1	The influence of sublethal neonicotinoid doses on individual Apis mellifera scutellata
2	thermotolerance
3	Laura Catherine Bester* (ORCID 0000-0001-6628-3902) ¹
4	Mia Wege (ORCID 0000-0002-9022-3069) ²
5	Christian Walter Werner Pirk (ORCID 0000-0001-6821-7044) ¹
6	¹ Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria,
7	Private Bag X20, Hatfield, 0028, Pretoria, South Africa
8	² Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield,
9	0028, Pretoria, South Africa
10	*lauracatherinebester@gmail.com

Figure S7 Individual mortalities are indicated for the three treatments; Clothianidin (CLO), Thiamethoxam (THX), Imidacloprid (IMI), and the two controls; Acetone (ACE) and Sucrose (SUC). Mortalities were measured at 2-hour intervals during the 8-hour period. Mortality rates (indicated as the colour corresponding broken lines) for the lowest temperature ramp ending at 50°C.

Figure S8 Individual mortalities are indicated for the three treatments; Clothianidin (CLO),
Thiamethoxam (THX), Imidacloprid (IMI), and the two controls; Acetone (ACE) and Sucrose
(SUC). Mortalities were measured at 2-hour intervals during the 8-hour period. Mortality rates
(indicated as the colour corresponding broken lines) for the highest temperature ramp ending at 56°C.

18

Figure S9 Survival analysis graph showing the cumulative proportion of surviving honey bees across the 8 hours after temperature ramp treatment, combined data for all temperatures per treatment. Survival rates for honey bees treated with clothianidin (CLO), imidacloprid (IMI) and thiamethoxam (THX), the sucrose (SUC) and acetone (ACE) controls as well as the Baseline experiment are shown. Survival was recorded at 2-hour intervals.

Figure S10 Survival analysis graph showing the cumulative proportion of surviving honey bees across the 8 hours after temperature ramp treatment terminating at 50°C. Survival rates for honey bees treated with clothianidin (CLO), imidacloprid (IMI) and thiamethoxam (THX), the sucrose (SUC) and acetone (ACE) controls as well as the Baseline experiment are shown. Survival was recorded at 2-hour intervals.

Figure S11 Survival analysis graph showing the cumulative proportion of surviving honey bees
across the 8 hours after temperature ramp treatment terminating at 51°C. Survival rates for honey
bees treated with clothianidin (CLO), imidacloprid (IMI) and thiamethoxam (THX), the sucrose
(SUC) and acetone (ACE) controls as well as the Baseline experiment are shown. Survival was
recorded at 2-hour intervals.

Figure S12 Survival analysis graph showing the cumulative proportion of surviving honey bees
across the 8 hours after temperature ramp treatment terminating at 52°C. Survival rates for honey
bees treated with clothianidin (CLO), imidacloprid (IMI) and thiamethoxam (THX), the sucrose
(SUC) and acetone (ACE) controls as well as the Baseline experiment are shown. Survival was
recorded at 2-hour intervals.

Figure S13 Survival analysis graph showing the cumulative proportion of surviving honey bees across the 8 hours after temperature ramp treatment terminating at 53°C. Survival rates for honey bees treated with clothianidin (CLO), imidacloprid (IMI) and thiamethoxam (THX), the sucrose (SUC) and acetone (ACE) controls as well as the Baseline experiment are shown. Survival was recorded at 2-hour intervals.

Figure S14 Survival analysis graph showing the cumulative proportion of surviving honey bees across the 8 hours after temperature ramp treatment terminating at 54°C. Survival rates for honey bees treated with clothianidin (CLO), imidacloprid (IMI) and thiamethoxam (THX), the sucrose (SUC) and acetone (ACE) controls as well as the Baseline experiment are shown. Survival was recorded at 2-hour intervals.

Figure S15 Survival analysis graph showing the cumulative proportion of surviving honey bees across the 8 hours after temperature ramp treatment terminating at 55°C. Survival rates for honey bees treated with clothianidin (CLO), imidacloprid (IMI) and thiamethoxam (THX), the sucrose (SUC) and acetone (ACE) controls as well as the Baseline experiment are shown. Survival was recorded at 2-hour intervals.

Figure S16 Survival analysis graph showing the cumulative proportion of surviving honey bees across the 8 hours after temperature ramp treatment terminating at 56°C. Survival rates for honey bees treated with clothianidin (CLO), imidacloprid (IMI) and thiamethoxam (THX), the sucrose (SUC) and acetone (ACE) controls as well as the Baseline experiment are shown. Survival was recorded at 2-hour intervals.

- 72
- 73
- 74
- 75
- 76

Table SI Survival analysis statistics to compare Baseline, the three treatments clothianidin (CLO), imidacloprid (IMI), thiamethoxam (THX), and two controls acetone (ACE), and sucrose (SUC), at each of the seven target temperatures (Temp). Pairwise comparisons were done using the Gehan's Wilcoxon Test, comparing whether treatment or temperature influences survival. Test statistic values are indicated in the top right section, and the corresponding *p*-value indicated in the bottom left section.

Survival Analysis Statistics								
	Temp	Baseline	CLO	IMI	THX	ACE	SUC	
	50		7,719312	7,932453	7,316304	6,493596	6,493596	
	51		15,84279	16,14244	16,09351	13,21705	13,21705	
ine	52		11,96384	14,34456	13,42483	11,43902	11,43902	
seli	53		9,144892	9,404021	8,071751	7,268095	7,268095	
Ba	54		3,158653	3,821306	4,888532	-2,88561	-2,88561	
	55		1,769400	-1,19085	-0,698314	-2,44702	-2,44702	
	56		-7,06426	-2,30667	-6,11184	-3,68849	-3,68849	
	50	0,00000		-0,058890	-0,994403	-4,33314	-0,860575	
	51	0,00000		1,558709	0,1251735	1,578066	4,037261	
0	52	0,00000		5,520609	4,685847	5,076887	1,138344	
Ľ(53	0,00000		-3,15863	-3,25059	1,055079	-0,206061	
	54	0,00159		0,1173092	1,040331	-0,088139	-5,32647	
	55	0,07683		-3,09031	-2,59164	-4,20105	-4,07356	
	56	0,00000		7,259766	1,666344	2,947474	3,732491	
	50	0,00000	0,95304		-0,927808	-4,42674	-4,42674	
	51	0,00000	0,11907		-1,63405	-0,305657	-0,305657	
	52	0,00000	0,00000		-0,816047	1,813127	1,813127	
Z	53	0,00000	0,00159		-0,142018	3,872698	3,872698	
	54	0,00013	0,90662		1,476613	0,4610994	0,4610994	
	55	0,23371	0,00200		0,5259096	-1,66538	-1,66538	
	56	0,02107	0,00000		-5,73154	-2,45575	-2,45575	
	50	,00000	0,32003	0,35351		-3,73374	-3,45596	
	51	0,00000	0,90039	0,10225		1,316785	1,43582	
×	52	0,00000	0,00000	0,41447		2,446461	2,23435	
H	53	0,00000	0,00115	0,88707		3,985146	3,872698	
L	54	0,00000	0,29819	0,13978		-0,629328	-0,629328	
	55	0,48498	0,00955	0,59895		-2,09562	-2,09562	
	56	0,00000	0,09564	0,00000		1,771043	1,771043	
F	50	0,00000	0,00001	0,00001	0,00019		2,901582	
ACI	51	0,00000	0,11455	0,75987	0,18791		3,271165	
	52	0,0000	0,00000	0,06981	0,01443		-3,20367	

	53	0,00000	0,29139	0,00011	0,00007		-0,976003
	54	0,00391	0,92977	0,64473	0,52913		-5,69420
	55	0,01440	0,00003	0,09584	0,03612		0,1612038
	56	0,00023	0,00320	0,01406	0,07655		0,2381309
SUC	50	0,00000	0,38947	0,00001	0,00001	0,00371	
	51	0,00000	0,00005	0,75987	0,75987	0,00107	
	52	0,00000	0,25498	0,06981	0,07851	0,00136	
	53	0,00000	0,83674	0,00011	0,00011	0,32906	
	54	0,00391	0,00000	0,64473	0,68933	0,00000	
	55	0,01440	0,00005	0,09584	0,08734	0,87193	
	56	0,00023	0,00019	0,01406	0,02066	0,81178	