible for the following example.

Example 1.5. Let us construct a Riemann surface Σ of genus two as follows.
Take a hyperbolic 12-gon P with alternating internal angles π/3 and 2π/3, all side
lengths the same. Identify the sides via the pattern

A−B − C −A−D − C − E −D − F − E −B − F
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going around the boundary (see Figure 3). There are 3 orbits of vertices, two made
up of three vertices and one made up of 6. It is easy to see that the quotient has
genus 2 by using the Euler characteristic 3− 6 + 1 = −2.

Figure 3. A 12-gon P Figure 4. A triangle T

Let Γ < PSL(2;R) be the lattice that corresponds to Σ. Take x ∈ H2 so that x is
projected to the barycentre x0 of P . Let µ denote the injectivity radius of Σ at x0.
Let ρ be a positive number such that 0 < µ−ρ� 1. In the sequel we will see that, for
any geodesic ` on H2 that satisfies the assumptions of Theorem 1.4, the quadruple
consisting of Γ, x, ρ and ` satisfies Conditions (A) and (B) in Theorem 1.4. Firstly,
note that our choice of ρ ensures that Condition (A) is satisfied. For r > 0, let ∆r

be the closed disk on Σ centred at x0 of radius r. By the symmetry of the 12-gon
P , the disk ∆µ is tangent to all edges of P . In order to show that Condition (B)

holds, it is sufficient to show that any geodesic on H2 intersects π−1(∆̊ρ), where

π : H2 → Σ is the universal covering projection and ∆̊ρ is the interior of ∆ρ. Assume

that there exists a geodesic k on H2 contained in H2 \ π−1(∆̊ρ). Here π−1(∂∆µ)
is a circle packing of H2. Since each angle of P is equal to either of π/6 or π/3,
we can see that any connected component of H2 \ π−1(∆µ) is either a triangle or
a hexagon. Since each hexagon is adjacent to triangles, k intersects a triangle T .
Since ρ is sufficiently close to µ, the geodesic k should be close to two vertices v, w
of T . Thus k is close to the geodesic segment vw. Since ∆µ is geodesically convex,
the segment vw is contained in π−1(∆µ) (see Figure 4). It follows that k intersects

π−1(∆̊ρ).

It is easy to modify this example to construct an example with Σ a closed Rie-
mann surface of arbitrary genus > 1.

Remark 1.6. If µ ≤ ρ, then S` is not r-separated for any r > 0 by the last theorem.
But in some cases we can obtain almost chaotic Delone sets in R or Z by modifying
S`. We can see that, if ρ is close to µ/2, there cannot be three points in S` that are
close to each other. Replacing every pair of points which are close to each other
with their midpoint, we have a chaotic Delone set in `.
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Finally, in the last section, we include a short and elementary proof of the fact
that, if S is a chaotic Delone set on R, then Sn is a chaotic Delone set on Rn.
This shows that take we can take products of the above examples to obtain chaotic
Delone sets in any dimension.

2. Preliminaries

Let X be a metric space, let x ∈ X and r > 0. We will use DX(x, r) and SX(x, r)
to denote, respectively, the disk or closed ball and the sphere of centre x and radius
r. We will omit subscripts when no confusion may arise.

The canonical topological structure on Delε,δ has received several names, includ-
ing “natural topology” [19], “vague topology” [23], and “local rubber topology” [4].

Let ~0 ∈ Rn denote the origin, and let U and U ′ denote open neighbourhoods of ~0,
with U precompact. The local rubber topology mentioned in the introduction is
induced by the entourage base determined by the sets

NU,U ′ := { (S, S′) ∈ Delε,δ ×Delε,δ | S ∩U ⊂ S′+U ′ and S′∩U ⊂ S+U ′ } . (2.1)

For notational convenience, let

Nr := NB(~0,r),B(~0,1/r) for r > 0. (2.2)

For S ∈ Delε,δ, let

NU,U ′(S) = {S′ ∈ Delε,δ | (S, S′) ∈ NU,U ′ } ,
Nr(S) = {S′ ∈ Delε,δ | (S, S′) ∈ Nr } .

For A,B,C,D open neighbourhoods of ~0, with A and B relatively compact, one
has [4, p. 9]

NA+B,B ◦NC+D,D ⊂ NA∩C,2(B∪C) , (2.3)

where 2(B ∪ C) = (B ∪ C) + (B ∪ C).
Once we have provided neighbourhood bases for Delε,δ, the following lemma

follows trivially from Definition 1.2.

Lemma 2.1. An (ε, δ)-Delone set S is almost chaotic if and only if, for every
r ∈ N, there is a periodic Delone set S′ ∈ Delε,δ such that (S, S′) ∈ Nr and, for
any s ∈ N, there is a point x ∈ Rn satisfying (S − x, S′) ∈ Ns.

The following lemmas will be used in the next section. The first one follows by
applying Zorn’s lemma to ε-relatively dense sets (see Álvarez-Candel [1, Proof of
Lemma 2.1]).

Lemma 2.2. Every δ-separated subset of Rn is contained in a (δ, δ)-Delone set.

Lemma 2.3. Let ε ≥ δ, let A ⊂ Rn, and let S be an (ε, δ)-Delone set in Rn. There
is an (ε, δ)-Delone set S′ on A such that S and S′ coincide over the subset

Aε := {x ∈ Rn | D(x, ε) ⊂ A } .

Proof. Consider the collection of δ-separated subsets M of A such that M ∩ Aε =
S ∩ Aε. By Zorn’s Lemma, S ∩ A is contained in a maximal such subset S′. We
only need to prove that S′ is ε-relatively dense in A, so let x ∈ A and let us prove
d(x, S′) ≤ ε. If x ∈ Aε, the assumption that S is a Delone set in Rn means that
there is some s ∈ S with d(x, s) ≤ ε. But s ∈ A by the triangle inequality and
S ∩ A ⊂ S′, so s ∈ S′ and d(x, S′) ≤ ε. Consider now the case where x ∈ A \ Aε,
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and suppose by absurdity that d(x, S′) > ε ≥ δ. Then S′ ∪ {x} is a δ-separated
subset of M strictly containing S′ and satisfying (S′ ∪ {x}) ∩ Aε = S ∩ Aε. This
contradicts the maximality of S′, so d(x, S′) ≤ ε. �

Lemma 2.4. Suppose ε ≥ δ, and let A be a subset of either Rn or Tn. Then, for
any (ε, δ)-Delone set N in A, there is an (ε, δ)-Delone set S in Rn or Tn such that
S ∩A = N .

Proof. We will write the proof for A ⊂ Rn, the case where A ⊂ Tn being identical.
Consider the collection of subsets M ⊂ Rn \ A such that N ∪M is δ-separated.
By Zorn’s Lemma, there is such a subset L that is maximal by inclusion. Then
S := N ∪ L trivially satisfies S ∩A = N and is δ-separated by the definition of N .
Let us prove that it is also a ε-relatively dense, so let x ∈ Rn. If x ∈ A, then by
hypothesis d(x,N) ≤ ε. If x /∈ A and d(x, S) > ε ≥ δ, then S ∪ {x} is δ-separated,
contradicting the maximality of L. �

3. Genericity of chaotic Delone sets

This section contains the proof of Theorem 1.3. We start by proving that ape-
riodicity is a generic property. Let 0 < α < δ/4 and, for q ∈ Qn, let

Vq = {S ∈ Delε,δ | ∃x ∈ S, D(x− q, α) ∩ S = ∅ } . (3.1)

Intuitively, Vq contains all Delone sets S containing a point s such that S fails to
have period q at s with respect to some error parameter α > 0. We now show that
the sets Vq are open and dense and

⋂
q∈Qn Vq consists of aperiodic Delone sets.

Proposition 3.1. The subsets Vq ⊂ Delε,δ are open for q ∈ Qn.

Proof. Let S ∈ Vq, so that there is some x ∈ S such that d(x− q, S) = β > α. Let
r ∈ N be large enough depending on x, q, α, and β, and let S′ ∈ Nr(S). If r > |x|,
then the definition of Nr(S) ensures that there is some y ∈ S′ with d(x, y) < 1/r.
Suppose that there exists some z ∈ B(y − q, α) ∩ S′. If

r − 1/r > |x|+ |q|+ α ,

then z ∈ B(0, r). Therefore, by the definition of Nr(S), there is some z′ ∈ S with
d(z, z′) < 1/r. We may assume that α + 2/r < β. Then the triangle inequality
yields d(x − q, z′) < β, a contradiction. Therefore S′ ∈ Vq and, since S′ was an
arbitrary element of Nr(S), we get Nr(S) ⊂ Vq. �

Proposition 3.2. The sets Vq are dense in Delε,δ for q ∈ Qn.

Proof. Let us start by proving that there is some S ∈ Vq satisfying the condition

in (3.1) with x = ~0 ∈ Rn. Assume first that q has all coordinates equal to 0 except

the first one. If |q|+ α < δ, then any S ∈ Delε,δ with ~0 ∈ S satisfies the condition

in (3.1) with x = ~0 because it is δ-separated, so assume that |q| + α ≥ δ. Let

y = q + (2α, 0, . . . , 0), and let S be a (δ, δ)-Delone set containing ~0 and y, which
exists by Lemma 2.2. Since

D(q, α) ⊂ D(y, 3α) ⊂ D(y, δ)

by the triangle inequality, we get that S satisfies (3.1) with x = ~0. The same
strategy applies for general q ∈ Qn after applying a suitable rotation.
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Let us prove that Vq is dense, so let S′ ∈ Delε,δ. By Lemma 2.4, for r, s ∈ N and

y far enough from ~0, there is an (ε, δ)-Delone set S′′ such that

S′ ∩B(~0, r) = S′′ ∩B(~0, r)

and
y + (S ∩B(~0, s)) = S′′ ∩B(y, s) ,

where S is the Delone set constructed in the previous paragraph. It is clear that,
for s > δ + α, S′′ satisfies the condition in (3.1) with x = y. Therefore, given an
arbitrary S′ ∈ Delε,δ and r > 0, we have produced a Delone set S′′ ∈ Vq such that
S′′ ∈ Nr(S′), and the proposition follows. �

Proposition 3.3. The set
⋂
q∈Qn Vq consists of aperiodic Delone sets.

Proof. Suppose on the contrary that there are S ∈
⋂
q∈Qn Vq and v ∈ Rn \ {0}

such that S − v = S. In particular, this implies that, for every q ∈ Qn and z ∈ S,
d(z−q, S) ≤ |v−q|. When |q−v| < α, we obtain a contradiction with the definition
of Vq in (3.1). �

Corollary 3.4. Aperiodicity is a generic property in Delε,δ for ε ≥ δ.

Proof. By Propositions 3.1, 3.2, and 3.3,
⋂
q Vq is a residual subset consisting of

aperiodic Delone sets. �

In order to complete the proof of Theorem 1.3, we will now show that being
almost chaotic is also a generic property. Let vi, i = 1, . . . , n, denote the standard
basis of Rn.

Definition 3.5. For m,m′ ∈ N, let Wm,m′ ⊂ Delε,δ be the subset of (ε, δ)-Delone
sets satisfying the following conditions:

(i) there is some x ∈ Rn such that (S, S − x) ∈ Nm, and
(ii) for any integer coefficients a1, . . . , an with |ai| ≤ m′ for i = 1, . . . , n, we

have (
S − x, S − x− (m+ δ + ε)

∑
i=1,...,n

aivi

)
∈ Nm′ .

The intuitive idea behind the definition of Wm,m′ is as follows: a Delone set S
belongs to Wm,m′ if there is some x such that S is similar to S − x with respect
to the parameter m, and S − x is close to being a periodic Delone set, where m′

measures how close to being periodic S − x is. We will see that Wm,m′ are open
dense sets, and

⋂
m,m′∈NWm,m′ consists of almost periodic Delone sets.

Proposition 3.6. The sets Wm,m′ are open for m,m′ ∈ N.

Proof. Let S ∈ Wm,m′ . We will show that there is some l ∈ N such that Nl(S) ⊂
Wm,m′ . By the definition of Wm,m′ , there is some x ∈ Rn satisfying Defini-
tion 3.5(i)–(ii). Since the sets Nr are open for r > 0 and any Delone set in Rn
is locally finite, there are m > m̃ > 0 and m̃′ > m′ > 0 such that

(S, S − x) ∈ Nm̃,
(
S − x, S − x− (m+ ε+ δ)

∑
i=1,...,n

aivi

)
∈ Nm̃′

for |ai| ≤ m′, i = 1, . . . , n. By (2.3), we can choose l large enough so that Nl ◦Nm̃ ◦
Nl ⊂ Nm and Nl ◦Nm̃′ ◦Nl ⊂ Nm′ . It is now a trivial matter to check that every
S′ ∈ Nl(S) satisfies Definition 3.5. �
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Figure 5. The picture on the left represents T ⊂ Tn; the right
one its lift to Rn following a grid pattern.

Proposition 3.7. If ε ≥ δ, then the subsets Wm,m′ are dense in Delε,δ for m,m′ ∈
N.

Proof. Let S ∈ Delε,δ and l ∈ N. Identify the n-torus Tn with the quotient of the
square [−m−δ−ε,m+δ+ε]n that identifies opposite faces. Let π : Rn → Tn denote
the quotient map. By Lemma 2.3 there is a (ε, δ)-Delone set S′ on [−m− ε,m+ ε]
satisfying

S′ ∩ [−m,m]n = S ∩ [−m,m]n .

Then π(S′ ∩ [−m − ε,m + ε]n) is a δ-separated subset and ε-relatively dense in
π([−m− ε,m+ ε]n), so applying Lemma 2.4 we may enlarge it to an (ε, δ)-Delone
set T on Tn that satisfies

π(S ∩ [−m,m]n) = T ∩ π([−m,m]n) .

Choose x ∈ Rn sufficiently far from 0, and lift T ⊂ Tn to an (ε, δ)-Delone set T̂
on a “grid” of fundamental domains given by the squares with centres x +

∑
aivi

and length 2(m+ δ+ ε), as illustrated in Figure 5. Using Lemma 2.4, complete the
disjoint union

T̂ t (S ∩ [−l, l]n)

to an (ε, δ)-Delone set Ŝ satisfying

Ŝ ∩ [−l, l]n = S ∩ [−l, l]n

and

Ŝ ∩ [x−m′(m+ δ + ε), x+m′(m+ δ + ε)]n

= T̂ ∩ [x−m′(m+ δ + ε), x+m′(m+ δ + ε)]n .

Then Ŝ satisfies the conditions of Definition 3.5 with x ∈ Rn. We have shown that,

for every S ∈ Delε,δ and l ∈ N, there is Ŝ ∈ Wm,m′ ∩ Nl(S). This establishes the
density of Wm,m′ . �

Lemma 3.8. The set
⋂
m,m′ Wm,m′ consists of almost chaotic Delone sets.

Proof. Let S ∈
⋂
m,m′ Wm,m′ and fix a neighbourhood Nl(S) (l ∈ N). Let m > l.

For every m′ there is a point xm′ ∈ Rn such that (S, S − xm) ∈ Nm and, for any
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integer coefficients a1, . . . , an with |ai| ≤ m′, we have(
S − xm′ , S − xm′ − (m+ δ + ε)

∑
i=1,...,n

aivi

)
∈ Nm′ .

Since Delε,δ is compact, the sequence (S − xm′)m′∈N has a subsequence converging

to some S′ ∈ [S], and (S, S′) ∈ Ul because l < m. Moreover, for m′ large enough
and |ai| ≤ m′, we have(

S − xm′ , S − xm′ − (m+ δ + ε)
∑

i=1,...,n

aiei

)
∈ Nm′ .

By continuity we obtain(
S′, S′ − (m+ δ + ε)

∑
i=1,...,n

aiei

)
∈ Nm′

for every m′ ∈ N. This means (m+ δ+ ε)
⊕

i aiZn ⊂ Aut(S′), hence S′ is periodic.
We have proved that, for any S ∈

⋂
m,m′ Wm,m′ , there are periodic Delone sets in

[S] arbitrarily close to S, and the result follows. �

Corollary 3.9. Being almost chaotic is a generic property in Delε,δ for ε ≥ δ.

Proof. The set
⋂
m,m′ Wm,m′ is a residual subset consisting of almost chaotic Delone

sets by Propositions 3.6 and 3.7 and Lemma 3.8. �

The combination of Corollaries 3.4 and 3.9 gives Theorem 1.3.

4. Cut-and-project construction on the Poincaré disk

In this section we will present a geometric example of a chaotic Delone set on R
by proving Theorem 1.4.

As we will see in the course of the proof of Theorem 1.4, it turns out that it
is more natural to consider a variant of the hyperbolic cut-and-project set S` in
Theorem 1.4. Let us fix some notation first: Fix a torsion-free uniform lattice Γ of
PSL(2;R), a positive number ρ and a point x in H2 throughout this section. Let
Σ = Γ\H2 be the compact hyperbolic surface obtained from Γ. From now on, all
geodesics on H2 and Σ are assumed to be parametrised by arc-length. The image
of a geodesic k : R → H2 is denoted by the same symbol k, and it is identified
with R via the arc-length parametrisation. Thus subsets of the image of geodesics
on H2 are regarded as subsets of R. We orient the normal bundle of k with the
orientation induced from the standard orientation of H2 and the orientation of k.
We will consider the following variant of S` in Theorem 1.4.

Definition 4.1. Let k be a geodesic on H2. Let Ek be the open tubular neigh-
bourhood of k of radius ρ in H2. Let ∂+Ek be the connected component of the
boundary of Ek that is the positive with respect to the orientation of the normal
bundle of k. Let

E
+

k = Ek ∪ ∂+Ek , S+
k = pk(E

+

k ∩ Γx),

where pk : H2 → k is the orthogonal projection.
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We fix throughout this section a geodesic ` on H2 such that the orbit of the
geodesic flow that consists of the unit tangent vectors of the projection of ` is dense
in the unit tangent bundle of Σ. As we will see, S+

` always has a chaotic nature.
However, it may not be Delone in general. We will show the following generalization
of Theorem 1.4 to S+

` , which characterises when it holds.

Theorem 4.2. With the above notation, S+
` is Delone if and only if:

(A) ρ < inj(Σ, x0), where x0 = Γx and inj(Σ, x0) is the injective radius of Σ
at x0.

(B) Any geodesic on Σ intersects the closed disk ∆ of radius ρ centred at x0,
and there exists no geodesic with one-sided tangency with ∂∆.

If S+
` is Delone, then it is chaotic.

This result is slightly more general than Theorem 1.4. Indeed, in Theorem 1.4,
we assume that d(`, y) 6= ρ for any y ∈ Γx which implies that S+

` = S`.

First we show the chaotic nature of S+
` . In order to do so, we will use a classical

result of Anosov on the chaotic nature of the geodesic flow on Σ.

Theorem 4.3 ([2], for English translation, see [3]). The union of closed orbits is
dense in the unit tangent bundle of Σ.

We will say that a geodesic k on H2 is Σ-closed if k is projected on a closed geo-
desic on Σ. For a Σ-closed geodesic k, it is easy to see the sets Sk and S+

k associated

with k is periodic. We will prove that S+
` is almost chaotic by approximating S+

`

with such periodic Sk or S+
k based on the characterisation of the almost chaotic

property in Lemma 2.1. However, if there are y ∈ Γx such that d(k, y) = ρ, it may
violate the approximation of S+

` by Sk with Σ-closed geodesics k. As we will see,

the set S+
k behaves better than Sk in this approximation (see Remark 4.5).

In the following lemma we will use Nr (r > 0) in a situation more general than
in Section 2: let Nr be the set consisting of all pairs (T, T ′) of subsets of R such
that

T ∩ [−r, r] ⊂ T ′ + [−1/r, 1/r] , T ′ ∩ [−r, r] ⊂ T + [−1/r, 1/r].

Now we will show the following, which implies the chaotic nature of S+
` .

Lemma 4.4. (i) For any r > 0, there exists a Σ-closed geodesic k such that
(S+
` , S

+
k ) ∈ Nr.

(ii) For any s > 0 and any geodesic k on H2, there exists a ∈ R such that
(S+
` − a, S

+
k ) ∈ Ns.

Proof. Take any r > 0 and consider the interval I = `([−r, r]). Let v = d`
dt

∣∣
t=0

.
By Theorem 4.3, we can take a unit vector w tangent to a Σ-closed geodesic k
and arbitrarily close to −v. Let Z be the subset of all points z in Γx such that

d(I, z) ≤ ρ. For m = k, `, let E
+

m be the union of the open tubular neighbourhood
of m of radius ρ in H2 and its positive boundary, as in Definition 4.1. We may
assume that the tangent vector w of k at t = 0 is sufficiently close to −v, so that I
is contained in the positive component of Ek \ k and J is contained in the positive
component of E` \ `, where J = k([−r, r]). Since Z is finite, by replacing k with a
Σ-closed geodesic closer to I, we can assume the following:

• for any z ∈ Z, we have z ∈ E+

` if and only if z ∈ E+

k ,
• d(ι(y), y) < 1/2r for any y ∈ J , where ι : J → I is the unique orientation

reversing isometry, and
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• d(pk(z), p`(z)) < 1/2r for any z ∈ Z, where pk : H2 → k is the orthogonal
projection.

By the first condition, we have S+
` ∩I ⊂ p`(Z) and S+

k ∩J ⊂ pk(Z). For any z ∈ Z,
by the second and third conditions, we have

d(p`(z), ι(pk(z))) < d(p`(z), pk(z)) + d(pk(z), ι(pk(z))) < 1/r.

Since ι(`(0)) = k(0), it follows that (S+
` , S

+
k ) ∈ Nr. This completes the proof of (i).

For (ii), take any s > 0 and any geodesic k on H2. Let w = dk
dt

∣∣
t=0

. Since the

unit tangent vectors of the projection of ` is dense in S1(TΣ) by assumption, we can
take γ ∈ Γ and a unit tangent vector v of ` so that γ∗v is arbitrarily close to −w,
where γ∗ is the tangent map of the action H2 → H2 of γ. Let I ′ = k([−r, r]). Let
Z ′ be a subset of Γx which consists of all points z′ ∈ Γx such that d(z′, I ′) ≤ ρ. The
rest of the argument is parallel to the proof of (i). Since Z ′ is finite, by taking γ ∈ Γ
and the unit tangent vector v′ of ` at parameter t = a so that γ∗v

′ is sufficiently
close to −w, we have (S+

` − a, S
+
k ) ∈ Ns. �

Remark 4.5. The last lemma is not true for S` in general. If there exists no y ∈ Γx
with d(y, `) = ρ, then (i) is true for S`. Similarly (ii) is true for a geodesic k such
that there exists no y ∈ Γx with d(y, `) = ρ.

Figure 6. Approximation of S+
` by S+

k : The vectors ν+(`) and
ν+(k) represent the orientations of the normal bundles of ` and k,
respectively. Two circles with dotted lines represent the boundary
of the ρ-neighbourhoods of I and J , respectively. The dots repre-
sent points in Γx. The blue dots belong to both E+

` and E+
k . But

the black dots do not because they belong to the negative side of
the boundary of E` or Ek, respectively.

Once S+
` is proved to be Delone, the following consequence of the last lemma

shows that S+
` satisfies the characterisation of an almost chaotic Delone set in

Lemma 2.1.

Corollary 4.6. For every r ∈ N, there exists a Σ-closed geodesic k on H2 such that
(S+
` , S

+
k ) ∈ Nr, and for any s ∈ N, there exists a ∈ R such that (S+

` − a, S
+
k ) ∈ Ns.

Let us characterize now when S+
` is Delone.

Proposition 4.7. The subset S+
` is Delone if and only if Conditions (A) and (B)

in Theorem 4.2 are satisfied.
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Let us prove Proposition 4.7 by showing the following two lemmas. In the first
one, we characterize the discreteness of S+

` in terms of ρ, based on the density of
the unit tangent vectors of the projection of ` in S1(TΣ).

Lemma 4.8. Let µ denote the injectivity radius of Σ at x0 = Γx.

(i) If ρ < µ, then S+
` is δ-separated, where δ = 2µ− 2ρ.

(ii) If µ ≤ ρ, then S+
` is not δ-separated for any δ > 0.

Proof. First note that 2µ = min{ d(y, z) | y, z ∈ Γx, y 6= z }. Here (i) follows
directly from the triangle inequality. Indeed, for every yi in S+

` , choose ỹi ∈ Γx so
that d(ỹi, yi) < ρ and p(ỹi) = yi. If yi 6= yj , then

2µ ≤ d(ỹi, ỹj) ≤ d(ỹi, yi) + d(yi, yj) + d(yj , ỹj) < 2ρ+ d(yi, yj),

which implies that d(yi, yj) > 2µ− 2ρ = δ.
In order to prove (ii), let us assume µ ≤ ρ. We consider the case µ < ρ first.

Let y and z be a pair of distinct points in Γx such that d(y, z) = 2µ, and let v be
a unit tangent vector at the midpoint of the segment yz which is perpendicular to
yz. Let k be the geodesic on H2 such that dk

dt

∣∣
t=0

= v. Assume that we can take

γ ∈ Γ so that γ∗v is very close to a tangent vector of ` at t = t0. Since `(t0) is
close to the midpoint of yz and we assume µ < ρ, we have d(`(t0), γ(y)) < ρ and
d(`(t0), γ(z)) < ρ. Hence p`(γ(y)) and p`(γ(z)) belong to S+

` . Since ` is almost

tangent to the bisector of the segment γ(y)γ(z) near the middle point of yz, we
can see that p`(γ(y)) and p`(γ(z)) are close to each other. Since we can take γ ∈ Γ
so that γ∗v is arbitrarily close to a tangent vector of `, it follows that S is not
ε-separated for any ε > 0. The case where ρ = µ follows by a slight modification of
the proof. Note that, even if we take a geodesic k1 on H2 so that a tangent vector
of k1 is close to v, we may have d(k1, z) > ρ or d(k1, y) > ρ in general. Instead of
approximating v with a tangent vector of `, first we take a tangent vector v′ close
to v such that d(k′, y) < ρ and d(k′, z) < ρ, where k′ is the geodesic tangent to v′.
We can take γ ∈ Γ so that γ∗v

′ is close to a tangent vector of `. Then, we can do
the same argument to see that p`(γ(y)) and p`(γ(z)) are close to each other. �

Let us characterize the density of S+
` in the following lemma. In the proof, we

say that a geodesic σ on Σ has two-sided tangency with ∂∆ if σ is tangent to ∂D at
every point in σ ∩ ∂D, but it does not have one-sided tangency with ∂∆; namely,
there exists a pair of outward vectors of ∂∆ at tangential points in σ∩∂D that are
in the opposite directions.

Lemma 4.9. The subset S+
` is ε-relatively dense for some ε > 0 if and only if

Condition (B) in Theorem 4.2 is satisfied.

Proof. The “only if” part follows from Lemma 4.4. Indeed, if Condition (B) is not
satisfied, then there exists a geodesic on Σ which does not intersect ∆, or there
exists a geodesic on Σ with one-sided tangency with ∂∆. If a geodesic k on H2 does
not intersect ∆, then we have S+

k = ∅. If k has one-sided tangency with ∂∆, then

we have S+
k = ∅ after changing the orientation of k if necessary. Since (S+

` , ∅) ∈ Ns
means that ` has an interval I of length 2(s− 1

s ) such that I ∩S+
` = ∅, in any cases,

it follows that S+
` is not ε-relatively dense for any ε > 0.

Let us prove the “if” part. First consider the case where any geodesic on Σ
intersects ∆̊, where ∆̊ is the open disk of radious ρ in Σ centred at Γx ∈ Σ. For
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v ∈ S1(TΣ), let τ(v) ∈ R≥0 be defined by

τ(v) = inf{ |t| ∈ R≥0 | `v(t) ∈ ∆̊ },

where `v is the geodesic on Σ such that d`v
dt

∣∣
t=0

= v. Since any geodesic intersects

∆̊, it follows that τ : S1(TΣ) → R≥0 is well-defined. It is easy to see that it is
upper semicontinuous. Then, since S1(TΣ) is compact, τ is bounded from above.
This implies that τ is bounded on `, which implies that S+

` is ε-relatively dense for
some ε.

Let us consider the general case. We will show that, if Condition (B) in Theo-
rem 4.2 is satisfied, there are finitely many closed geodesics on Σ that have two-sided
tangency with ∂∆, and any other geodesics on Σ intersect ∆̊. Under Condition (B)

in Theorem 4.2, for any geodesic σ on Σ, either σ intersects ∆̊ or σ has two-sided
tangency with ∂∆. Since any geodesic sufficiently close to a geodesic with two-sided
tangency intersects ∆̊, the set of unit tangent vectors of ∂∆ which are tangent to
geodesics with two-sided tangency with ∂∆ is discrete, and hence finite. It follows
that there are only finitely many geodesics on Σ with two-sided tangency with ∂∆,
and all of them are closed. Let C be the union of closed orbits in S1(TΣ) given by
the tangent vectors of all geodesics on Σ that have two-sided tangency with ∂∆.
Since a geodesic close to a geodesic with two-sided tangency with ∂∆ intersects ∆̊,
for a sufficiently small open neighbourhood U of C, we see that the function τ is
bounded on U \C. It follows that τ is bounded on S1(TΣ) \C, and hence so is on
`. Then we can conclude that S+

` is ε-relatively dense for some ε as in the above
case. �

Proposition 4.7 follows from Lemmas 4.8 and 4.9.
Finally, we will show the aperiodicity of S+

` by applying Lemma 4.4 and a result
of Dal’bo for the non-arithmeticity of the length spectrum of Riemann surfaces.
Recall, the length spectrum of a Riemann surface M is the set of the lengths of
all closed geodesics on M . Dal’bo [11] proved that the length spectrum of any
Riemann surface cannot be of the form aN for any a > 0.

Lemma 4.10. If Condition (B) of Theorem 4.2 is satisfied, then S+
` is aperiodic.

Proof. Assume that S+
` is periodic with period ω. Take any closed geodesic σ on Σ

and a geodesic k on H2 which is projected to σ. By assumption, S+
k is non-empty.

Since σ is closed, the set S+
k is periodic with period |σ|/m for some m ∈ N, where

|σ| is the length of σ. It follows from Lemma 4.4-(ii) that S+
` and S+

k have the
same period, which means |σ| = ωm. Hence, the length spectrum of Σ is contained
in ωN. But this contradicts a result of Dal’bo [11, Proposition 2.1]. �

Theorem 4.2 is the combination of Corollary 4.6 and Lemma 4.10.

5. Products of chaotic Delone sets on R

This section is devoted to the proof of the following result.

Proposition 5.1. If S is a chaotic Delone subset of R, then Sn is a chaotic Delone
subset of Rn for every n ≥ 1.

Proof. Let S be a chaotic (ε, δ)-Delone set for some ε, δ > 0, and let n > 1. To
avoid ambiguity, we denote the elements R by smallcase letters x, y, s, . . . and the
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elements of Rn as vectors ~x, ~y,~s, . . .. Let

~s = (s1, . . . , sn), ~t = (t1, . . . , tn) ∈ Sn

and suppose ~s 6= ~t, then there is some 1 ≤ i ≤ n so that si 6= ti. Since S is
δ-separated, we have dR(si, ti) ≥ δ, and therefore dRn(~s,~t) ≥ δ; this shows that Sn

is δ-separated.
Let us prove that Sn is also

√
nε-relatively dense: Let ~x = (x1, . . . , xn) ∈ Rn.

Since S is ε-relatively dense, for every i = 1, . . . , n, there is some si ∈ S so that
dR(xi, si) ≤ ε. Let ~s = (s0, . . . , sn), then

dRn(~x,~s) =

(
n∑
i=1

|xi − si|

)1/2

≤ (nε)1/2 =
√
nε,

showing that Sn is a (δ,
√
nε)-Delone subset of Rn.

To see that Sn is aperiodic, assume for the sake of contradiction that Sn−~v = Sn

for some ~v = (v1, . . . , vn) ∈ Rn. This means that, for every ~s = (s1, . . . , sn),
~s − ~v ∈ Sn if and only if ~s ∈ Sn. In particular, for every s ∈ R, we have s ∈ S if
and only if s− v1 ∈ S, contradicting the hypothesis that S is aperiodic.

Finally, to prove that Sn is almost chaotic, recall that the sets Nr(S
n) (r > 0)

form a neighbourhood basis at Sn (see Section 2). Also, arguing as before, we get
that, for every Delone subset R of R and r > 0,

(R+BR(0, r))n ⊂ Rn +BRn(~0,
√
n/r).

Now (2.1) and (2.2) yield

S ⊂ Nr(R) =⇒ Sn ⊂ Nr/√n(Rn) (5.1)

for every r > 0 and Delone set R.
By the assumption that S is almost chaotic and Lemma 2.1, there is a sequence

of periodic Delone sets Ti (i ≥ 1) in R and, for each i, a sequence xi,j (j ≥ 1) in R
so that

S ∈ N1/i(Ti) and S − xi,j ∈ N1/j(Ti).

For i, j ≥ 1, let ~xi,j = (xi,j , . . . , xi,j). Now (5.1) yields

Sn ∈ N√n/i(Tni ) and S − ~xi,j = (S − xi,j)n ∈ N√n/j(Tni ).

Arguing as in the beginning of the proof, we get that the sets Tn are Delone, and
since they are obviously periodic, the result now follows from Lemma 2.1. �
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