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Highlights
CRPS-based online learning for nonlinear probabilistic forecast combination
Dennis van der Meer,Pierre Pinson,Simon Camal,Georges Kariniotakis

• Linear combination of calibrated probabilistic forecasts leads to overdispersion.
• We develop a flexible nonlinear forecast combination method for the online setting.
• The model converges to the best fixed strategy in two simulation studies.
• The model outperforms the best fixed strategy in a nonstationary real-world study.
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A B S T R A C T
Forecast combination improves upon the component forecasts. Most often, combination ap-
proaches are restricted to the linear setting only. However, theory shows that if the component
forecasts are neutrally dispersed—a requirement for probabilistic calibration—linear forecast
combination will only increase dispersion and thus lead to miscalibration. Furthermore, the
accuracy of the component forecasts may vary over time and the combination weights should
vary accordingly, necessitating updates as time progresses. In this paper, we develop an online
version of the beta-transformed linear pool, which theoretically can transform the probabilistic
forecasts such that they are neutrally dispersed. We show that, in case of stationary synthetic time
series, the performance of the developed method converges to that of the optimal combination
in hindsight. Moreover, in case of nonstationary real-world time series from a wind farm in
mid-west France, the developed model outperforms the optimal combination in hindsight.

1. Introduction
The combination of probability distributions issued by experts has a long history that can be traced back to at

least Stone (1961). The linear opinion pool, as labelled by Stone (1961), is the convex combination of component
probability distributions. In probabilistic forecasting, forecasters aim to maximize the sharpness of the forecasts,
subject to calibration (Gneiting, Balabdaoui and Raftery, 2007). Calibration refers to the agreement between the
forecasts and observed probabilities; for instance, when a forecaster predicts daily overcast conditions with 80%
probability, cloudiness should actually occur on 80 of the 100 days with such conditions. Ensemble forecasts from
numerical weather prediction (NWP) models tend to exhibit underdispersion, which implies that the forecasts are
overconfident (Wilks, 2018). Conversely, probabilistic forecasts can be overdispersed, which means that the forecaster
is underconfident and issues forecasts with too much variance. These types of miscalibration can negatively affect
decision-making based on such forecasts and care needs to be taken to ensure proper calibration. On this point,
Hora (2004) notes that “there are theoretical reasons for questioning the use of linear combinations of experts’
probabilities. This concern stems from understanding that well-calibrated experts cannot be combined without
introducing miscalibration.” Nevertheless, linear forecast combination is commonly used, especially in combination
with batch learning. Following the above, it is important to note that the context in this manuscript is different from
that of deterministic, or point, forecast combination. In the context of the latter, the observation that the simple average
of experts’ forecasts tends to be more accurate than the optimally weighted combination is referred to as the “forecast
combination puzzle” and is attributed to the combination variance that is affected by weight estimation (Claeskens,
Magnus, Vasnev and Wang, 2016).
1.1. Batch learning

Batch learning requires a separate data set that accurately represents the test set to optimize the combination
weights. Consequently, the optimally weighted forecast combination does not necessarily outperform the best com-
ponent forecast if the separate data sets are not comparable (e.g., Hall and Mitchell, 2007). Nevertheless, there is value
to optimizing the weights as shown by Martin, Loaiza-Maya, Maneesoonthorn, Frazier and Ramírez-Hassan (2022)
who consistently outperform the naive forecast combination with equal weights. A notable example frequently applied
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to NWP forecasts is Bayesian Model Averaging (BMA), where ensemble members are dressed with a probability
density function (PDF) and the weights optimized using the logarithmic score (Raftery, Gneiting, Balabdaoui and
Polakowski, 2005). In their application, BMA is an efficient method to calibrate the ensemble because the ensemble
under investigation is underdispersed. To reduce overdispersion, Bracale, Carpinelli and De Falco (2017) minimize
a weighted sum of the continuous ranked probability score (CRPS) and deviation from calibration. Similarly, Jose,
Grushka-Cockayne and Lichtendahl (2014) propose the exterior-trimmed opinion pool heuristic method that effectively
removes expert forecasts with low and high means or cumulative distribution function (CDF) values. Additionally,
they introduce the interior-trimmed opinion pool that removes expert forecasts with moderate means or CDF values to
increase the dispersion in case the experts are overconfident.

Averaging probabilities, which is also referred to as vertical averaging, can be shown to be at least as accurate
in terms of CRPS as the average CRPS of the experts (Lichtendahl, Grushka-Cockayne and Winkler, 2013). Besides
averaging probabilities, it is also possible to average quantiles, which can be referred to as horizontal averaging. In
their comparative study, Lichtendahl et al. (2013) show that the average quantile forecast is always sharper than the
average probability forecast and that the former is therefore better suited in case the component forecasts are well
calibrated. In the area of load forecasting, Wang, Zhang, Tan, Hong, Kirschen and Kang (2019) linearly combine
quantiles and show that their approach does not always outperform the component models although they do not evaluate
forecast calibration. In a similar fashion, Bracale, Carpinelli and De Falco (2019) minimize the pinball loss to optimally
combine quantile forecasts of photovoltaic (PV) power and improve accuracy. However, similar to Wang et al. (2019),
the authors do not evaluate the calibration of the component nor the combined forecasts. Taylor and Taylor (2023)
forecast the cumulative COVID-19 mortality and face interesting challenges such as a lack of historical forecasts, and
therefore use trimming techniques as well as the simple average, the median forecast and weights based on the inverse
quantile score to find that the latter performs at least as well as the simple average.

Besides trimming and averaging quantiles, one can also apply nonlinear transformations to the linear opinion pool to
improve probabilistic calibration. Gneiting and Ranjan (2013) describe two such methods, namely the spread-adjusted
linear pool (SLP) and beta-transformed linear pool (BLP). SLP adjusts the spread of the component forecasts and can
consequently mitigate—to a certain extent—overdispersion caused by linearly combining calibrated forecasts. Möller
and Groß (2020) apply SLP to post-processed temperature forecasts issued by the European Center for Medium-range
Weather Forecasts (ECMWF) ensemble prediction system and show that it effectively lowers CRPS compared to the
component forecasts. However, a limitation of SLP is that the method fails to be flexibly dispersive, which is to say that
it is unable to sufficiently adjust the spread to produce neutrally dispersed forecasts, especially when the component
forecasts are neutrally dispersed or underdispersed (Gneiting and Ranjan, 2013). In contrast, BLP is exchangeably
flexibly dispersive and as such is able to transform the predictive distributions such that the second moment of the
resulting probability integral transform (PIT) can attain any value in the open interval (0, 1∕4), with 1∕12 indicating
neutral dispersion (Gneiting and Ranjan, 2013). Van der Meer, Camal and Kariniotakis (2022) apply both SLP and BLP
to combine PV power forecasts and show that SLP outperforms BLP, which is caused by a lack of representativeness
of the training data that affects parameter learning more in case of BLP than in case of SLP. Finally, Bassetti, Casarin
and Ravazzolo (2018) develop a Bayesian nonparametric approach that extends the parametric class of calibration
functions, i.e., BLP, using a possibly unknown number of beta mixtures, which can be interpreted as a mixture of local
combination models.
1.2. Online learning

Nonstationary data, extensive training times for complex machine learning models, and data storage present
challenges in batch learning. To illustrate this further, consider batch gradient descent. In this method, the objective
is to update the model parameter 𝜃 by calculating the loss gradient ∇𝐿(𝑓 (𝑥𝑖, 𝜃), 𝑦𝑖) across a training set indexed by
𝑖 ∈ 1,… , 𝑁 , which consists of input-output pairs (𝑥𝑖, 𝑦𝑖). The parameter update, after processing a batch containing
𝑁 data points, is computed as follows: 𝜃new = 𝜃old − 𝜂 ⋅ 1

𝑁
∑𝑁
𝑖=1∇𝐿(𝑓 (𝑥𝑖, 𝜃old), 𝑦𝑖), with 𝜂 representing the learning

rate. The aforementioned expression highlights that batch learning necessitates the storage of all 𝑁 data points and
the consecutive computation of the gradient 𝑁 times. Unlike batch learning, online learning is computationally less
expensive and does not require to store historical data. Moreover, it integrates real-time data and therefore adapts to
trends and seasonalities. Returning to the example of gradient descent, the online version instead updates 𝜃 as soon as
a new input-output pair (𝑥𝑖, 𝑦𝑖) becomes available as 𝜃new = 𝜃old − 𝜂 ⋅ ∇𝐿(𝑓 (𝑥𝑖, 𝜃old), 𝑦𝑖). In the context of forecast
combination, such real-time adaptation would be relevant when one of the experts is better at forecasting in a declining
market rather than a rising market (Winkler, Grushka-Cockayne, Lichtendahl and Jose, 2019).
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Recent years have seen a stark increase in the number of publications on online forecast combination. For instance,
Thorey, Mallet and Baudin (2017) consider online ridge regression and exponentiated gradient to update weights
based on CRPS minimization so as to linearly combine the ensemble members into a CDF. In a subsequent study,
Thorey, Chaussin and Mallet (2018) extend their research by applying the ML-Poly algorithm introduced by Gaillard,
Stoltz and van Erven (2014) to linearly combine ensemble members from ECMWF and Metéo France. This extension
demonstrated enhanced performance compared to using raw ensembles, although it should be noted that their forecasts
still exhibited underdispersion. In the aforementioned studies, the authors show that the regret of their algorithm is
logarithmic as a function of time. It is important to note that in the field of online learning, here used interchangeably
with Online Convex Optimization (OCO), and of which forecast combination is a subset, the primary objective is
to minimize regret rather than loss. Regret is defined as the difference in performance between the online player
and the optimal fixed strategy in hindsight (Hazan, 2021). Instead of combining ensemble members, V’yugin and
Trunov (2019) combine predictive CDFs using Vovk’s Aggregating Algorithm and show that their method offers a
time-independent upper bound on regret. Zamo, Bel and Mestre (2021) modify the objective function to comprise
the CRPS and the Jolliffe-Primo test for rank histogram flatness to improve calibration of their linearly combined
forecasts. The aforementioned studies concern linear forecast combination, which, as previously discussed, leads to
overdispersion.

Regarding quantile forecasting, Berrisch and Ziel (2021) observe potential differences in accuracy across various
segments of the experts’ predictive distributions. To address this, they propose a linear pointwise combination
algorithm that aggregates quantiles based on CRPS minimization. Their research reveals that this approach yields a
more uniformly distributed loss throughout the predictive distribution. In a related study, Krannichfeldt, Wang, Zufferey
and Hug (2022) adapt the pinball loss to remain “passive” when the loss is below a threshold but “aggresively” adjusts
the weights when a new sample causes the loss to exceed the threshold, resulting in improved CRPS and pinball loss
although their method appears to be outperformed by benchmark models in terms of calibration.
1.3. Contributions

In some applicative fields like wind power forecasting, the value of forecast combination was recognized already
20 years ago, with the first operational models based on spot forecast combination set-up by the Spanish Transmission
System Operator (see, e.g., Sánchez, 2008). Today, this is considered as a mainstream approach in business practices in
renewable energy forecasting. Though when it comes to probabilistic forecasting, several research challenges remain.
As outlined in the previous sections, the literature on probabilistic forecast combination—both batch and online—is
expanding rapidly, which has been predicted based on the popularity of forecasting competitions and developments
in machine learning and expert forecasting (Winkler et al., 2019). In this work, we extend the beta-transformed linear
pool proposed by Gneiting and Ranjan (2013) to the online setting to mitigate miscalibration caused by linear forecast
combination. The beta-transformed linear pool is exchangeably flexibly dispersive, meaning that there exists a set of
parameters that ensures that the combined forecasts are probabilistically calibrated while the component forecasts are
exchangeable (Gneiting and Ranjan, 2013). The method that we develop is able to adapt in nonstationary contexts and
is integrated into the Online Newton Step (ONS) algorithm that moves in the direction of an approximate Hessian
and the gradient, the former of which is additionally used to project the weights back onto the simplex. The CRPS is
employed to guide the learning process as it is exponentially-concave, an attribute of the CRPS that permits logarithmic
regret when used as a cost function in the ONS algorithm. To summarize, we contribute to the state of the art of online
probabilistic forecast combination in the following ways:

• We develop a nonlinear and online method to combine probabilistic forecasts that is exchangeably flexibly
dispersive.

• The proposed method relies on the CRPS, an exponentially-concave function, in conjunction with the Online
Newton Step algorithm. This combination permits logarithmic regret and accommodates the most comprehen-
sive scenario, wherein experts provide full predictive distributions.

• We demonstrate the effectiveness of our method through two simulation studies from the literature and a real-
world wind power forecasting study, and make the code publicly available to facilitate its uptake.

The remainder of this work is organized as follows. Section 2 describes the probabilistic forecast combination
framework, i.e., the linear and beta-transformed linear pool, as well as the CRPS that is used to guide the learning
process. Next, we introduce online convex optimization, develop the necessary mathematics and introduce the ONS
First Author et al.: Preprint submitted to Elsevier Page 3 of 23
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algorithm in Section 3. We present the results of two simulation studies and a real-world wind power case study in
Section 4 and conclude this work in Section 5.

2. Probabilistic forecast combination framework
In this section, we provide a comprehensive explanation of forecast combination. Initially, we delve into the concept

of linear combination, followed by an exploration of how the Beta distribution is employed to transform this linear
combination. Throughout the remainder of this work, we consider a total of 𝑚 experts indexed by 𝑗 and denote a
predictive distribution by 𝐹 . Furthermore, we use lower case normal font for realizations of scalar variables and upper
case for scalar variables, lower case bold font for vectors and upper case bold font for matrices.
2.1. Classical linear combination

The linear opinion pool is defined as (e.g., Gneiting and Ranjan, 2013):

𝐹 (𝑦) =
𝑚
∑

𝑗=1
𝑤𝑗𝐹𝑗(𝑦). (1)

We adopt the abbreviations of Gneiting and Ranjan (2013) in this work. Consequently, in case of equal weights, i.e.,
𝑤𝑗 = 1∕𝑚, we refer to (1) as the ordinary linear pool (OLP), which was labelled the linear opinion pool by Stone
(1961). In contrast, when the weights are optimized with respect to a score, we refer to (1) as the traditional linear pool
(TLP). The main motivation to combine forecasts is to harness the wisdom of the crowd, which is an effective method
in point forecasting due to the expertise and diversity of the crowd (Soll, Mannes and Larrick, 2012). Instead, linearly
combining diverse probabilistic forecasts further increases the dispersion, which may lead to calibration issues (Hora,
2004).
2.1.1. Beta-transformed linear pool

To mitigate miscalibration caused by linear combination, Gneiting and Ranjan (2013) propose a nonlinear
transformation of the linear pool (1) by means of the Beta CDF. The beta-transformed linear pool (BLP) forecast
encapsulates (1) and is defined as (Gneiting and Ranjan, 2013):

𝐹𝑎,𝑏(𝑦) = 𝐼𝑎,𝑏

( 𝑚
∑

𝑗=1
𝑤𝑗𝐹𝑗(𝑦)

)

, (2)

where 𝐼𝑎,𝑏 is the regularized incomplete beta function with shape parameters 𝑎 and 𝑏. Recall that BLP is able to
transform the predictive distributions such that the second moment of the resulting PIT can attain any value in the
open interval (0, 1∕4) with fixed weights and 𝑎 > 0 and 𝑏 > 0 (Gneiting and Ranjan, 2013). Note that when 𝑎 = 𝑏 = 1,
(2) equals (1). Throughout the remainder of this work, we will abbreviate the linear opinion pool as 𝑧 = ∑𝑚

𝑗=1𝑤𝑗𝐹𝑗(𝑦).The regularized incomplete beta function, which is also known as the Beta CDF, is defined as:

𝐼𝑎,𝑏(𝑧) =
𝐵𝑎,𝑏(𝑧)
𝐵𝑎,𝑏

, (3)

where
𝐵𝑎,𝑏(𝑧) = ∫

𝑧

0
𝑢𝑎−1 (1 − 𝑢)𝑏−1 d𝑢

= Γ(𝑎)𝑧𝑎 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑧), (4)
𝐵𝑎,𝑏 = ∫

1

0
𝑢𝑎−1 (1 − 𝑢)𝑏−1 d𝑢

=
Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏)

. (5)
In the above equations, 𝐵𝑎,𝑏(𝑧) is the incomplete Beta function, 𝐵𝑎,𝑏 is the complete Beta function, Γ is the gamma
function and 2𝐹 1 is a regularized hypergeometric function. These identities are useful to derive the gradient in
Section 3.1.
First Author et al.: Preprint submitted to Elsevier Page 4 of 23
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2.2. CRPS-based learning
Strictly proper scoring rules minimize in expectation under the true model. These rules are therefore recommended

for forecast evaluation because they encourage truth telling from a forecaster (e.g., Gneiting and Raftery, 2007).
Conversely, a forecaster may minimize such a rule to identify the true model in the learning stage. The CRPS is a
strictly proper scoring rule that evaluates the entire predictive distribution and therefore permits the most general
setting where experts issue complete predictive distributions. Moreover, the CRPS is exponential-concave in case of
bounded support, which implies that the score is strongly convex in the direction of the gradient but not necessarily
elsewhere (Korotin, V’yugin and Burnaev, 2021; Hazan, 2021). Exp-concavity is an important attribute of the CRPS
because—in combination with particular online learning methods—it allows for accelerated learning, as Section 3.2
will clarify. The CRPS is defined as follows:

CRPS(𝐹𝑡, 𝑦𝑡) = ∫

1

0

(

𝐹𝑡 (𝑥) − 1{𝑥 ≥ 𝑦𝑡}
)2 d𝑥, (6)

where 1 denotes the indicator function that is 1 when the condition inside the curly brackets is true. The limits of the
integral are taken to be 0 and 1, respectively, since the data are normalized. Note that (6) is an instantaneous value
and that these are averaged over a test set to rank competing forecasts. Similarly, one can minimize the expected value
of (6) to learn the true parameters of a forecast model or, as in our case, learn the optimal combination parameters.
Henceforth we will omit the time index to simplify the notation.
2.3. Distribution-oriented forecast verification

While the CRPS can be used to rank competing forecasts, it does not reveal specific types of miscalibration. The PIT
is a common verification tool to visualize the calibration of probabilistic forecasts and can be computed as 𝑍 = 𝐹 (𝑌 ),
where 𝐹 and 𝑌 are series of predictive distributions and observations, respectively. 𝐹 is said to be probabilistically
calibrated if 𝑌 ∼ 𝐹 , which implies that 𝑍 is a standard uniform distribution (Rosenblatt, 1952). Consequently, the
variance of 𝑍 is constrained to the closed interval [0, 1∕4] and the distribution is flat when var(𝑍) = 1∕12.

Nevertheless, a PIT histogram can deviate from flatness due to randomness induced by a test set of limited length. To
account for randomness, Bröcker and Smith (2007) propose consistency bands that represent the maximum estimation
uncertainty that can be expected for a test set of specific length. In other words, as long as the deviation from flatness
remains within the consistency bands, one cannot reject the hypothesis that the probabilistic forecasts are reliable.
Herein, we use dotted lines to visualize the consistency bands.

3. Online convex optimization
Online convex optimization (OCO) can be seen as a game where a player repeatedly makes decisions over time.

At time step 𝑡, the player chooses from the 𝑛-dimensional convex decision set 𝒙𝑡 ⊆ ℝ𝑛. After the player’s decision, a
convex cost function 𝑓𝑡 is revealed and the player incurs a loss 𝑓𝑡(𝒙𝑡). The performance of OCO algorithms is measured
in terms of regret, which is defined as the difference in performance between the online player and the optimal fixed
strategy in hindsight. In the context of online forecast combination, the forecast aggregator is the online player who
adapts the aggregation function based on the most recent performance and who regrets—in hindsight—not choosing
the fixed aggregation function that optimizes performance. The reason for using regret is that OCO permits an adversary
who can choose different cost functions as the game progresses. In this framework, OCO is concerned with algorithms
that realize sublinear regret with increasing test length, implying that, on average, the algorithms perform as well as
the best strategy in hindsight. For an in-depth treatment of OCO and its various algorithms, the reader is referred to
Orabona (2019) and Hazan (2021).

Although there are settings in OCO, such as Multi-Armed Bandit, where a player does not have access to the
loss gradient, we focus on gradient-based online learning. One advantage of gradient-based online learning is that it
generally permits tighter bounds on regret. The properties of the CRPS described in Section 2.2 make it an attractive
scoring rule in an online learning context as well as for evaluating forecasts. What follows is the derivation of the
CRPS gradient with respect to the shape parameters of the Beta CDF and the linear combination weights. Afterwards,
we introduce the OCO algorithm that we employ.

First Author et al.: Preprint submitted to Elsevier Page 5 of 23
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3.1. Derivation of the CRPS gradient
Recall that we consider𝑚 experts indexed by 𝑗; the vector of weights is subsequently defined as𝒘 =

(

𝑤1,… , 𝑤𝑚
)⊤

and the vector of parameters is defined as 𝒙 =
(

𝑎, 𝑏,𝒘⊤)⊤. The gradient of the CRPS with respect to 𝒙 is then defined
as follows:

∇CRPS(𝐹𝑎,𝑏, 𝑦) =
(

𝜕CRPS
𝜕𝑎

, 𝜕CRPS
𝜕𝑏

, 𝜕CRPS
𝜕𝑤1

,… , 𝜕CRPS
𝜕𝑤𝑚

)⊤
. (7)

3.1.1. Partial derivative with respect to the weights
In deriving the partial derivatives, we first consider the linear combination of the component forecasts as it is

encapsulated in the beta-transformed linear pool. This is relevant because the linear pool can act as a benchmark for
the beta-transformed linear pool.
Linear The combination weights are contained within the integral, cf. (6). We therefore use the Leibniz integral rule
for differentiation under the integral sign to derive the partial derivatives with respect to weights 𝑤𝑗 since they are not
integration variables. To improve the numerical properties of the learning process, Pinson and Madsen (2012) propose
a logit transform �̃�𝑗 of 𝑤𝑗 , such that:

�̃�𝑗 = ln
( 𝑤𝑗
1 −𝑤𝑗

)

, (8)

which constrains 𝑤𝑗 to the open interval (0, 1). Using the chain rule, the partial derivative of the CRPS with respect to
𝑤𝑗 becomes:
𝜕CRPS
𝜕𝑤𝑗

= 𝜕CRPS
𝜕�̃�𝑗

𝜕�̃�𝑗
𝜕𝑤

,

which means that:
𝜕CRPS
𝜕�̃�𝑗

= 𝜕CRPS
𝜕𝑤𝑗

𝜕𝑤𝑗
𝜕�̃�𝑗

.

Notice that 𝜕�̃�𝑗𝜕𝑤𝑗
= 1

𝑤𝑗−𝑤2
𝑗
. We have:

𝜕CRPS
𝜕𝑤𝑗

= ∫

1

0
2
(

𝐹TLP (𝑥) − 1{𝑥 ≥ 𝑦}
) 𝜕𝐹TLP (𝑥)

𝜕𝑤𝑗
d𝑥

= 2∫

1

0
𝐹𝑗 (𝑥)

(

𝐹TLP (𝑥) − 1{𝑥 ≥ 𝑦}
)

d𝑥, (9)

and therefore:
𝜕CRPS
𝜕�̃�𝑗

= 2
(

𝑤𝑗 −𝑤2
𝑗

)

∫

1

0
𝐹𝑗 (𝑥)

(

𝐹TLP (𝑥) − 1{𝑥 ≥ 𝑦}
)

d𝑥. (10)

Nonlinear The partial derivative in the nonlinear setting is similar to (9), except that𝐹TLP (𝑥) is replaced with𝐹𝑎,𝑏 (𝑧).Notice that 𝑧 appears in the upper limit of the integral in (4) and we therefore require Leibniz’s integral rule. We defer
the derivation to Appendix A.1 and instead present the final result below:

𝜕CRPS
𝜕�̃�𝑗

=
2
(

𝑤𝑗 −𝑤2
𝑗

)

𝐵𝑎,𝑏 ∫

1

0

(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
)

𝑧𝑎−1 (1 − 𝑧)𝑏−1 𝐹𝑗(𝑥) d𝑥. (11)
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3.1.2. Partial derivative with respect to shape parameter 𝑎
Similarly, shape parameter 𝑎 is not an integration variable and we therefore apply the Leibniz integral rule again.

Important to note here is that both 𝑎 and 𝑏 are strictly positive. Similar to weight 𝑤𝑗 , we apply a change of variable
�̃� = ln(𝑎) to improve the stability of the algorithm (Pinson and Madsen, 2012). The partial derivative with respect to
shape parameter 𝑎 is presented below, whereas the derivation is deferred to Appendix A.2:
𝜕CRPS
𝜕�̃�

= 2𝑎∫

1

0

(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
)

×
(

𝐹𝑎,𝑏(𝑧) (ln(𝑧) − 𝜓(𝑎) + 𝜓(𝑎 + 𝑏))

−
Γ(𝑎)Γ(𝑎 + 𝑏)

Γ(𝑏)
𝑧𝑎 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧)

)

d𝑥, (12)

where 𝜓 is the digamma function.
3.1.3. Partial derivative with respect to shape parameter 𝑏

A similar approach to derive 𝜕CRPS∕𝜕𝑏 can be used as was used in the previous section. Furthermore, an identical
change of variable �̃� = ln(𝑏) is used to improve the stability of the algorithm. Equation (13) presents the result, while
the derivation is deferred to Appendix A.3.
𝜕CRPS
𝜕�̃�

= 2𝑏∫

1

0

(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
)

×
(

Γ(𝑎 + 𝑏)Γ(𝑏)
Γ(𝑎)

(1 − 𝑧)𝑏 3𝐹 2(𝑏, 𝑏, 1 − 𝑎; 𝑏 + 1, 𝑏 + 1; 1 − 𝑧)

+ 𝐹𝑏,𝑎(1 − 𝑧) (𝜓(𝑏) − 𝜓(𝑎 + 𝑏) − ln(1 − 𝑧))
)

d𝑥. (13)

3.2. Online Newton step
Several algorithms have been proposed in the field of online convex optimization that are analogues to well-

known offline algorithms (see, e.g., Hazan, 2021, for an overview). Online Gradient Descent (OGD), as described
in Section 1.2, is the analogue to Gradient Descent in which the algorithm moves in the direction of the gradient at
every iteration and is therefore a first-order algorithm (Zinkevich, 2003). Despite its simplicity, OGD is linear in time
and achieves sublinear regret in the worst case and logarithmic regret for strongly convex loss functions (Hazan, 2021).

One difficulty associated with OGD is the need for precise tuning of the step size or learning rate to achieve
the desired regret. Additionally, it may be that the requirement of strong convexity is too stringent in practice. In such
instances, it is possible to utilize exp-concave loss functions that are strongly convex in the direction of the gradient but
not necessarily elsewhere (Hazan, 2021). The Online Newton Step (ONS) is an algorithm that guarantees logarithmic
regret for exp-concave loss functions and therefore does not require an adaptive step size (Hazan, Agarwal and Kale,
2007). ONS is analogues to the Newton-Raphson method in that it moves in the direction of an approximated Hessian
and the gradient, i.e., 𝑨−1

𝑡 ∇𝑡, yet is based only on first-order information. The operation 𝑨−1
𝑡 ∇𝑡 can potentially yield

a set of weights that lie beyond the boundaries of the unit simplex. To avoid constraints, Pinson and Madsen (2012)
parameterize the transition probabilities on the 𝑚-dimensional unit sphere. Instead, we perform a projection onto the
unit simplex with a norm induced by 𝑨𝑡 rather than the Euclidean norm (Hazan et al., 2007). More details on this
projection will be given below.

Recall that we consider𝑚 experts, resulting in a weight vector 𝒘 ∈ ℝ𝑚 and a parameter vector 𝒙 ∈ ℝ𝑛 that includes
the shape parameters of the Beta distribution (3). Algorithm 1 summarizes the ONS algorithm in detail. Note that 𝛾 is
a scaling factor of the starting point of the update step, i.e., 𝑨−1

0 , whereas 𝜂 represents. The step size remains constant
for two reasons: (i) ONS guarantees logarithmic regret for exp-concave losses and (ii) maintaining a fixed step size
allows the algorithm to adapt effectively in non-stationary environments, whereas reducing step sizes could hinder this
adaptability. To avoid inverting a potentially large matrix, Hazan et al. (2007) recommend a recursion step for 𝑨−1

𝑡using the Sherman-Morrisson formula (Sherman and Morrison, 1950):
𝑨−1
𝑡 =

(

𝑨𝑡 + ∇𝑡∇⊤𝑡
)−1
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Algorithm 1: Online Newton step (Hazan, 2021; Wintenberger, 2021)
Data: convex set , 𝑇 , 𝒙1 ∈  ⊆ ℝ𝑛, parameters 𝛾, 𝜂 > 0,𝑨0 = 1∕𝛾2𝑰𝑛,𝑨−1

0 = 𝛾2𝑰𝑛
for 𝑡 ← 1 to 𝑇 do

Play 𝒙𝑡 and observe cost 𝑓𝑡(𝒙𝑡);
𝑨𝑡 = 𝑨𝑡−1 + ∇𝑡∇⊤𝑡 ;
𝑨−1
𝑡 = 𝑨−1

𝑡−1 −
𝑨−1
𝑡−1∇𝑡∇

⊤
𝑡 𝑨

−1
𝑡−1

1+∇⊤𝑡 𝑨
−1
𝑡−1∇𝑡

;
Newton step: 𝒚𝑡+1 = 𝒙𝑡 − 𝜂

1
𝛾𝑨

−1
𝑡 ∇𝑡;

𝒗𝑡+1 ∈ ℝ𝑚 ⊂ 𝒚𝑡+1 ∈ ℝ𝑛;
Projection (weights only) with weighted norm ‖⋅‖𝑫𝑡

: 𝒘𝑡+1 =
1
2 argmin𝒘∈‖𝒘 − 𝒗𝑡+1‖2𝑫𝑡

end

= 𝑨−1
𝑡−1 −

𝑨−1
𝑡−1∇𝑡∇

⊤
𝑡 𝑨

−1
𝑡−1

1 + ∇⊤𝑡 𝑨
−1
𝑡−1∇𝑡

. (14)

In this work, the weights should sum to 1. Although not a strict requirement, we additionally ensure that the weights
are positive. Whereas OGD uses a Euclidean projection step, ONS requires a generalized projection onto the unit
simplex Λ that is in the vector norm induced by 𝑨𝑡, which is a convex program (Hazan et al., 2007). Nonetheless, the
presence of off-diagonal elements within 𝑨𝑡 introduces complexity to the optimization problem. Therefore, it is more
advantageous to approximate it by employing 𝑫𝑡 = diag (𝑨𝑡

). Consequently, the generalized projection onto Λ breaks
down into a series of independent scalar minimization problems for each component of 𝒘. These can be resolved by
solving a piecewise linear equation through sorting, as described by Held, Wolfe and Crowder (1974). Specifically, we
want to solve the following convex optimization problem (Hazan et al., 2007)

𝒘𝑡+1 =
1
2
argmin
𝒘∈

‖𝒘 − 𝒗𝑡+1‖2𝑫𝑡
, (15)

where 𝒗𝑡+1 ∈ ℝ𝑚 comprises only the weights and ‖𝒗𝑡+1 − 𝒘‖

2
𝑫𝑡

∶=
(

𝒘 − 𝒗𝑡+1
)⊤𝑫𝑡

(

𝒘 − 𝒗𝑡+1
). The piecewise

linear equation can be derived by solving a system of linear equations obtained from the Karush–Kuhn–Tucker (KKT)
optimality conditions (see Appendix B), which results in the weighted soft-threshold (Wintenberger, 2021)
𝒘∗ = 𝑫−1

𝑡 SoftThreshold (𝑫𝑡𝒗𝑡+1, 𝜈∗
)

. (16)
Algorithm 2 summarizes the aforementioned steps. Note that in our application, the convex set  ⊆ ℝ𝑛 is unbounded
and open since the shape parameters 𝑎 and 𝑏 are strictly larger than 0. We therefore forego a regret analysis and instead
empirically show the efficacy of the proposed method.

4. Results
We illustrate the efficacy of the proposed method through three case studies. The first two case studies are based

on synthetic data sets adapted from relevant studies, a time-invariant (Section 4.2.1) and a time-varying process
(Section 4.2.2). The synthetic case studies enable us to assess the performance of the proposed method within a
controlled environment. To facilitate uptake of the proposed method, we make the code to generate the synthetic
data and run the experiments available on GitHub1. Finally, we apply the proposed method to a real-world wind power
forecast case study in Section 4.3.
4.1. Benchmarks

In order to evaluate the effectiveness of the proposed online combination method, referred to as BLP, we incorporate
several benchmark models. The most obvious benchmarks are the component models that BLP is designed to combine,

1www.github.com/xyz
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Algorithm 2: Simplex projection with weighted norm ‖⋅‖𝑫𝑡
(Wintenberger, 2021)

Data: 𝒘 ∈ ℝ𝑚 and 𝑫𝑡 = diag (𝑨𝑡
)

if 𝒘 ∈ Λ then
Return 𝒘;

else
Sort (𝑑𝑡𝑣𝑡+1)1 ≥ … ≥ (𝑑𝑡𝑣𝑡+1)𝑚;
Find 𝑑0 = max

{

1 ≤ 𝑗 ≤ 𝑚; (𝑑𝑡𝑣𝑡+1)𝑖 −
1

∑𝑑0
𝑖=1 𝑑

−1
𝑡,𝑖

(

∑𝑑0
𝑖=1 𝑣𝑡+1,𝑖 − 1

)

}

;
Define 𝜈∗ = 1

∑𝑑0
𝑖=1 𝑑

−1
𝑡,𝑖

(

∑𝑑0
𝑖=1 𝑣𝑡+1,𝑖 − 1

)

;
Return 𝒘∗ = 𝑫−1

𝑡 SoftThreshold (𝑫𝑡𝒗𝑡+1, 𝜈∗
)

end

and these will be elaborated upon in the respective sections. Furthermore, there are three combination models
characterized by fixed weights, meaning that their weights remain constant throughout the entire duration. These
combination models are OLP with equal weights, TLP* (cf. (1)), and BLP* (cf. (2)). Note that the asterisk indicates
that the model parameters are optimized in hindsight, meaning that on average they are optimal for the testing data
set. Finally, we include two benchmarks based on online learning: (i) TLP, and (ii) the CRPS learning approach by
Berrisch and Ziel (2021), available on CRAN2, with all options set to the default values and which we refer to as PFC.
Note that the parameters required by the online learning methods are updated at every time step.
4.2. Synthetic data

For both synthetic case studies, we initialize the weights as 1∕𝑚 and the shape parameters 𝑎 = 𝑏 = 1, which
effectively is the ordinary linear pool (OLP). In total, we run 150 simulations for 11,500 time steps and report the
median as well as the 90% confidence interval of the parameter estimates. Regarding the hyperparameters of the ONS
algorithm, we perform an exhaustive grid search for 𝛾 and 𝜂 and select the hyperparameters that minimize CRPS.
Because of the different nature of the case studies, these parameter grids are not identical.
4.2.1. Time-invariant process

We adapt a simulation study from Gneiting and Ranjan (2013), in which the data generating process is the
combination of standard normal random variables 𝑋0, 𝑋1, 𝑋2, 𝑋3 and 𝜖 without a temporal relation:
𝑌 = 𝑋0 + 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝜖, (17)
where 𝜖 represents an error term. Gneiting and Ranjan (2013) note that 𝑋0 may represent public information, such
as weather forecasts from a meteorological office, while 𝑋1, 𝑋2 and 𝑋3 represent private information measured by
forecasters 1, 2 and 3, respectively. These experts issue the following probabilistic forecasts:
𝑓1 = 

(

𝑋0 + 𝑎1𝑋1, 1 + 𝑎22 + 𝑎
2
3
)

, (18)
𝑓2 = 

(

𝑋0 + 𝑎2𝑋2, 1 + 𝑎21 + 𝑎
2
3
)

, (19)
𝑓3 = 

(

𝑋0 + 𝑎3𝑋3, 1 + 𝑎21 + 𝑎
2
2
)

, (20)
where 𝑎1 = 𝑎2 = 1 and 𝑎3 = 1.1. Consequently, the component forecasts are probabilistically calibrated by design and
their linear combination leads to overdispersion (Gneiting and Ranjan, 2013). As mentioned, we compare our method
with linear and nonlinear combinations whose weights are static over time, denoted with an asterisk. To that end, the
parameters are optimized over the test data by minimizing the logarithmic score as in Gneiting and Ranjan (2013).
Simulation results Given the stationary and time-invariant nature of this case study, the hyperparameter grid includes
low 𝛾 values for increased stability and relatively high 𝜂 values to learn quickly. Specifically, the grid comprises the

2https://cran.r-project.org/web/packages/profoc/index.html
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Figure 1: In (a), the evolution of the weights over time organized by linear and nonlinear combination (rows), where the
shaded area represents the 90% confidence interval computed over 150 experiments. In (b), the PIT histograms of the
experts and combination methods again with the asterisk indicating the optimal parameters in hindsight.

combinations of 𝛾 ∈ {1∕16, 1∕21, 1∕26, 1∕31, 1∕36} and 𝜂 ∈ {0.150, 0.175, 0.200, 0.225, 0.250}. The combination
that minimizes CRPS is 𝛾 = 1∕26 and 𝜂 = 0.25.

Figure 1a presents the evolution of the parameters over time during linear and nonlinear forecast combination. The
shaded area represents the 90% confidence interval associated to the parameter, computed over 150 experiments. When
considering linear forecast combination, it becomes apparent that the third expert typically receives the highest weight.
This pattern is expected because the third expert consistently provides slightly sharper predictive distributions. The
weights of experts 1 and 2 are similar, which can be explained by the fact that their forecasts are identical in expectation.
We observe a similar pattern in the case of nonlinear forecast combination. However, both shape parameters are larger
than 1, indicating that the Beta transformation sharpens the predictive distributions. Crucially, the shape parameters
are very similar and this is expected as their primary purpose is to enhance sharpness.

Figure 1b presents the PIT histograms for the experts and the combination methods. Recall that departures from
flatness may arise from a limited-sized test set, which is why Fig. 1b also includes consistency bars. This figure
demonstrates that the experts exhibit the intended probabilistic calibration, highlighting that the linear combination
methods (namely, OLP, TLP, and TLP*) result in overdispersed forecasts. In contrast, both the online BLP and the
fixed BLP* effectively transform the combined forecasts to generate calibrated forecasts, whereas the PFC model tends
to be slightly miscalibrated at the outer edge of the distributions.

Considering CRPS, Table 1 shows that all combination methods substantially outperform the component models.
Furthermore, it can be seen that OLP, TLP and TLP* perform quite similar. BLP and BLP* perform identically, which
can partly be attributed to the fact that the process is time-invariant. In other words, the ONS algorithm converges to
the true weights, which implies that logarithmic regret is hereby empirically shown. Surprisingly, PFC underperforms
on this synthetic data set although it is important to recall that all settings have been left to their default values.
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Table 1
Realized CRPS for the component models and combination methods. The results are presented as the mean and standard
error of 150 experiments based on synthetic data adapted from Gneiting and Ranjan (2013). Note that the asterisk indicates
a combination method with optimal parameters in hindsight.

F1 F2 F3 OLP TLP TLP* BLP BLP* PFC

1.012±0.725 1.01±0.724 0.978±0.700 0.895±0.553 0.893±0.553 0.894±0.555 0.880±0.618 0.880±0.626 0.931±0.639

Finally, we evaluate the computational complexity of Algorithm 1, which is dominated by the computation of the
integrals (11), (12) and (13). On a 2020 M1 MacBook Pro running R 4.2.2, it takes approximately 10 ms (per component
model), 33 ms and 44 ms to evaluate the aforementioned integrals, respectively. One iteration of Algorithm 1 requires,
on average, 110 ms when considering 3 component models.
4.2.2. Time-varying process

We additionally illustrate the efficacy of the proposed method on a simulation study adapted from Berrisch and
Ziel (2021). Specifically, the data generating process is defined as:
𝑌𝑡 = 

(

0.15asinh (𝜇𝑡
)

, 1
)

, (21)
where 𝜇𝑡 = 0.99𝜇𝑡−1 + 𝜖𝑡 and 𝜖𝑡 a standard normal random variable. In this study, two experts provide constant
probabilistic forecasts:
𝑓1 =  (−1, 1) , (22)
𝑓2 =  (3, 4) . (23)

Similar to the previous case study, we compare our method with linear and nonlinear combination methods whose
parameters are optimal in hindsight, learned by minimizing the logarithmic score over the test set and indicated by an
asterisk.
Simulation results Here, we select a grid that includes higher 𝛾 values than in the previous case study to increase
adaptation speed, while retaining the same 𝜂 values. Specifically, the grid comprises the combinations of 𝛾 ∈
{0.175, 0.200, 0.225, 0.250, 0.275, 0.300, 0.325} and 𝜂 ∈ {0.150, 0.175, 0.200, 0.225, 0.250}. The combination that
minimizes CRPS is 𝛾 = 0.275 and 𝜂 = 0.175.

The forecasts by the two experts in this case study are both biased; however, the first expert does issue forecasts that
are correctly dispersed, whereas the second expert issues forecasts that are overdispersed. Consequently, Fig. 2a shows
that both linear and nonlinear combination weigh the first expert more than the second (recall that the shaded area
represents the 90% confidence interval associated with the parameters). To optimize the calibration of the resulting
combination, TLP (the linear combination method) distributes the weights to include both experts to a degree. In
contrast, BLP quickly disregards the second expert and instead uses the shape parameters to modify the predictive
distributions. Note that the shape parameters are quite different from each other; this is because they have to account
for the bias of the first expert.

Figure 2b reveals the miscalibration of the two experts. Their miscalibration is such that linearly combining the
forecasts does not result in calibrated forecasts, which can be expected because of the overdispersion of the second
expert and their opposing biases. Nonlinear combination significantly improves calibration and the online method is
preferred over the static method (indicated with an asterisk). Nevertheless, these combined forecasts are not perfectly
calibrated at the edges of the distributions. In this case study, the PFC generates forecasts that are closest to perfect
calibration although also here some deviation can be observed at the edges.

In terms of CRPS, Table 2 shows that BLP* outperforms the online method, i.e., BLP. This is not entirely
unexpected since the data generating process is stationary, meaning that the best strategy in hindsight can be expected
to be highly competitive. The PFC method outperforms others, primarily because it combines quantiles, allowing
it to incorporate the strengths of component forecasts exhibiting biases in opposing directions. In terms of linear
combination, we observe that TLP outperforms TLP*, indicating that online learning does benefit linear forecast
combination.
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Figure 2: In (a), the evolution of the weights over time organized by linear and nonlinear combination (rows), where the
shaded area represents the 90% confidence interval computed over 150 experiments. In (b), the PIT histograms of the
experts and combination methods again with the asterisk indicating the optimal parameters in hindsight.

Table 2
Realized CRPS for the component models and combination methods. The results are presented as the mean and standard
error of 150 experiments based on synthetic data adapted from Berrisch and Ziel (2021). Note that the asterisk indicates
a combination method with optimal parameters in hindsight.

F1 F2 OLP TLP TLP* BLP BLP* PFC

0.858±0.645 2.07±0.871 0.871±0.283 0.718±0.327 0.741±0.456 0.609±0.446 0.603±0.437 0.588±0.418

4.3. Real-word time series
We apply the proposed combination method on probabilistic power forecasts issued for a wind farm located in mid-

west France. The wind farm has a nominal capacity of 16,000 kW and the data set ranges from 2018-09-30 until 2020-
09-30 at 15 min resolution. To flag anomalies, we use the OpenOA library in Python and linearly interpolate flagged
instances (Perr-Sauer, Optis, Fields, Bodini, Lee, Todd, Simley, Hammond, Phillips, Lunacek, Kemper, Williams,
Craig, Agarwal, Sheng and Meissner, 2021).

For brevity, we consider only 15 min ahead, 3 h, 6 h and 24 h ahead forecasts. Especially further into the future,
NWP forecasts are essential. Furthermore, Winkler et al. (2019) argue that weighted forecast combination of experts
that are highly correlated can become unstable. We therefore include forecasts from three NWP models, namely (i)
the High-Resolution Forecast (HRES) from the European Centre for Medium-Range Weather Forecasts (ECMWF),
(ii) the Global Forecast System (GFS) from the National Centers for Environmental Prediction (NCEP), and (iii) the
global Arpège model from Metéo France. The average of the four NWP grid points closest to the wind farm, as well
as the last observed power and wind speed, serve as input to three machine learning models that we describe next.
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Table 3
The combination of 𝛾 and 𝜂 that minimize CRPS for linear and nonlinear forecast combination, i.e., TLP and BLP
respectively, and for all forecast horizons.

TLP BLP

15 min 3 h 6 h 24 h 15 min 3 h 6 h 24 h

𝛾 0.58 0.46 0.70 0.58 0.22 0.70 0.46 0.22
𝜂 0.58 0.22 0.58 0.34 0.46 0.70 0.70 0.70

The last stage before forecast combination is to use post-processing models to convert the wind speed forecasts
into probabilistic wind power forecasts that are to be combined. For this, we employ three models, specifically (i)
Generalized Boosted Regression Models (GBM), (ii) Quantile Regression Forests (QRF), and (iii) Quantile Regression
(QR). GBM is a technique where simple models, here regression trees, are repeatedly combined in a stage-wise fashion
to minimize the prediction loss (Friedman, 2001). In contrast, QRF is based on random forests in which independent
regression trees are fitted on subsets of the feature space and sample space, making them easily parallelizable
(Meinshausen, 2006). Finally, QR is a linear model where the pinball loss is minimized to predict conditional quantiles
(Koenker and Bassett, 1978). A thorough treatment of these models is out of the scope of this manuscript and we
refer to standard textbooks such as Hastie, Tibsharani and Friedman (2008). Furthermore, it is important to note
that the aim of this study is not to generate the most accurate component forecasts; rather, the aim is to show the
effectiveness of probabilistic forecast combination with our proposed method. The aforementioned models have been
selected because they are well documented and can easily be used in R or Python. We use the R packages gbm to
implement GBM (Greenwell, Boehmke, Cunningham and Developers, 2022), quantregForest to implement QRF
(Meinshausen, 2017) and quantreg to implement QR (Koenker, 2022). Finally, we use the function contCDF of the
R package ProbCast to convert quantile forecasts into continuous CDFs with generalized Pareto distribution tails
(Browell, Gilbert, McFadzean and Tawn, 2022).

We perform an exhaustive grid search to select the hyperparameters that minimize CRPS for each machine learning
model. Given that there are in total 216 combinations to be validated3, we restrict ourselves to a single forecast horizon
(3 h) and a single wind park, thus resulting in 54 combinations. This strategy can be motivated by the fact that the
post-processing models are expected to have a similar learning pattern across horizons, except for perhaps the first
forecast horizon. For hyperparameter validation, we train each model on 5 weeks of data and validate on the following
3 weeks, which is repeated 12 times in a rolling fashion to cover the entire first year. Similarly, we perform an exhaustive
grid search to determine the hyperparameters that minimize CRPS when running the ONS algorithm. Specifically, the
grid comprises the combinations of 𝛾 = 𝜂 ∈ {0.10, 0.22, 0.34, 0.46, 0.58, 0.70}. The first four months of the test
set are used to validate the ONS algorithm hyperparameters, whereas the remaining eight months are used to test the
selected ONS hyperparameters. Table 3 presents the hyperparameter combinations for the linear and nonlinear forecast
combination methods and the forecast horizons that minimize CRPS. It is interesting to note that the hyperparameters
vary as a function of combination methods and the forecast horizon, indicating that careful validation is necessary. As
before, we compare the linear and nonlinear combination methods with the optimal parameters in hindsight, i.e., the
parameters are learned based on out-of-sample test data. These static models are denoted with an asterisk.
4.3.1. Measure-oriented forecast analysis

Table 4 presents forecast results across the entire test set for all combinations of weather models, static and online
combination methods, as well as the post-processing methods, in terms of CRPS. In the table, the best performing
combination of weather model and post-processing model, i.e., expert, is underlined while the best performing
combination method is in bold font. Table 4 indicates that there is minimal distinction among the models for the initial
forecast horizon. It is worth highlighting that, in this case, the standard deviation of the CRPS surpasses its mean value.
An in-depth analysis (which is not presented here) unveiled the skewness in the CRPS distribution. Specifically, the
25th percentile and median CRPS values are considerably lower than the mean CRPS, and there is also a noteworthy
maximum value, approaching approximately 0.76 (varies depending on the model).

3Four forecast horizons, one wind park, three data sources, three forecast models and six hyperparameter combinations results in 216
combinations.
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Table 4
Average and standard deviation of the CRPS in percentage of nominal capacity, computed over the entire test set. The
best performing expert is underlined, whereas the best performing combination method is in bold. Note that the asterisk
indicates a combination method with optimal parameters in hindsight.

Post-process
model Horizon

15 min 3 h 6 h 24 h

ECMWF
QRF 2.64±3.17 6.33±6.44 6.70±6.67 7.13±6.80
QR 2.66±3.44 8.62±8.46 10.9±9.69 13.2±12.0

GBM 2.61±3.30 6.67±6.40 6.47±6.55 6.57±6.85

GFS
QRF 2.66±3.15 7.11±7.00 7.75±7.38 8.53±7.89
QR 2.66±3.42 8.61±8.39 10.9±9.65 13.2±11.9

GBM 2.62±3.30 7.34±6.76 7.55±7.12 8.01±7.80

MF
QRF 2.64±3.15 6.52±6.45 6.89±6.64 7.67±7.35
QR 2.66±3.45 8.62±8.45 10.9±9.66 13.1±11.9

GBM 2.62±3.31 6.87±6.34 6.77±6.46 7.13±7.21

Combination

OLP 2.60±3.24 6.83±6.29 7.28±6.20 7.86±6.33
TLP 2.60±3.20 6.26±5.92 6.33±5.84 6.44±5.96
TLP* 2.60±3.22 6.15±5.94 6.21±5.87 6.32±6.15
BLP 2.58±3.28 6.07±6.36 6.00±6.11 6.20±6.07
BLP* 2.58±3.30 6.08±6.22 6.31±6.34 6.33±6.25
PFC 2.58±3.22 5.97±6.00 6.01±5.97 6.24±6.11

C
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oving average
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Figure 3: Cumulative average and moving average of the best performing expert as well as the online combination methods
for the 24 h ahead forecast horizon.

As expected, Table 4 shows that the CRPS increases with the forecast horizon, with the largest relative increase
occurring from 15 min to 3 h ahead. The relative increase is especially noticeable for QR, which can be expected
since the linear model fails to accurately represent the nonlinear relationship between wind speed and wind power.
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Furthermore, the table shows that weather forecasts from ECMWF generally result in more accurate wind power
forecasts, whereas weather forecasts from GFS result in less accurate wind power forecasts. Of the combination
methods, it can be seen that the linear static method with optimal parameters in hindsight, i.e., TLP*, achieves lower
CRPS than the online method, i.e., TLP. Conversely for nonlinear combination, the proposed method BLP improves
CRPS up to 4.91% compared to BLP*, indicating that online learning combined with the additional flexibility of the
Beta transformation is a valuable improvement when dealing with nonstationary time series. Moreover, the proposed
method improves CRPS up to 7.26% when compared to the most accurate expert. In comparison with PFC, the
difference in CRPS varies per forecast horizon and is minimal.

Figure 3 presents the CRPS as well, except as cumulative and five-day moving averages for the most accurate expert
and the combination methods, and only for the 24 h ahead horizon. In terms of cumulative average, the figure shows
that BLP is consistently on par with PFC and that together they outperform the other combination methods, as well as
the most accurate expert. Although OLP performs worst in this figure, it is worth noting that it is a competitive method
when compared to the experts (cf. Table 4). Nonetheless, when examining the moving average, it becomes evident
that adaptive techniques prove beneficial in instances where one or more experts underperform. This is notably the
case prior to January and around the outset of April. Particularly during the latter period, it is evident that the fixed
method OLP exhibits significantly poorer performance compared to the top-performing expert, along with TLP, PFC,
and BLP, with the latter demonstrating the best performance during this period. Concerning the period prior to January,
it is noteworthy that BLP exhibits a considerably superior performance compared to the other methods, suggesting the
important influence of shape parameters. This aspect will be explored further in the upcoming section.
4.3.2. Combination weights

Shape parameters-nonlinear

Weights-nonlinear

Weights-linear
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MF-QRF
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Figure 4: The evolution of linear and nonlinear parameters over time, color coded according to the combination of weather
model and post-processing model for the 24 h forecast horizon.

Figure 4 presents the three-day moving average of the weights as they evolve throughout the test period, organized
by linear and nonlinear weights, as well as the shape parameters used by the nonlinear forecast combination algorithm
for the 24 h forecast horizon.

For the case of linear combination, Fig. 4 shows that expert ECMWF-GBM generally is given the most weight,
which is consistent with the results from Table 4. It is worth highlighting, however, the varying weights assigned to
experts during different periods. Notably, expert GFS-GBM carries the highest weight during the initial period, while
expert MF-QRF assumes significant weighting in the later stages of the test set. Particularly noteworthy is the fact that
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GFS-GBM maintains a weight exceeding 0.3 for an extended duration, despite not performing as competitively across
the entire test set (as shown in Table 4).

When we consider nonlinear combination, as illustrated in Fig. 4, it is evident that expert ECMWF-GBM maintains
the highest weighting. However, the remaining experts are allocated substantial weights, with the exception of those
relying on QR as a post-processing model. Notably, during the last period of the test set, 4 experts are assigned weights
more than 0.1 while the shape parameters are close to being identical and larger than 1. The latter suggests that these
experts are overdispersed during the final period and that the proposed algorithm leverages the shape parameters to
enhance the probabilistic calibration, similar as in Section 4.2.1.
4.3.3. Distribution-oriented forecast analysis

ECMWF-GBM OLP TLP TLP* BLP BLP* PFC
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Figure 5: PIT histograms of the component and combination models again with the asterisk indicating the optimal
combination with static weights.

Finally, we examine the probabilistic calibration using PIT histograms, which are presented in Fig. 5. Recall that
deviations from flatness can be due to a test set of limited size, which is why Fig. 5 additionally presents the consistency
bars. The figure illustrates that the most accurate expert aligns closely with probabilistic calibration. Although not
shown here, it is worth noting that the majority of experts exhibit satisfactory calibration in the central portion of their
predictive distributions. However, all experts do experience slight miscalibration in the outer regions of their predictive
distributions.

As the experts are already approaching probabilistic calibration, employing linear combination methods such as
OLP, TLP and TLP* leads to overdispersed forecasts. The optimal nonlinear combination in hindsight, BLP*, is closest
to perfect calibration, again indicating that the Beta transformation is capable of generating competitive forecasts that
are calibrated as well. However, BLP shows signs of miscalibration at the lower end of the predictive distributions,
suggesting a positive bias—a characteristic not observed in the predictions of the experts. This discrepancy can likely
be attributed to the period up to and including April, during which the shape parameter 𝑎 exceeds shape parameter
𝑏, as depicted in Fig. 4. In general, setting 𝑎 > 𝑏 shifts the predictive distribution upwards, potentially introducing a
positive bias when the component forecasts are unbiased. One possible remedy for this issue could involve periodic
recalibration of the hyperparameters of ONS. It is worth noting that benchmark PFC lags in terms of probabilistic
calibration, exhibiting a notable deviation at the lower end of the predictive distributions.

5. Conclusions
In this study, we have expanded the application of the beta-transformed linear pool to the online setting by deriving

the gradient of the continuous ranked probability score (CRPS) with respect to the shape parameters of the Beta
distribution and the combination weights. We have selected the CRPS because it evaluates the entire predictive
distribution and therefore yields the most general setting where experts issue complete predictive distributions. In
addition, the CRPS is exponential-concave, which allows for accelerated learning in combination with the Online
Newton Step (ONS) algorithm. The motivation for our approach is that linear combination, which is the predominant
form of forecast combination, always leads to overdispersed forecasts in case the experts are probabilistically calibrated,
which is a requirement in probabilistic forecasting. In a time-invariant simulation study using synthetic data, we have
shown that the proposed method converges to the optimal combination strategy in hindsight, meaning that the average

First Author et al.: Preprint submitted to Elsevier Page 16 of 23



Short Title of the Article

regret goes to zero. In another simulation study with time-varying synthetic data, we have shown that the proposed
method approaches the optimal combination strategy in hindsight but does not achieve zero average regret. Finally,
we employed the proposed method to combine probabilistic forecasts of nine experts, resulting from all combinations
of three weather models and three post-processing methods, on a real-world wind power data set. We showed that the
online and offline combination methods, except the naive version, always perform as well as the best expert. More
importantly, the proposed method outperformed the most accurate expert by up to 7.26% and the optimal combination
strategy in hindsight by up to 4.91% in terms of CRPS, indicating that online learning combined with the additional
flexibility of the Beta transformation is a valuable improvement for nonstationary time series. In all case studies,
we observed that the ONS algorithm, which uses the derived gradient to update the parameters, is sensitive to its
hyperparameters. Hence, it is important to carefully validate these to optimize the performance of the algorithm.
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A. Derivation of the gradient
A.1. Partial derivative with respect to the weights

Recall that we can compute 𝜕CRPS
𝜕𝑤𝑗

as follows:

𝜕CRPS
𝜕𝑤𝑗

= ∫

1

0
2
(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
) 𝜕𝐹𝑎,𝑏 (𝑧)

𝜕𝑤𝑗
d𝑥, (24)

Also recall that the CDF of the Beta distribution is a quotient where the denominator only depends on 𝑎 and 𝑏. Therefore,
we focus on the incomplete beta function 𝐵𝑎,𝑏(𝑧). As mentioned, the weights appear in the upper limit of the integral
in (4) as 𝑧 = ∑𝑚

𝑗=1𝑤𝑗𝐹𝑗(𝑦) and we therefore require Leibniz’s integral rule. In general terms, it is defined as follows:

𝑑
𝑑𝑥

(

∫

𝑏(𝑥)

𝑎(𝑥)
𝑓 (𝑥, 𝑡)𝑑𝑡

)

= 𝑓 (𝑥, 𝑏(𝑥)) 𝑑
𝑑𝑥
𝑏(𝑥) − 𝑓 (𝑥, 𝑎(𝑥)) 𝑑

𝑑𝑥
𝑎(𝑥) + ∫

𝑏(𝑥)

𝑎(𝑥)

𝜕
𝜕𝑥
𝑓 (𝑥, 𝑡)𝑑𝑡. (25)

Now, we want to find partial derivative 𝜕
𝜕𝑤𝑗

, so we plug (4) into (25):

𝜕𝐵𝑎,𝑏(𝑧)
𝜕𝑤𝑗

= 𝜕
𝜕𝑤𝑗

(

∫

𝑧

0
𝑢𝑎−1 (1 − 𝑢)𝑏−1 𝑑𝑡

)

= 𝑧𝑎−1 (1 − 𝑧)𝑏−1 𝜕
𝜕𝑤𝑗

𝑧 − 0𝑎−1 (1 − 0)𝑏−1 𝜕
𝜕𝑤𝑗

0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

+∫

𝑧

0

𝜕
𝜕𝑤𝑗

𝑢𝑎−1 (1 − 𝑢)𝑏−1 𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0
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=

( 𝑚
∑

𝑗=1
𝑤𝑗𝐹𝑗(𝑦)

)𝑎−1(

1 −
𝑚
∑

𝑗=1
𝑤𝑗𝐹𝑗(𝑦)

)𝑏−1

𝐹𝑗(𝑦). (26)

Accordingly, 𝜕𝐼𝑎,𝑏(𝑧)∕𝜕𝑤𝑗 requires multiplication of (26) with 1∕𝐵𝑎,𝑏 since the denominator in the latter term is not
affected by the derivative:
𝜕𝐼𝑎,𝑏(𝑧)
𝜕𝑤𝑗

= 1
𝐵𝑎,𝑏

𝑧𝑎−1 (1 − 𝑧)𝑏−1 𝐹𝑗(𝑦). (27)

Finally, we apply the logit transform (8) to attain the partial derivative of the CRPS with respect to the 𝑗th weight by
plugging (27) into (24):

𝜕CRPS
𝜕�̃�𝑗

=
2
(

𝑤𝑗 −𝑤2
𝑗

)

𝐵𝑎,𝑏 ∫

1

0

(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
)

𝑧𝑎−1 (1 − 𝑧)𝑏−1 𝐹𝑗(𝑥) d𝑥. (28)

A.2. Partial derivative with respect to shape parameter 𝑎
The Leibniz integral rule of 𝜕CRPS∕𝜕𝑎 results in:

𝜕CRPS
𝜕𝑎

= ∫

1

0
2
(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
) 𝜕𝐹𝑎,𝑏 (𝑧)

𝜕𝑎
d𝑥. (29)

Consequently, it is necessary to compute the partial derivative of (3) with respect to 𝑎. Given that the regularized
incomplete Beta function is the ratio of the incomplete Beta function and the complete Beta function, we use the
quotient rule. First, we compute 𝜕𝐵𝑎,𝑏∕𝜕𝑎 by applying the product rule to the final equality in (5):
𝜕𝐵𝑎,𝑏
𝜕𝑎

= 𝜕
𝜕𝑎

Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏)

= 𝜕
𝜕𝑎

Γ(𝑎)Γ(𝑏)Γ(𝑎 + 𝑏)−1.

The partial derivative of Γ(𝑎) with respect to parameter 𝑎 is:
𝜕
𝜕𝑎

Γ(𝑎) = 𝜕
𝜕𝑎 ∫

∞

0
𝑢(𝑎−1) exp(−𝑢) d𝑢

= ∫

∞

0

𝜕
𝜕𝑎
𝑢(𝑎−1) exp(−𝑢) d𝑢

= ∫

∞

0
𝑢(𝑎−1) ln(𝑢) exp(−𝑢) d𝑢

= 𝜓(𝑎)Γ(𝑎), (30)
The partial derivative with respect to 𝑎 of Γ(𝑎 + 𝑏) can be computed in a similar manner such that 𝜕Γ(𝑎 + 𝑏)∕𝜕𝑎 =
𝜓(𝑎 + 𝑏)Γ(𝑎 + 𝑏). Using this result and (30) in the product rule we find:
𝜕𝐵𝑎,𝑏
𝜕𝑎

= 𝜓(𝑎)Γ(𝑎)Γ(𝑏)Γ(𝑎 + 𝑏)−1 − Γ(𝑎)Γ(𝑏)Γ(𝑎 + 𝑏)−2 𝜕
𝜕𝑎

Γ(𝑎 + 𝑏)

=
𝜓(𝑎)Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏)
−

Γ(𝑎)Γ(𝑏)𝜓(𝑎 + 𝑏)
Γ(𝑎 + 𝑏)

=
Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏)

(𝜓(𝑎) − 𝜓(𝑎 + 𝑏)) . (31)

The next step is to compute the partial derivative of the incomplete Beta function in (4):
𝜕𝐵𝑎,𝑏(𝑧)
𝜕𝑎

= 𝜕
𝜕𝑎 ∫

𝑧

0
𝑢𝑎−1(1 − 𝑢)𝑏−1 d𝑢
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= ∫

𝑧

0

𝜕
𝜕𝑎
𝑢𝑎−1(1 − 𝑢)𝑏−1 d𝑢

= ∫

𝑧

0
𝑢𝑎−1 ln(𝑢)(1 − 𝑢)𝑏−1 d𝑢. (32)

The partial derivative can be found through integration by parts and setting 𝑣 = ln(𝑢) and d𝑤 = 𝑢𝑎−1(1 − 𝑢)𝑏−1, which
gives d𝑣 = 1∕𝑢 and 𝑤 = 𝑢𝑎 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑢)∕𝑎. Plugging this in to (32) gives:

∫

𝑧

0
ln(𝑢)𝑢𝑎−1(1 − 𝑢)𝑏−1 d𝑢 =

ln(𝑢)𝑢𝑎 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑢)
𝑎

− ∫
𝑢𝑎 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑢)

𝑎𝑢
d𝑢
|

|

|

|

|

𝑧

0

= 1
𝑎

(

ln(𝑢)𝑢𝑎 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑢) − ∫ 𝑢𝑎−1 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑢) d𝑢
)

|

|

|

|

|

𝑧

0

= 1
𝑎

(

ln(𝑢)𝑢𝑎 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑢) − 𝑢𝑎

𝑎 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑢)
)

|

|

|

|

𝑧

0

= 1
𝑎

(

ln(𝑢)𝑢𝑎Γ(𝑎 + 1) 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑢) − 𝑢𝑎

𝑎 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑢)
)

|

|

|

|

𝑧

0

= 1
𝑎

(

ln(𝑢)𝑢𝑎𝑎Γ(𝑎) 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑢) − 𝑢𝑎

𝑎 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑢)
)

|

|

|

|

𝑧

0

= 1
𝑎

(

𝑎𝐵𝑎,𝑏(𝑧) ln(𝑧) − 𝑧𝑎
1
𝑎 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧)

)

= 1
𝑎

(

𝑎𝐵𝑎,𝑏(𝑧) ln(𝑧) − 𝑧𝑎
1
𝑎 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧)Γ(𝑎 + 1)Γ(𝑎 + 1)

)

= 1
𝑎
(

𝑎𝐵𝑎,𝑏(𝑧) ln(𝑧) − 𝑧𝑎𝑎Γ(𝑎)2 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧)
)

= 𝐵𝑎,𝑏(𝑧) ln(𝑧) − 𝑧𝑎Γ(𝑎)2 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧). (33)
The final step to compute the partial derivative of the regularized incomplete Beta function with respect to parameter

𝑎 is, as mentioned at the beginning of this section, to use the quotient rule:
𝜕𝐼𝑎,𝑏(𝑧)
𝜕𝑎

=

(

𝐵𝑎,𝑏(𝑧) ln(𝑧) − 𝑧𝑎Γ(𝑎)2 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧)
) Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
(

Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏)

)2

−
Γ(𝑎)𝑧𝑎 2𝐹 1(𝑎, 1 − 𝑏; 𝑎 + 1; 𝑧)Γ(𝑎)Γ(𝑏)Γ(𝑎+𝑏) (𝜓(𝑎) − 𝜓(𝑎 + 𝑏))

(

Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏)

)2

=
𝐵𝑎,𝑏(𝑧) ln(𝑧)

𝐵𝑎,𝑏
−
𝑧𝑎Γ(𝑎)2 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧)

Γ(𝑎)Γ(𝑏)
Γ(𝑎+𝑏)

−
𝐵𝑎,𝑏(𝑧) (𝜓(𝑎) − 𝜓(𝑎 + 𝑏))

𝐵𝑎,𝑏

= 𝐼𝑎,𝑏(𝑧) ln(𝑧) −
Γ(𝑎 + 𝑏)
Γ(𝑎)Γ(𝑏)

𝑧𝑎Γ(𝑎)2 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧) − 𝐼𝑎,𝑏(𝑧) (𝜓(𝑎) − 𝜓(𝑎 + 𝑏))

= 𝐼𝑎,𝑏(𝑧) (ln(𝑧) − 𝜓(𝑎) + 𝜓(𝑎 + 𝑏)) −
Γ(𝑎)Γ(𝑎 + 𝑏)

Γ(𝑏)
𝑧𝑎 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧). (34)

As mentioned in Section 3.1.2, the change of variable �̃� = ln(𝑎) improves the stability of the algorithm. Given that
𝜕𝑎∕𝜕�̃� = 𝑎 and plugging (34) in to (29) in combination with the definition of the beta-transformed linear pool forecast
in (2), we find the partial derivative of the CRPS with respect to �̃�:
𝜕CRPS
𝜕�̃�

= 𝑎𝜕CRPS
𝜕𝑎

= 𝑎∫

1

0
2
(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
) 𝜕𝐹𝑎,𝑏 (𝑧)

𝜕𝑎
d𝑥.
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= 2𝑎∫

1

0

(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
)

×
(

𝐹𝑎,𝑏(𝑧) (ln(𝑧) − 𝜓(𝑎) + 𝜓(𝑎 + 𝑏)) −
Γ(𝑎)Γ(𝑎 + 𝑏)

Γ(𝑏)
𝑧𝑎 3𝐹 2(𝑎, 𝑎, 1 − 𝑏; 𝑎 + 1, 𝑎 + 1; 𝑧)

)

d𝑥. (35)

A.3. Partial derivative with respect to shape parameter 𝑏
The aim is to derive the following:

𝜕CRPS
𝜕𝑏

= ∫

1

0
2
(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
) 𝜕𝐹𝑎,𝑏 (𝑧)

𝜕𝑏
d𝑥. (36)

Since the partial derivative of the gamma function with respect to 𝑏 is similar to that in (30), we find that:
𝜕𝐵𝑎,𝑏
𝜕𝑏

=
Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏)

(𝜓(𝑏) − 𝜓(𝑎 + 𝑏))

= 𝐵𝑎,𝑏 (𝜓(𝑏) − 𝜓(𝑎 + 𝑏)) . (37)
For the partial derivative of the incomplete beta function with respect to 𝑏, we use the following useful property:

𝐼𝑎,𝑏(𝑧) = 1 − 𝐼𝑏,𝑎(1 − 𝑧) ⇔
𝐵𝑎,𝑏(𝑧)
𝐵𝑎,𝑏

= 1 −
𝐵𝑏,𝑎(1 − 𝑧)

𝐵𝑎,𝑏
. (38)

From equality (38) it follows that 𝐵𝑎,𝑏(𝑧) = 𝐵𝑎,𝑏 − 𝐵𝑏,𝑎(1 − 𝑧). Considering the definition of the incomplete beta
function in (4), switching 𝑎 and 𝑏 is important to attain a solution that depends predominantly on 𝑏. Then:
𝜕𝐵𝑎,𝑏(𝑧)
𝜕𝑏

=
𝜕𝐵𝑎,𝑏
𝜕𝑏

−
𝜕𝐵𝑏,𝑎(1 − 𝑧)

𝜕𝑏

= 𝐵𝑎,𝑏 (𝜓(𝑏) − 𝜓(𝑎 + 𝑏)) − ∫

1−𝑧

0
ln(𝑢)𝑢𝑏−1(1 − 𝑢)𝑎−1 d𝑢. (39)

Similar to the partial derivative with respect to 𝑎, we use integration by parts and some algebra to find that:
𝜕𝐵𝑎,𝑏(𝑧)
𝜕𝑏

= 𝐵𝑎,𝑏 (𝜓(𝑏) − 𝜓(𝑎 + 𝑏)) −
1
𝑏

(

ln(𝑢)𝑢𝑏 2𝐹 1(𝑏, 1 − 𝑎; 𝑏 + 1; 𝑢) − ∫ 𝑢𝑏−1 2𝐹 1(𝑏, 1 − 𝑎; 𝑏 + 1; 𝑢) d𝑢
)

|

|

|

|

|

1−𝑧

0

= 𝐵𝑎,𝑏 (𝜓(𝑏) − 𝜓(𝑎 + 𝑏)) −
1
𝑏
(

ln(𝑢)𝑢𝑏 2𝐹 1(𝑏, 1 − 𝑎; 𝑏 + 1; 𝑢) − 𝑢𝑏𝑏Γ(𝑏)2 3𝐹 2(𝑏, 𝑏, 1 − 𝑎; 𝑏 + 1, 𝑏 + 1; 𝑢)
)|

|

|

|

1−𝑧

0

= 𝐵𝑎,𝑏 (𝜓(𝑏) − 𝜓(𝑎 + 𝑏)) + (1 − 𝑧)𝑏Γ(𝑏)2 3𝐹 2(𝑏, 𝑏, 1 − 𝑎; 𝑏 + 1, 𝑏 + 1; 1 − 𝑧) − ln(1 − 𝑧)𝐵𝑏,𝑎(1 − 𝑧). (40)
Using (37), (40) and the quotient rule, we can compute the partial derivative of the regularized incomplete beta function
with respect to 𝑏:
𝜕𝐼𝑎,𝑏(𝑧)
𝜕𝑏

=

(

𝐵𝑎,𝑏 (𝜓(𝑏) − 𝜓(𝑎 + 𝑏)) + (1 − 𝑧)𝑏Γ(𝑏)2 3𝐹 2(𝑏, 𝑏, 1 − 𝑎; 𝑏 + 1, 𝑏 + 1; 1 − 𝑧) − ln(1 − 𝑧)𝐵𝑏,𝑎(1 − 𝑧)
)

𝐵𝑎,𝑏
𝐵2
𝑎,𝑏

−
𝐵𝑎,𝑏(𝑧)𝐵𝑎,𝑏 (𝜓(𝑏) − 𝜓(𝑎 + 𝑏))

𝐵2
𝑎,𝑏

=
Γ(𝑎 + 𝑏)Γ(𝑏)

Γ(𝑎)
(1 − 𝑧)𝑏 3𝐹 2(𝑏, 𝑏, 1 − 𝑎; 𝑏 + 1, 𝑏 + 1; 1 − 𝑧) − ln(1 − 𝑧)

𝐵𝑏,𝑎(1 − 𝑧)
𝐵𝑎,𝑏

+ (𝜓(𝑏) − 𝜓(𝑎 + 𝑏))
(𝐵𝑎,𝑏
𝐵𝑎,𝑏

−
𝐵𝑎,𝑏(𝑧)
𝐵𝑎,𝑏

)
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=
Γ(𝑎 + 𝑏)Γ(𝑏)

Γ(𝑎)
(1 − 𝑧)𝑏 3𝐹 2(𝑏, 𝑏, 1 − 𝑎; 𝑏 + 1, 𝑏 + 1; 1 − 𝑧) + 𝐼𝑏,𝑎(1 − 𝑧) (𝜓(𝑏) − 𝜓(𝑎 + 𝑏) − ln(1 − 𝑧)) .

(41)
The final step is to plug (41) into (36) in combination with the change of variable:

𝜕CRPS
𝜕�̃�

= 𝑏𝜕CRPS
𝜕𝑏

= 𝑏∫

1

0
2
(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
) 𝜕𝐹𝑎,𝑏 (𝑧)

𝜕𝑏
d𝑥.

= 2𝑏∫

1

0

(

𝐹𝑎,𝑏 (𝑧) − 1{𝑥 ≥ 𝑦}
)

×
(

Γ(𝑎 + 𝑏)Γ(𝑏)
Γ(𝑎)

(1 − 𝑧)𝑏 3𝐹 2(𝑏, 𝑏, 1 − 𝑎; 𝑏 + 1, 𝑏 + 1; 1 − 𝑧)

+ 𝐹𝑏,𝑎(1 − 𝑧) (𝜓(𝑏) − 𝜓(𝑎 + 𝑏) − ln(1 − 𝑧))
)

d𝑥. (42)

B. Weighted projection on the simplex
Recall that the projection of the updated weights 𝒗𝑡+1 onto Λ with weighted norm ‖⋅‖𝑫𝑡

, where 𝑫𝑡 = diag (𝑨𝑡
),

is the following convex optimization problem (Wintenberger, 2021)

𝒘𝑡+1 =
1
2
argmin
𝒘∈

‖𝒘 − 𝒗𝑡+1‖2𝑫𝑡
. (43)

From this, the Lagrangian can be derived:

𝐿(𝑤, 𝜆, 𝜈) = 1
2
(

𝒘 − 𝒗𝑡+1
)⊤𝑫𝑡

(

𝒘 − 𝒗𝑡+1
)

−
𝑚
∑

𝑗=1
𝜆𝑗𝑤𝑗 + 𝜈(𝒃⊤𝒘 − 1), (44)

where 𝒃 =
[

𝟏𝑚
]⊤ is a vector of ones, 𝜆𝑗 is a dual variable associated with the nonnegativity constraint of the 𝑗th

component forecast weight and 𝜈 the dual variable associated with the equality constraint. The next step is to compute
the gradient:

∇𝐿(𝑤, 𝜆, 𝜈) =
⎛

⎜

⎜

⎝

𝑫𝑡
(

𝒘 − 𝒗𝑡+1
)

− 𝜆 + 𝜈𝒃⊤
−𝑤

𝒃⊤𝒘 − 1

⎞

⎟

⎟

⎠

. (45)

Setting the gradient (45) to 0, we find the Karush-Kuhn-Tucker (KKT) conditions:
⎧

⎪

⎨

⎪

⎩

𝒘∗ = 𝒗𝑡+1 −𝑫−1
𝑡

(

𝜈∗𝒃⊤ + 𝜆∗
)

𝒃⊤𝒘∗ = 1
𝑤∗
𝑗 = 0 or 𝑤∗

𝑗 > 0 and 𝜆∗ = 0
, (46)

which results in the weighted soft-threshold (Wintenberger, 2021)
𝒘∗ = max (𝒗𝑡+1 −𝑫−1

𝑡 𝜈
∗𝒃⊤, 0

)

= 𝑫−1
𝑡 SoftThreshold (𝑫𝑡𝒗𝑡+1, 𝜈∗

)

. (47)
Subsequently, set ‖𝒘∗

‖0 = 𝑑0 to establish the relation

1 =
𝑑0
∑

𝑖=1
𝑤∗
𝑖 =

𝑑0
∑

𝑖=1
𝑫−1
𝑡 SoftThreshold (𝑫𝑡𝒗𝑡+1, 𝜈∗

)

=
𝑑0
∑

𝑖=1
𝑣∗𝑡+1,𝑖 −

𝑑0
∑

𝑖=1
𝑑−1𝑡,𝑖 𝜈

∗, (48)
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where 𝑑𝑡,𝑖 is the 𝑖th diagonal element of 𝑫𝑡 with identical ordering, which implies that

𝜈∗ = 1
∑𝑑0
𝑖=1 𝑑

−1
𝑡,𝑖

( 𝑑0
∑

𝑖=1
𝑣𝑡+1,𝑖 − 1

)

. (49)
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