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Highlights

Control design for thrust generators with application to wind turbine wave-tank testing: a sliding-mode

control approach with Euler backward time-discretization

Mohammad Rasool Mojallizadeh, Félicien Bonnefoy, Vincent Leroy, Franck Plestan, Sylvain Delacroix, Jérémy Ohana,

Benjamin Bouscasse

• A sliding-mode controller has been developed for a thrust generator.

• Backward time-discretization of the controller as well as its properties are addressed.

• The method has been compared with feedforward, gain scheduling PID, and Fuzzy controllers.

• The effect of the time-differentiation on the closed-loop control system is studied.

• The comparative experimental results are provided for 5 controllers and 4 differentiators.
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Abstract

The control design for a propeller-based thrust generator used in a wind turbine testing platform is studied in this

work. A mathematical model has been developed for the system including the motors and propeller. Subsequently, a

continuous-time sliding-mode controller is designed based on the developed model and its stability and robustness have

been addressed. An Euler backward time discretization method has been developed for the continuous-time sliding-mode

controller to achieve a chattering-free implementation. The properties of the sliding-mode controller under the developed

time discretization method e.g., finite-time convergence, and gain insensitivity have been studied analytically. In order

to evaluate the developed sliding-mode control law under the discretization method, three known control strategies, i.e.,

gain-scheduling proportional-integral control, fuzzy control, and feedforward compensator strategies have been designed

for the system. Some remarks are also given for the differentiator selection used to estimate the velocity. The experiments

under different scenarios are then conducted and the results corresponding to all four controllers are provided along with

a comparative analysis to identify the properties of each control configuration.

Keywords: propeller-based actuator, sliding-mode control, thrust control, Euler backward discretization, floating wind

turbine, fuzzy control, feedforward compensator, differentiator

1. Introduction

Floating wind turbines (FWT) have recently attracted

attention as an alternative renewable source of energy.

FWTs are installed offshore, far away from the coast, and

compared to the on-shore wind turbines, they can poten-

tially generate more electricity because the wind energy is
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more abundant on the sea surface (see [1] for instance). A

real-scale FWT requires a significant capital budget and is

usually difficult to access for experimental tests. As a re-

sult, pure numerical simulators may be used for the early

design stages (a review of the software packages used for

the pure numerical solutions is available in [2]). However,

such software packages provide limited accuracy and can-

not model all the systems’ dynamics, e.g., strongly nonlin-

ear hydrodynamic loads. Hence, a small-scale implemen-

tation of the FWT seems to be mandatory before building

and implementing a real-scale one to avoid further mod-

ifications and extra costs. As has been reported [2–10],

down-scaling all the elements of a FWT does not lead

to realistic aerodynamic effects because of scaling of the
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Reynolds number [11, 12], which dominates the aerody-

namic loads. To solve this issue, the turbine’s rotor of the

laboratory-scale FWT is usually replaced by a drag disk to

achieve a realistic aerodynamic effect [12]. This approach

has its own limitations and cannot be used to model vari-

able wind velocity profiles and wind turbulence. More-

over, the turbine’s controller, used to control the pitch of

the blades and mechanical torque of the turbine, cannot

be studied in this approach [2]. Alternatively, to solve

the problems caused by the down-scaling, the rotor can

be totally replaced with an actuator to emulate the aero-

dynamics numerically using the so-called software-in-the-

loop (SIL) strategy while keeping the real physical hydro-

dynamics. In this case, the force acting on the turbine

is calculated online using a simulation tool, e.g., Open-

FAST, and sent to the actuator as a control reference sig-

nal to be generated. Following the literature, to generate

the required force, two different types of actuators, i.e.,

propellers [2–10], and actuated cables [13–23] are used.

Throughout this paper, the propellers are the only actua-

tors used to generate the aerodynamic force.

The accuracy of the aerodynamic thrust generated by

the actuator when tracking the reference force plays a key

role in the accuracy of the SIL approach. This topic was

addressed in several references [2–10] using the feedforward

compensator (FFC). The common strategy in all these ref-

erences is to measure the static gains of the actuators for

a range of inputs in the open-loop configuration to build

a lookup table. Afterward, the inverses of these gains

are used as a FF controller. The drawbacks of such an

open-loop method are known to the control community,

e.g., sensitivity to the perturbations, and undesired tran-

sient and steady-state responses. Since the closed-loop

controller design has not been yet addressed for this spe-

cific application, the results corresponding to controller

design for other applications with propeller-based thrust

generators, including aircraft and multi-rotors have been

reviewed in the sequel.

Apart from the open-loop FFC known as the cali-

bration used in [2–10], the majority of the references,

considering the propeller-based thrust generators,

are based on a linear control strategy, e.g., propor-

tional–integral–derivative (PID) control [24–27] and its

gain-scheduling (GSPID) version [28, 29], linear quadratic

regulator [24, 30], and H-infinity control [31, 32] to

control the thrust generated by the propeller. The PID

controller is usually employed without addressing the

stability, and its parameters are selected based on trial

and error [24, 25]. Because of the nonlinear behavior

of propeller-based systems, the classic PID control may

not be able to provide the required performance in all

operating conditions. Hence, gain-scheduling PI (GSPI)

[28, 29] has been used for such systems. The linear

quadratic regulators are another linear controllers that

can optimize the behavior of the system in terms of

time or energy consumption [24, 30]. Moreover, since

propeller-based applications, like quadrotors, are usually

exposed to the disturbances, e.g., external wind, robust

linear controllers including the H∞ control has been

developed for them [31].

While the design of the linear controllers is straight-

forward and can be made based on the linearized model,

they share the same drawbacks, i.e., their performance or

even stability may not be guaranteed for all the operating

conditions. As a result, nonlinear control strategies are

developed including Lyapunov-based designs [33], sliding-

mode control (SMC) [26, 34], backstepping control [35, 36],

feedback linearization [37], and model predictive control

(MPC) [38, 39]. The Lyapunov theory allows studying the

stability of the closed-loop system with nonlinear equa-

tions. In addition, adaptation laws can be derived based on

the Lyapunov method to improve performance. The SMC

is another nonlinear control strategy that achieves robust-

ness by employing discontinuous or (set-valued) terms in

the control law. SMC can also be used along with other

control methods, e.g., feedback linearization, to improve
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their robustness [40]. In aerospace applications, the MPC

is widely used because it can achieve other objectives in-

cluding collision avoidance and path planning [41], as well.

While the aforementioned nonlinear control laws can

potentially achieve global stability as well as other prop-

erties like finite-time convergence, they require nonlinear

mathematical modeling which might be cumbersome

to calculate. Alternatively, the so-called model-free

approaches, e.g., fuzzy logic, or neural network-based

controllers are developed for such systems [42]. The

model-free control strategies may control the system

without requiring a mathematical model, with the price

of lacking stability proof.

Apart from the controller design, the software, e.g.,

OpenFAST, used to calculate the aerodynamic reference

force, requires the velocity of the FWT body which is not

available. To this end, some known differentiators are em-

ployed, in this work, to estimate the velocity by differenti-

ating the measured position. In addition, the performance

of the control system integrated with the differentiators

has been investigated experimentally. A review of the dif-

ferentiators is available in [43]. The contributions and de-

velopments made in this work are as follows:

• A 1/40th scale of the 10MW FWT, originally de-

signed by the Technical University of Denmark [44]

has been built in this work based on the SIL archi-

tecture.

• The mathematical modeling of the aerodynamic part

is studied and a model mapping the duty cycle of the

pulse width modulated (PWM) signal applied to the

electric motor (as the control input) and the gener-

ated thrust (as the control output) is achieved. Such

modeling is based on the equations of the electric

motor presented in [45], and the propeller’s aerody-

namics characteristics [46].

• A classic continuous-time SMC has been designed for

the derived mathematical model and its asymptotic

stability has been addressed in Theorem 1. Note

that the Lyapunov function and the procedure used

to show the stability are derived from [47, 48].

• An Euler backward discretization has been devel-

oped for the continuous-time SMC in Sec. 4.1.3.

While the backward discretization of the continuous-

time SMC has been addressed before (see [49]), the

graphical interpretation, Fig. 4, used to solve the

generalized equation is different.

• The characteristic of the developed discrete-time

SMC is studied, and the required time for the

convergence (Theorem 2), chattering suppression

(Corollary 1), calculation burden (Remarks 1

and 6), and gain-insensitivity (Corollary 2) for the

unperturbed system are addressed. Moreover, Some

remarks (Remarks 2, 3 and 5) are presented to

explain the robustness of the discrete-time SMC

under a perturbed condition. In addition, gain

tuning of the discrete-time SMC, GSPI, and fuzzy

controllers are addressed in Remarks 4, 8 and 9,

respectively.

• From the class of the reviewed controllers, three con-

trol strategies, i.e., linear (GSPI [50]), model-free

(fuzzy [51]), and open-loop (FFC [52]) have been

adopted from the mentioned references and specif-

ically designed for the system to be compared with

the developed discrete-time SMC. Moreover, the ef-

fect of the time delay in the control loop is addressed

and compensated through the Smith predictor de-

sign [53, 54].

• Since the velocity of the FWT body is required for

the control synthesis, four differentiators, i.e., Euler

[43], linear filter [43], forward super-twisting differ-

entiator [55], and backward super-twisting differen-

tiator [43], have been borrowed, and their parame-

ters are uniformly tuned based on the differentiation
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toolbox [43, 56]1 for this application.

• The controllers as well as the differentiators are im-

plemented on the built FWT, and the results corre-

sponding to the integration of the controllers with

the differentiators are given and an exhaustive com-

parative analysis is made to identify the properties

of integration of each set of controllers and differen-

tiators.

• The experiments study the effect of the discretiza-

tion on the excitation of unmodeled dynamics, i.e.,

bending modes, that exist in the structure of the

system.

The remainder of this manuscript is as follows. The

structure of the developed FWT is explained in Sec. 2,

and a control-oriented mathematical model has been pre-

sented in Sec. 3. The control design based on the developed

model is the topic of Sec. 4. The necessity of signal differ-

entiation in the SIL strategy and a review of the differen-

tiation methods are presented in Sec. 5. Subsequently, the

experimental results corresponding to each controller are

presented in Sec. 6 accompanied by the conclusions and

discussions in Sec. 7.

2. Floating wind turbine model implemented in

the test tank

FWTs are constructed based on different architectures

[58]. The one that is considered in this study is based on

the spar architecture shown in Fig. 1. This architecture

is composed of a hull (a cylinder) immersed in the water

and attached to the anchor points via catenary mooring.

The blades are installed on the nacelle located on the top

of the support tower. The built FWT, in this work, is

a 1/40 scale of a 10MW FWT designed by the Techni-

cal University of Denmark [44] Fig. 2 with the block di-

agram in Fig. 3 (see [52] for more details). FWTs are

1http://dt.mojalli.com.

Blades

Mooring lines

Nacelle

Support tower

Platform

Hull

Figure 1: Real-scale FWT based on the spar architecture

[57]

subjected to the hydrodynamic and aerodynamic forces,

simultaneously, caused by the wave and the wind. As it

has been reported by [2–10], while the hydrodynamic parts

of a reduced-order FWT can be realized physically for a

down-scaled FWT, it is not possible to achieve accurate

physical aerodynamic loads. Alternatively, the SIL ap-

proach is used in this work to calculate the aerodynamic

forces using computer software that has to be generated

by the actuators. In other words, the turbine has been
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replaced by three propellers2. As can be seen in Fig. 3,

a motion-tracking Qualisys track manager (QTM)

system is installed to measure the movements of the na-

celle and platform bodies. The measured position vector

(x̃) as well as the estimation of its time differentiation

(ṽ) are sent to the OpenFAST software package3 through

an Ethernet cable to calculate the aerodynamic reference

thrust Tr(t) that has to be generated by three propellers

installed on the nacelle body [52]. To this end, a controller

is required to generate the PWM signal u(t) sent to the

electric motors attached to the propellers’ shafts such that

the generated thrust T (t) by the propellers tracks its ref-

erence value Tr(t). The control design is the subject of

Sec. 4. Before that, a mathematical model will be derived

in Sec. 3 to be used for the controller design.

3. Dynamic modeling of the system

The developed model includes the dynamics of the elec-

tric motors as well as the propeller. Following [45], the

dynamic equation corresponding to the electric motor con-

nected to the propeller can be formulated as follows:

Jω̇(t) +

(
kf +

kekt
Rm

)
ω(t) + klω

2(t) =
kt
Rm

u(t)Vb, (1)

where J(k/m2) is the total inertia of the motor’s shaft

and propeller, ω (rad/s) is the angular velocity of the

motor’s shaft, kf (Nm/(rad/s)) is the friction constant,

ke(V/rad/s) is the back emf constant, kt(Nm/A) is the

motor’s speed constant, and Rm (Ω) is the winding’s re-

sistance. The term klω
2(t) corresponds to the torque in-

duced by the propeller on the shaft, where kl(NM) depends

on the propeller’s structure. Moreover, Vb(V) is the volt-

age of the battery installed in the system, and u(t)(%) is

2It should be emphasized that in the reduced-scale FWT, the tur-

bine (used to convert the wind energy into electricity) does not exist

physically. Instead, its effect has been simulated using the SIL strat-

egy. Note that the propellers are used to generate the corresponding

aerodynamic effects, and clearly not to generate electricity.
3See https://openfast.readthedocs.io/
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Figure 2: Photograph of the developed reduced-order FWT located

in the test tank

the duty cycle of the PWM signal applied to the motor

drive. The aerodynamic thrust generated by the propeller

is T (t) = Kaω
2(t), where Ka is the thrust coefficient corre-

sponding to the propeller [46]. Substituting it in (1) gives

(the time input argument is removed in some equations for

the sake of space):

J
2

√
1

kaT
Ṫ +

(
kf + ktke

Rm

)√
T
ka

+ kl
T
ka

= kt

Rm
uVb ⇒

Ṫ (t) = f(t) + g(t)u(t),
(2)

where f(t) = −
(
kf + ktke

Rm

)
2
J T −

2
J

kl√
ka
T 3/2(t)

g(t) = 2
J

√
kaT (t)

kt

Rm
Vb.

(3)

Note that f(t) ∈ R < 0 and g(t) ∈ R > 0 hold for

all T > 0. Moreover, these parameters depend on the

system’s uncertain parameters which are only partially
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known. In other words, in a real application, only the

nominal values of f and g are available. Such uncertain-

ties may be modeled as bounded matched disturbances as

made in Theorem 1 (see (15)). Equation (3) provides a

map between the duty cycle u(t) and the control output

T (t), which are the input control signal and output control

variable, respectively. In other words, the control objective

is to design the control signal u(t) such that the generated

aerodynamic thrust T (t) tracks its desired reference value

Tr(t), which is calculated by the software, i.e., OpenFAST.

The tangent linearization of (3) is calculated as follows:

Ṫ (t) =
( ∂f
∂T

+
∂g

∂T
u∗)∣∣∣

T=T∗
∆T (t) + g(T ∗)∆u(t), (4)

where T ∗ and u∗ are the values of thrust and control signal

corresponding to the operating condition where the system

is linearized around, ∆T = T −T ∗, and ∆u = u−u∗. The

nominal values of the parameters adopted from the data

sheet of the motor’s manufacturer are as follows:

J = 1.1× 10−4, kf = 2.5× 10−5, ke = 0.043,

kt = 0.043, kl = 1.5× 10−7, vb = 50,

Rm = 0.078, ka = 1.1× 10−5.

(5)

Three operating points (OP) have been selected and the

corresponding transfer functions have been calculated be-

low:

OP 1 → T = 0.99 → T (ŝ)
u(ŝ) =

1654

ŝ+ 225.4

OP 2 → T = 3.97 → T (ŝ)
u(ŝ) =

3308

ŝ+ 226.2

OP 3 → T = 8.91 → T (ŝ)
u(ŝ) =

49.62

ŝ+ 227
,

(6)

where ŝ is the Laplace operator.
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4. Design of the thrust controller

The aim of this section is to design the control signal

u(t) for the system (2) such that T tracks Tr. To this end,

from the reviewed class of controllers in Sec. 1, four con-

trollers, i.e., SMC, FFC, GSPI, and fuzzy control methods

are selected and designed for the system in Secs. 4.1 to 4.4,

respectively. Moreover, to handle the time-delay exists

in the control loop, the Smith prediction is addressed in

Sec. 4.5.

4.1. Sliding-mode control

As was seen in the introduction, several different types

of controllers have been proposed for applications with

propeller-based thrust generators. Since the system (2)

exhibits nonlinear behavior, an SMC has been developed

in this section for (2). The motivation for such a selection

is that the SMC can potentially handle the perturbations

in nonlinear systems [47]. Moreover, its structure is rela-

tively simple, and compared to the adaptive controllers it

needs fewer resources to implement. The design and analy-

sis of the continuous-time SMC are presented in Secs. 4.1.1

and 4.1.2, respectively. Subsequently, a time-discretization

method is proposed in Sec. 4.1.3 to implement the SMC

on digital computers.

4.1.1. Continuous-time sliding-mode control

The theory of the SMC presented in this section can be

found in [47, 48]. The following sliding surface is selected

in this study:

s(t) = e(t) = T (t)− Tr(t). (7)

As can be seen from (7), the sliding surface does not con-

tain the derivative terms of the measurements to avoid

the differentiation of noisy measurements. The equivalent

control (ueq), i.e., the required effort to keep the nominal

system on the sliding surface is calculated based on the

following condition:

ṡ(t) = 0⇒
(
Ṫ (t)− Ṫr(t)

)
= 0. (8)

Substituting Ṫ (t) from (2) into (8) gives

ṡ(t)|u=ueq
= 0⇒ f̄ + ḡueq − Ṫr = 0 ⇒

ueq(t) =
1

ḡ(t)

[
−f̄(t) + Ṫr(t)

]
⇒

ueq(t)|Ṫr(t)=0 = − f̄(t)

ḡ(t)
,

(9)

where f̄(t) and ḡ(t) are the nominal values of f(t) and

g(t), respectively. The SMC control signal u(t) contains

ueq(t) as well as a discontinuous signal uc(t) as follows:

u(t) = ueq(t) + uc(t). (10)

In this study, the continuous-time set-valued controller is

considered as follows:

uc(t) ≜ −α sgn
(
s(t)

)
, (11)

where sgn is the set-valued signum function defined below:

sgn(s) ≜


−1 for s ∈ R−

[−1,+1] for s = 0

+1 for s ∈ R+,

(12)

where the value of this function for s = 0 belongs to the set

[−1, 1]. It will be shown in Corollary 1 that this property

can lead to a chattering-free implementation.

4.1.2. Stability analysis of the continuous-time SMC

The stability of the system is studied in Theorem 1.

Theorem 1 ([48]). The system (2) under the continuous-
time control law (9) to (11) is globally finite-time stable.

Poof. Considering the Lyapunov function V and (7):

V (t) ≜ 1
2s

2(t) > 0, ∀s(t) ̸= 0 ⇒ V̇ (t) = s(t)ṡ(t)

V̇ (t) = s(t)
[
(Ṫ (t)− Ṫr(t))

]
.

(13)

The regulation case is considered in this work, i.e. Ṫr = 0.

From (2) and (10), and substituting ueq from (9) into (11),

one has:

ṡ(t) = d(t)− g(t)α sgn
(
s(t)

)
⇒

V̇ (t) = s(t)
[
d(t)− g(t)α sgn

(
s(t)

)]
⇒

V̇ (t) = −g(t)α|s(t)|+ |s(t)|d(t).

(14)

7



Assuming that the uncertainties can be expressed as the

bounded matched disturbance expressed by

d = f − g

ḡ
f̄ , (15)

For

α >
|d(t)|
g(t)

, (16)

one has v̇ = sṡ ≤ −η|s| and a η > 0, for all s(t) ̸= 0,

which indicates the robust global finite-time stability of

the continuous-time sliding-mode control system [48]. ■

4.1.3. Discretization of the SMC

A time-discretization method has to be used in order to

obtain a discrete form of the continuous-time SMC appro-

priate for implementation on digital computers. In this

context, the Euler forward discretization (known also as

the Euler explicit discretization) has been used in almost

all references as follows: u(k) = ueq(k) + uc(k)

uc(k) = −α sgn
(
s(k)

)
,

(17)

where the input argument k indicates the time step at

k = t/h, and h is the sampling time. It is known in the

control community that such a discretization leads to the

digital chattering [59], i.e., the high-frequency oscillations,

where the amplitude of the chattering depends on the con-

trol gain α. According to (16), a large α might be neces-

sary to ensure robustness, which, in turn, increases the

chattering. Several methods, e.g., using a boundary layer

[47], adaptive control gain [60], and state-dependent con-

trol gain [61] have already been proposed in the literature

presenting their own drawbacks, e.g., performance degra-

dation and increasing the complexity of the control algo-

rithm. This study addresses the problem of digital chat-

tering by applying a suitable discretization method instead

of altering the continuous-time structure of the SMC (9)

to (11). This method is known as the “emulation”, which

does not necessarily lead to the same behavior when the

controller is directly designed in the discrete-time config-

uration. More clearly, the Euler backward discretization

is used to achieve a discrete-time SMC without numerical

chattering. Such a time-discretization method (also known

as the implicit discretization) has been studied for differ-

ent systems, e.g., linear time-invariant systems [49], classic

SMCs [62–65], twisting SMC [66, 67], super-twisting SMC

[68], linear complementarity systems [69], as well as differ-

entiators [43], and it will be specifically adapted for (2) in

this work.

The Euler backward discretization of the set-valued

term uc (see (10) and (11)) reads as: u(k) = ueq(k) + uc(k)

uc(k) ∈ −α sgn
(
s(k + 1)

)
.

(18)

It can be seen, in (18), that the control signal, in the Euler

backward discretization, at each time step u(k) depends on

the set-valued control at the next time step k + 1 which

is not the case for the forward discretization (17). Note

that the inclusion (∈) is used in (18) to emphasize that

the sgn function (12) is a set-valued function. The Euler

backward discretization of ṡ(t) (first row of (14)) for the

unperturbed system, i.e., d(t) = 0, gives:

q1
(
s(k + 1)

)
=q2

(
s(k + 1)

)
q1
(
s(k + 1)

)
= s(k + 1)− s(k)

q2
(
s(k + 1)

)
∈ − β sgn

(
s(k + 1)

)
β = hα.

(19)

Equation (19) is a generalized equation since q1 is a sin-

gular value while q2 is a set. The graphical interpretation

shown in Fig. 4 is used in this study to solve this equation.

In this figure, q1
(
s(k+1)

)
and q2

(
s(k+1)

)
are illustrated,

and the intersection of these two graphs indicates the so-

lution of the generalized equation (19) as explained below:

• Case 1
(
s(k) < −β

)
: In this case, one has s(k+1) <

0, leading to sgn
(
s(k + 1)

)
= −1. Hence (19) gives:

s(k + 1) = β + s(k). (20)

• Case 2
(
|s(k)| ≤ β

)
: From Fig. 4, for this case, s(k+

1) = 0. According to (19), it indicates that s(k) ∈

8



β sgn
(
s(k + 1)

)
, and considering (12):

s(k) = βγ for some γ ∈ [−1, 1]⇒

sgn
(
s(k + 1)

)
= γ =

s(k)

β
.

(21)

• Case 3
(
s(k) > β

)
: From Fig. 4, one can see that the

intersection of two graphs always leads to s(k+1) >

0, and therefore, sgn
(
s(k + 1)

)
= 1. The value of

s(k + 1) can be calculated as follows:

s(k + 1) = −β + s(k). (22)

( 1)s k+

q2(s(k+1))=-β sgn (s(k+1))

q1(s(k+1))=s(k+1)-s(k)

-β

β

-β

β

Figure 4: Graphical interpretation of the generalized equation (19),

where intersection of these two plots shows the solutions of (19).

The flowchart of the developed backward SMC is

presented in Fig. 5. The convergence of the developed

discrete-time SMC algorithm is studied in Theorem 2.

Theorem 2. Considering the unperturbed system (d(k) =
0), the tracking error e(k) = T (k)−Tr(k) under the devel-
oped discrete-time control, shown in Fig. 5, converges to
zero in finite-time (see [59] for similar results).

Proof. The convergence will be studied for two phases as

follows:

• Reaching phase: The reaching phase indicates that

s(k) ̸= 0. Three cases are studied:

– Case 1: In this case, s(k) < −β. From (20),

one can see that the value of s(k) will increase

by time, and for a sufficiently large k, one has

|s(k)| < β. It means that Case 1 always leads

to Case 2.

– Case 3: For this case, one has s(k) > β. Con-

sidering (22), the value of s(k) will decrease.

Similar to Case 1, Case 3 always leads to Case

2 (|s(k)| < β) for a sufficiently large k.

– Case 2: It was shown that Cases 1 and 3 always

lead to Case 2. From (19) and (21), it can be

seen that as soon as the system reaches Case 2,

i.e. |s(k)| < β at time step ks, for all k > ks

one always has s(k+1) = 0, indicating that the

system starts the sliding phase one step after.

• Sliding phase (s(k) = 0): According to (7), in this

case, one has s(k) = 0 → T (k) = Tr meaning that

the sliding phase for such a controller is equivalent

to the reference tracking.

Note that while the Lyapunov theorem Theorem 1 does

not say anything about the convergence time, the dis-

cretization allows studying the required time for the con-

vergence. ■

Corollary 1. The backward time discretization, presents
an inherent numerical chattering suppression without
any modification on its continuous-time counterpart (9)
to (11).

Proof. From (21), once s(kc) = 0 is achieved, for all k >

kc, s(k) = 0 will hold. It indicates that the system under

the backward discretization stays in the origin thereafter

and presents an inherent chattering suppression without

modifying its continuous-time form (9) to (11). ■

Remark 1. Note that the dynamics of systems may be
slow enough allowing to increase the sampling time in or-
der to reduce the calculation burden required to synthesize
the control signal. However, increasing the sampling time
may not be possible when using the forward discretization
because of the numerical chattering augmentation. Such
a drawback does not exist in the backward discretization
as shown in Corollary 1, and therefore, the backward dis-
cretization may allow increasing the sampling time and
therefore, it may need fewer calculation resources compared
to the forward counterpart.

Corollary 2. The discrete-time SMC under the backward
discretization is insensitive to the gains during the sliding
phase.

9



◦ ueq = − f̄(k)

ḡ(k)

s(k) =
(
T (k)− Tr(k)

)
dt

s(k) < −β

s(k) > β

Case 1:

s(k + 1) = β + s(k)

uc(k) = α

Case 3:

s(k + 1) = −β + s(k)

uc(k) = −α

Case 2:

s(k + 1) = 0

uc(k) = − s(k)
h

u = ueq(k) + uc(k)

T (k)

N

N

Y

Y

uc(k)

uc(k)

uc(k + 1)

ueq(k)

u(k)

Figure 5: Flowchart of the SMC based on the developed Euler backward discretization. Note that the value of s(k + 1) is not used for the

next time step in the blocks corresponding to Cases 1 and 3.
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Proof. As can be seen in Fig. 5, during the sliding phase,

i.e., Case 2, the parameters α and β do not appear in the

control law u(k) indicating the gain-insensitivity of the

developed discretization method under the sliding phase.

■

Remark 2. While the convergence of the developed time-
discretization has been shown for the unperturbed case, i.e.,
d = 0, it seems that the feedback can compensate for the
perturbations. Considering the flowchart shown in Fig. 5,
the value of the s(k + 1) is not used for the next step (see
the blocks corresponding to Cases 1 and 3), and s(k) is
calculated based on the measurements at time step s(k).
Hence, the perturbation is compensated at each time step
without accumulating its effect on the next time steps.

Remark 3. According to (9), ueq is calculated based on
the nominal parameters f̄(t) and ḡ(t) but not the real f(t)
and g(t) because of the uncertainties exists in the model (2)
and (3). Hence, it may not guarantee the sliding phase.
To solve this issue, the static values of ueq have been cal-
culated based on a series of experiments in the open-loop
setting for a range of different inputs. To this end, the
gain of the system has been calculated for 100 points uni-
formly selected in the interval [0 1] to form a lookup table.
Subsequently, the inverse of the lookup table along with a
linear interpolation method has been used to calculate ueq

without using (9). Such an approach has been used for the
FFC approach in the literature (see Sec. 4.2). However,
the authors couldn’t find a trace of such a solution in the
literature for the SMC.

Remark 4. According to (16), increasing α leads to bet-
ter robustness to the matched uncertainty d (15). Accord-
ing to Corollary 2, the backward discretization leads to a
gain-insensitive implementation for the unperturbed sys-
tem. However, the presence of the measurement noise on
T (and therefore s according to (7)) can disturb the sys-
tem in Case 2 and push it toward Cases 1 and 3 where the
gain α appears in the control law (see Fig. 5). Hence, a
trade-off should be made between the robustness to the per-
turbation d (15) and the measurement noise on T . This
is also the case for the forward discretization of the SMC
(17). Unlike the backward discretization, the gain α al-
ways appears in the control law leading to the numerical
chattering, meaning that s = 0 never holds. Hence, in
addition to the measurement noise, the sampling time h
should be taken into account when tuning α for the for-
ward discretization to avoid large numerical chattering.

Remark 5. As detailed in [70], the sliding mode
controller under backward implementation precisely com-
pensates for the matched perturbation upon activation of
the sliding phase. In practice, the precise compensation
turns into compensation with a one-sampling-time delay

when a backward discretization is applied, as shown in
equation (119) in [70].

Remark 6. According to Fig. 5, the backward discretiza-
tion of the SMC (9) to (11) is as simple as the projec-
tion of the measured sliding variable at time step tk. This
implies that the backward discretization does not incur ex-
tra computational resources compared the the forward one,
as previously reported in [65] (see also equation (118b) in
[70]).

Remark 7. Numerical simulation of the whole compo-
nents is not straightforward since the interaction between
the fluid, i.e., water, and solid bodies (here FWT) must
be studied by the so-called computational fluid dynamics
(CFD) software. Such software has not yet been developed
for this specific system. Nevertheless, it is possible to
perform the numerical simulations by neglecting the
hydrodynamic effect leading to loss of degrees-of-freedoms
corresponding to the FWT body position and velocity. In
this case, the mathematical model presented in (2) and (3)
can be used for the numerical simulations to study the
inner control loop with an arbitrary thrust reference Tr.
The readers are encouraged to see [59] for similar pure
numerical results.

Note that the acronyms F-SMC and B-SMC stand for

the SMCs which are implemented based on the forward

(17) and backward (Fig. 5) discretizations, respectively.

4.2. Open-loop feedforward compensator

According to the literature, [2–10], the FFC is the only

method used to control the generated thrust in the FWTs

with SIL architecture. In this method, the static gain of

the system with duty-cycle u as the input and generated

thrust T as the output (see (2)) is calculated for one hun-

dred different values of u, selected uniformly in the inter-

val [0 1]. Afterward, the inverses of the calculated static

gains are used to form a lookup table. Subsequently, this

lookup table along with a linear interpolation method is

employed as the FFC to achieve a unit static gain in the

feedforward path, i.e., limt→∞ T (t)/Tr(t) = 1 as shown in

Fig. 6. In other words, the whole control signal u in the

FFC is equivalent to ueq in the SMC, i.e., u = ueq (see

Remark 3). Considering (10), one can see that the term

uc containing the feedback terms does not appear in the

feedforward compensation method. As a result, compared
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to the SMC, it is not able to compensate for the pertur-

bations. This fact will be validated in Sec. 6.

Feedforward 
compensator

Actuator
TTr u

Figure 6: Diagram of the feedforward compensator

4.3. Gain-scheduling PI control

Following the literature review presented in Sec. 1, the

PI control has been used for most propeller-based thrust

generators, e.g., quadrotors. However, it has not been yet

implemented for the SIL FWTs to control the generated

force. In this study, three PI controllers are designed for

the linearized systems around three operating points listed

in (6) (see [71] for the theory of the PI control and [50] for

its gain-scheduling version). The PI control reads as:

u(t) = kpe(t) + ki

∫
e(t)dt, (23)

where e(t) is defined in (7) and kp and ki are the propor-

tional and integral gains, respectively, to be designed.

Remark 8. In this study, the PID tuner that exists in the
MATLAB software package is used to design the parameters
listed in Table 1. These parameters are obtained for the
settling time 0.012s with 6% of overshoot and are scheduled
according to the value of the Tr indicated in Table 1.

4.4. Fuzzy control

The concept of the fuzzy controller used in this study

has been derived from Sec. 13 of [51] where the aim is

to implement the PI control strategy through the fuzzy

logic, leading to a nonlinear control strategy. Compared

to the gain-scheduling PI control, the fuzzy control leads to

a continuous control law without discontinuous switches.

All the design has been made based on the fuzzy system

designer that exists in the LabVIEW software package.

To design a fuzzy controller, a series of input and out-

put membership functions are defined to convert the crisp

sets into fuzzy ones. Subsequently, a set of fuzzy rulers

are used to implement the desired control law. These two

stages are explained in Secs. 4.4.1 and 4.4.2, respectively.

4.4.1. Fuzzy membership functions

The inputs of the fuzzy controller are the error e(k)

and the change of error de(k) and the only output is the

change of the control signal du(k). These so-called crisp

variables need to be assigned to the linguistic fuzzy sets

using the defined membership functions shown in Fig. 7.

These membership functions are composed of seven lin-

guistic variables, i.e., negative maximum, negative high,

negative, zero, positive, positive high, and positive maxi-

mum. The ranges of these membership functions are se-

lected based on the behavior of the real system observed

in the experiments [51]. Moreover, while there is no rule to

determine the shape of the membership functions, the tri-

angular ones are usually selected for ease of analysis [51].

Figure 7: Fuzzy membership functions

4.4.2. Fuzzy rules

The fuzzy controller is a linguistic implementation of

the PI control. According to [51], the fuzzy rules corre-

sponding to the PI control are not unique and can be im-

plemented using different combinations of linguistic vari-

12



ables. In this work, 23 fuzzy rules are used for this purpose

which are not given in the paper for the sake of space. In-

stead, the input/output relationship corresponding to the

fuzzy rules is shown in Fig. 8. The diagram of the im-

plemented fuzzy controller is illustrated in Fig. 9, where

cp, cd, and co are the proportional input, derivative input,

and output constants, respectively which are presented in

Table 1.

Figure 8: Fuzzy membership functions

Fuzzy 
controller +x

x

cp

cd

x
e

de
du u

co z-1

Figure 9: Synthesize the control signal using the fuzzy control block.

Note that z−1 is the unit delay operator.

Remark 9. The fuzzy controller is designed based on the
system’s behavior rather than the dynamic equations. As
a result, there is no straightforward way to tune its pa-
rameters. In fact, the membership functions and the fuzzy
rules are designed based on the system’s behavior observed
in the experiments. Three parameters of this controller,
i.e., cp, cd and co can be tuned based on the same argu-
ments that exist in PI control tuning. Since the output of
the fuzzy block is the change of control inputs, the values
of cp and cd correspond to the integration and proportional
gains. Moreover, the value of co should be scaled well in

order to avoid the signal saturation while ensuring a short
enough transient time.

4.5. Smith predictor

The above-mentioned closed-loop controllers, e.g.,

GSPI, fuzzy, and SMC, may not be able to provide a

satisfactory performance because of the time delay that

has not been yet taken into account in the modeling

and design. Such a delay is caused by the data acqui-

sition module (NI-9401) and PWM signal generator

(NI-9237), as well as the required time to synthesize

the control signal implemented on the computer (NI-

cRIO-9049). A very basic solution to compensate for

such a delay in linear systems is to use a Smith predictor

[53, 54]. In this method, a controller is designed without

considering the time delay. Subsequently, the effect of the

time delay is compensated as follows:

Tc(k) = T (k)− P (z)(1− z−γ)u(k − 1), (24)

where Tc(k) is the compensated measured torque sent to

the controller instead of T (k), P (z) is the discrete-time

transfer function of the plant without delay, and z−γ is

the delay operator with γ steps of delay. Such a time delay

compensation method has been only developed for linear

systems and may not be efficient for the nonlinear system

(2). Moreover, the exact amount of the time delay γ is

unknown for the system. Note that the transfer function

corresponding to OP 2 is selected to calculate P (z).

5. Signal differentiation

The measured motion vector x̃(t) can be written as

follows (see Fig. 3):

x̃ = [x̃T
n (t), x̃

T
p (t)]

T , (25)

where x̃n ∈ R6 and x̃p ∈ R6 are the motions of the na-

celle and the platform, respectively. Assuming that the

measurements are polluted by additive noise, one has:

x̃(t) = x(t) + nx(t), (26)
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where x(t) is the real position and nx(t) is the measure-

ment noise. As can be seen in Fig. 3, the OpenFAST soft-

ware package requires both the motion vector x(t) ∈ R12

and the velocity vector, i.e., its time-differentiation ṽ(t) ∈

R12. The QTM can directly measure the motion x̃(t). How-

ever, the velocity vector cannot be measured and has to

be estimated using a differentiator. Some reviews of the

differentiators are available in [43, 72, 73]. In this study,

four known differentiators, i.e., Euler, Linear filter (LF),

and super-twisting differentiators (STD) are used to es-

timate the time differentiation of the motion vector x̃(t).

The differentiators are briefly reviewed in Secs. 5.1 to 5.3.

5.1. Euler differentiator

The Euler differentiator calculates the time difference

of the signal divided by the sampling time as follows:

ṽk =
x̃k − x̃k−1

h
. (27)

Considering (26), the Euler differentiator calculates the

differentiation of the whole signal including the noise nx(t),

leading to the noise amplification.

5.2. Linear filter

To avoid the noise amplification that exists in the Eu-

ler differentiator, LFs are usually preferred instead of the

Euler differentiation. The LF is composed of an Euler dif-

ferentiator and a low-pass linear filter. The LF used in

this study contains a first-order linear filter as follows:

ṽk =
ṽk−1 + c(x̃k − x̃k−1)

1 + hc
, (28)

where c determines the cutoff frequency of the filter to be

tuned.

5.3. Super-twisting differentiator

The LF always shows a phase lag depending on the

cutoff frequency c [43]. Such a phase lag usually impacts

the performance of closed-loop control systems. Hence,

the exact differentiators, e.g., STD are proposed to

achieve a phase lag-free implementation, in theory, [43].

The continuous-time form of the STD reads as:
ż(t) = −k1L

1
2 ⌈(z(t)− x̃(t))⌋ 1

2 + ṽ(t)

˙̃v(t) ∈ −k2L sgn(z(t)− x̃(t)),

(29)

where k1, k2 are constants presented in [43], L is a pa-

rameter to be tuned, and z(t) is an estimation of x(t).

Moreover, ⌈·⌋1/2 = | · |1/2 sgn(·), and sgn is the set-valued

signum function defined before. In order to implement

(29), two different time discretizations, i.e., forward [43,

Sec. 4] and backward discretizations are used as explained

in detail in [43, Sec. 5]. The acronyms F-STD and B-

STD stand for the STD implemented under forward and

backward discretizations of the STD. In contrast to the F-

STD, which is widely spread in the literature, the B-STD

is more recent with the flowchart presented in Fig. 10.

6. Experiments

The experiments made in this study are presented in

this section, where the hardware development is explained

in Sec. 6.1, the conditions considered in the experiments

are mentioned in Sec. 6.2, and the experimental results are

given in Sec. 6.3.

6.1. Hardware development

According to Fig. 11, the implemented system contains

two loops that shall be executed in real time. The outer

loop is dedicated to OpenFAST calculations. This loop re-

ceives a wind profile as well as the motion (x̃) and velocity

(ṽ) of the wind turbine’s body and calculates the corre-

sponding aerodynamic thrust reference Tr. This aerody-

namic thrust is a reference for the internal loop, where

the designed controllers are implemented to synthesize the

control signal u(k). This control signal is sent to the actu-

ators, i.e., three propellers installed on the wind turbine’s

nacelle (see Fig. 3) to generate the aerodynamic thrust

such that T (k) → Tr. The generated thrust causes the

motions x(k) on the body and this motion is sent back to
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◦ bk = hṽk + zk + x̃k

bk < −Lh2k2

|bk| < Lh2k2

Case 1:

X ← solution of X2 + hk1L
1
2X + h2k2L+ bk = 0

ṽk+1 = −hk2L+ ṽk

zk+1 = −hk1L
1
2X + hṽk+1 + zk

Z−1

Case 2:

ṽk+1 = ṽk + bk
h

Z−1

Case 3:

X ← solution of X2 + hk1L
1
2X + h2k2L− bk = 0

ṽk+1 = hk2L+ ṽk

zk+1 = hk1L
1
2X + hṽk+1 + zk

Z−1

x̃k

N

Y

Y

N

zk, ṽk

zk

ṽk

Figure 10: Flowchart of the STD derived from [43]

.
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the outer loop to generate the new reference Tr at each

time instant.

The calculation loops introduced above have been im-

plemented on the computer NI-cRIO-9049 from Na-

tional Instruments. This computer allows assigning

different CPUs to execute different real-time tasks without

interrupting each other. An analog multi-component load

cell is installed on the nacelle to measure the thrust gener-

ated by the actuators4. A NI-9237 analog full-bridge in-

put module transfers the measured force to the computer.

Moreover, the generated control signal u(k) is sent to the

actuator as a PWM signal generated through a NI-9401

digital output module.

OpenFast
TTr u

Controller Actuator
xWind 

turbine body

Differentiator

v~
Inner loop

~
Wind profile

Figure 11: Calculation loops implemented on the computer.

6.2. Condition of the experiment

As it was mentioned before, a 1/40th scale FWT is

considered in this study. To achieve realistic results, the

parameters of the aerodynamic model (OpenFAST in this

study) need to be scaled using the Froude scaling law [52].

To this end, the parameters corresponding to the length

and time must be multiplied by 40 and
√
40, respectively

(see [52] for more details the on Froude scaling law, com-

monly used in wave tank model testing).

All the experiments are carried out with the same wind

and wave conditions to enable both deterministic and sta-

tistical comparisons. The simulated wind profile (given

to the OpenFAST according to Fig. 11) is uniform with

4The force is composed of the thrust, gravity of the above part,

and the inertial force that is corrected (removing the inertial force

and the weight) through analytical calculations and an inertial mea-

surement unit.

a constant velocity of 16 m/s given here at full-scale. It

should be noted that a turbine controller [74] exists in

the OpenFAST software to control the blade pitch angle

corresponding to region III (the controller design for the

turbine and analyzing different regions is out of the scope

of this research. The readers are encouraged to see [75]).

The wave profile generated physically in the test tank is

an irregular wave (random sea) that is typically seen in

a real installation site. The significant height and peak

period of the generated wave are 7 meters and 12 seconds,

respectively, at the full scale. Each experiment lasts for

20 minutes at the model scale which corresponds to two

hours for the full-scale FWT.

The parameters of the SMC (F-SMC, B-SMC), GSPI,

and fuzzy controllers are designed based on Remark 4,

Remark 8, and Remark 9, respectively. Moreover, the pa-

rameters of the differentiators have been tuned using the

differentiation toolbox presented in [43, 56]. Following this

reference, the integration of the first-order differentiation,

i.e., x̄ =
∫
ṽ(k)dt is used to recover the position x̄(k).

Subsequently, x̄(k) is compared with the measured posi-

tion x̃(k) to tune the parameters based on the following

performance function:

J = ||x̄(k)− x̃(k)||+ ξ var(x̄(k)), (30)

where ξ = 10−4 is a constant to make a trade-off between

the exactness and noise filtration and,

var(y(k)) =
∑

k |y(k)− y(k − 1)|

||y(k)|| =
√∑

k y
2(k)

(31)

The term ||x̄(k) − x̃(k)|| guarantees the convergence of

the differentiators while var(x̄(k)) ensures a proper level

of measurement noise filtration. The parameters of the

controllers and differentiators used in the experiments are

listed in Table 1.

All the possible combinations of the controllers and dif-

ferentiators are implemented and the summarized results

under the condition explained in Sec. 6.2 are presented in

16



Table 1: Parameters of the controllers and differentiators

Method Parameters

Controllers

FFC No parameter

GSPI Tr < 4 : kp = 0.2, ki = 79.7

4 ≤ Tr ≤ 17 : kp = 0.1, ki = 40.1

17 < Tr : kp = 0.07, ki = 27

Fuzzy cf=150 cp=0.1 cd=2 co=0.09

F-SMC α = 3

B-SMC α = 3

Differentiators

Euler No parameter

LF c=20

F-STD L=0.63

B-STD L=0.63

Tables 3 to 5. Considering the control laws correspond-

ing to the F-SMC (17), B-SMC Fig. 5, FFC Fig. 6, GSPI

control (23), and fuzzy control Fig. 9, one can see that

the GSPI and fuzzy controllers do not contain the FF

terms and are totally dependent on the feedback. For such

controllers, the delay in the control loop Fig. 11 causes

large overshoots and even oscillations in the steady-state

response. Hence, as indicated in Table 2, the Smith pre-

dictor (24) compensates for the delay for such controllers.

For both F-STD and B-STD, the feedback is directly used

without the Smith predictor since, according to (17), the

equivalent control ueq(k) (9) is calculated based on Re-

mark 3 which is not affected by the delay existing in the

loop. In addition, the experiments show no improvements

when using the Smith predictor for the SMC. Note that

the FFC does not use any feedback terms and therefore is

independent of the feedback delay.

6.3. Results of the experiments

To compare the results obtained from different configu-

rations, two performance functions, i.e., variation (var(.)),

and the second norm || · || are used as defined in (31). The

Table 2: Status of the Smith predictor for different configurations.

✓ and ✗ indicate the presence and absence of the Smith predictor,

respectively.

Differentiator

Euler LF F-STD B-STD

C
on

tr
ol

le
r FFC ✗ ✗ ✗ ✗

GSPI ✓ ✓ ✓ ✓

Fuzzy ✓ ✓ ✓ ✓

F-SMC ✗ ✗ ✗ ✗

B-SMC ✗ ✗ ✗ ✗

Table 3: ||e(k)|| corresponding to all combinations of the controllers

and differentiators

Differentiator

Euler LF F-STD B-STD
C

on
tr

ol
le

r

FFC 1366.1 1333.4 1246.4 1342.0

GSPI 223.3 147 Osc. 195.2

Fuzzy 175.8 126.45 Osc. 161.6

F-SMC 295.6 251.6 282.4 284.9

B-SMC 182.5 148.4 Osc. 167.5

value of ||e(k)|| indicates the L2 norm of the tracking error

which is listed in Table 3 for different configurations. A

smaller amount of this value indicates better tracking per-

formance. Moreover, var is used to quantify the chattering

that exists in the system. In this case, var(ṽ(k)) in Table 4

and var(u(k)) in Table 5 indicate the chattering exists on

the estimated velocity and the control signal, respectively.

As can be seen, five controllers, i.e., FFC, GSPI, fuzzy,

F-SMC, and B-SMC can be integrated with four differ-

entiators, i.e., Euler, LF, F-STD, and B-STD, leading to

20 possible configurations. Since the separation principle

does not exist for nonlinear systems, it is not clear how to

study the effect of the controller and differentiators sep-

arately. In this study, it is first tried to see the effect of

the differentiators for a specific controller, i.e., B-STD,

as shown in Fig. 12. This figure denotes that the Euler

differentiator shows the maximum amount of chattering
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Figure 12: Estimated velocities and the recovered position (integration of the estimated velocity) when the B-SMC is in the loop.

Table 4: var(ṽ(k)) corresponding to all combinations of the con-

trollers and differentiators

Differentiator

Euler LF F-STD B-STD

C
on

tr
ol

le
r

FFC 36046.9 3009.8 3863.2 14089.1

GSPI 42146.6 2582.4 Osc. 10911

Fuzzy 39905.9 2550.6 Osc. 10542

F-SMC 41968.6 2574.5 3069.35 10697.3

B-SMC 42416 2580.6 Osc. 10762.8

Table 5: var(u(k)) corresponding to all combinations of the con-

trollers and differentiators

Differentiator

Euler LF F-STD B-STD

C
on

tr
ol

le
r

FFC 47623 12440 27634 40647

GSPI 223922 80298 Osc. 176976

Fuzzy 225282 220477 Osc. 224703

F-SMC 121208 57914 73717 99684

B-SMC 168884 43769 Osc. 123496

on the estimated velocity ṽ(k) since the Euler is basically

a pure differentiator without any filtration (see (27)). To

study the phase lag exerted by the differentiators, the esti-

mated velocities are integrated to recover the position x̄(k)

shown in Fig. 12. From this figure, while the LF leads to

the smoothest velocity estimation, it shows the maximum

amount of phase lag. Such a phase lag can deteriorate

the performance of the closed-loop control system. On the

other hand, while the B-STD shows better noise filtration

than the Euler method, it presents a smaller amount of

phase lag. As can be seen in Fig. 12, it seems that the

estimations provided by the F-STD are not reliable and

diverge from the real one. The reason is that this differ-

entiator shows a large amount of chattering that hinders

to increase in the gain L (see (29)) leading to poor con-

vergence. Note that, during the experiments, the F-STD

usually leads to oscillations with the resonant frequency of

the FWT model which is considered as the excitation of

the unmodeled dynamics. In such conditions, for safety,
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Figure 13: Generated thrust corresponding to the B-SMC integrated with different differentiators

the experiments are stopped by the operator, and the word

Osc. is written instead of the results to indicate the insta-

bility state (see Tables 3 to 5). This instability is caused

by the excitation of the 1st bending modes of the FWT

body at a frequency around 3.7 Hz. Before the experi-

ments, the Hammer test is made on the structure to iden-

tify the vibration modes of the FWT. Such a test revealed

the existence of two modes appearing around 3.7 Hz and

13 Hz, corresponding to the tower and nacelle structures.

While the tower is an aluminum cylinder, the nacelle is

made from carbon fiber to obtain the required lightweight

structure. However, it is known that carbon fiber leads to

high-frequency vibrations because of its flexible structure.

The tracking error e(k) corresponding to all possible

configurations of the controllers and differentiators is given

in Table 3. To evaluate the performances of the controllers,

each column should be considered separately. The reason

is that, according to Fig. 11, the differentiators directly

affect the reference thrust Tr calculated by OpenFAST,

and therefore each differentiator may lead to different Tr.

Considering each column separately, one can see that the

fuzzy control always provides the minimum tracking er-

ror. Moreover, the B-STD also shows good responses close

to the fuzzy control. In global, the GSPI shows average

tracking performances compared to others. According to

Table 3, the FFC leads to the worst responses because

it is mainly an open-loop method that does not use the

feedback to compensate for the perturbations. For this

specific case, the FFC presented in Fig. 6 is sensitive to

the perturbations, e.g., ambient temperature change and

battery voltage variation. Comparing the F-SMC and the

B-SMC, while these two controllers are derived from the

same continuous-time settings and parameters (see (16)

and Table 1), their performances are quite different in the

discrete-time form as can be seen in Tables 3 to 5.

Considering the rows of Table 4 separately, the LF

always leads to the smallest amount of variation on the

estimated velocity, according to the values of var(ṽ(k)),
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Figure 14: Control signal when the SMC and STD are in the loop. Four combinations of the forward and backward discretizations of the

controller and differentiator are presented.

indicating that this differentiator shows the best noise fil-

tration ability. However, such a good noise filtration leads

to the largest time delay among other differentiators. On

the other hand, the Euler differentiator shows the max-

imum amount of variation. It should be noted that the

B-STD shows one of the maximum values for var(ṽ(k))

after the Euler method. According to [43], the backward

discretization provides a digital chattering-free implemen-

tation under noise-free conditions. Hence, it seems that

the variations that exist in the B-STD are caused by the

measurement noise and the exactness of this differentia-

tor on both the signal and the measurement noise. Unlike

the other case studies that have already been considered

[76, 76], the sampling time in this work is h = 5 ms. For

such a small sampling time (compared with h = 50 ms in

[43, 76]), the dominant source of the variation is the mea-

surement noise but not the digital chattering. Hence, for

the small sampling times, the backward discretization of

the differentiator may not bring advantages over the for-

ward one. In any case, even for such a small sampling

time, the B-STD shows the minimum phase lag while the

velocity estimation corresponding to the F-STD diverges.

As can be seen in Table 5, the FFC shows the mini-

mum amount of variation on the control signal var(u(k))

since this method does not use the feedback and therefore

is insensitive to the measurement noise. Another obser-

vation is that the fuzzy control always shows one of the

maximum values for var(e(k)). In fact, the bandwidth of

this controller is higher than the other controllers since ac-

cording to Table 3 it shows the smallest ||e(k)||. However,
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such a large bandwidth amplifies the noise effect leading

to a large variation on the control signal.

According to Fig. 13, the F-STD shows the largest

amount of variation on the generated thrust. Such varia-

tions, can lead to oscillatory movements corresponding to

excitation of the vibration modes leading to instability as

indicated in Tables 3 to 5. Hence, it seems that even for the

small sampling time (h = 5 ms) the backward discretiza-

tion of the controllers can provide fewer variations on the

systems’ output compared to the forward counterpart.

The synthesized control signals corresponding to the

SMC under forward and backward discretizations are

shown in Fig. 14 when the STD is in the loop and dis-

cretized under both forward and backward discretizations.

The first observation is that all control signals present a

significant amount of chattering which may correspond to

the measurement noise and the numerical (digital) chat-

tering caused by the forward discretization. Compared

to other experimental studies, e.g., [73], this process is

highly affected by the measurement noise since the nacelle

is made up of a carbon fiber structure. Such a structure

is not enough rigid and presents flexibilities in different

directions leading to high-frequency measurement noise.

While the sliding-mode controller is robust against

disturbances, it is generally sensitive to measurement

noise. Hence, the ideal sliding phase seen in the theory

may not be always achieved. Therefore, increasing the

gains affects both forward and backward discretizations.

Moreover, increasing the gains can amplify the noise

effect as well as numerical chattering (corresponding to

the forward discretization) leading to the excitation of

unmodeled dynamics like two bending modes of the FWT

body at frequencies around 3.7 Hz and 13 Hz mentioned

above. As a result, the gains must be selected carefully

for all methods including the forward and backward

implementations.

It is worth noting that according to Fig. 14, with the

backward differentiator, the backward controller presents

fewer high-amplitude variations compared to the case

where the forward controller is used. The reason is that in

the presence of a controller under forward discretization,

the mentioned 13 Hz nacelle bending mode is excited

leading to vibrations in the nacelle structure and therefore

high-amplitude oscillations shown in Fig. 14 which push

away the F-SMC from the sliding phase results in a

degraded tracking (compare F-SMC and B-SMC in

Table 3). In such conditions, the F-SMC is rather in the

reaching phase to compensate for the unmodeled excited

dynamic leading to a small chattering (compare two last

lines in Table 5). Such excitation is less observable when

the control input is synthesized based on the backward

method. This is an important observation that should be

considered as a new advantage of the backward discretiza-

tion which has not yet been addressed in the literature.

More clearly, it seems that high-frequency chattering

corresponding to F-SMC excites the nacelle bending

mode at 13 Hz leading to high-frequency vibration on

the acelle structure. Afterward, with appearing such

an unmodeled dynamic, the F-SMC tries to achieve the

tracking by treating this unmodeled oscillatory dynamic

as a disturbance. As a result, according to Fig. 14, the

F-SMC shows large amplitude efforts on the control signal

to compensate such perturbation (six large amplitude

efforts are visible during 0.5 ms indicating the compen-

sation of the 13Hz bending mode corresponding to the

nacelle). In this condition, the F-SMC, according to the

fourth row of Table 5 shows less chattering compared to

the B-SMC on the last row, which may be misleading. In

fact, such a smaller variation of the F-SMC is because

the sliding mode is not activated for the F-SMC caused

by the excitation of the mentioned unmodeled dynamics.

In summary, to achieve the minimum variation, both the

controller and differentiator should be implemented using

backward discretization.
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7. Conclusions

This work studied the controller design for a reduced-

scale FWT based on the SIL architecture where the soft-

ware is used in the loop to calculate the aerodynamic force

to be generated by the propellers. To this end, a back-

ward time discretization method has been developed for

a typical SMC in order to achieve a chattering-free im-

plementation without modifying the continuous-time set-

ting while keeping several useful properties, e.g., finite-

time convergence, and gain-insensitivity. Subsequently,

four controllers, i.e., FFC, GSPI control, fuzzy control,

and forward SMC are derived from the literature and im-

plemented for the comparisons. Moreover, since the soft-

ware needs the velocity of the wind turbine motions, four

differentiators, i.e., Euler, LF, and STD (both forward and

backward discrete forms) are used to estimate the velocity

and the effect of the differentiation methods on the overall

performance of the closed-loop control system is studied

in detail.

The experimental results show that the fuzzy controller

always presents the minimum tracking error in terms of the

L2 norm. However, this controller shows the maximum

amount of variation in the control signal caused by the

measurement noise and the high bandwidth of the fuzzy

controller. On the other hand, the FFC shows the worst

tracking performance because it relies on the static input-

output gain of the plant calculated offline which varies

depending on the environment, e.g. ambient temperature

and battery voltage. Among other controllers, the GSPI

shows an average performance. The F-SMC excites the

nacelle banding mode around 13 Hz which can be con-

sidered as the excitation of unmodeled dynamics. The

F-SMC treats such unmodeled dynamic as perturbation

and, as can be seen in Fig. 14, it shows high amplitude os-

cillations in the control to compensate for it. In this case,

the F-SMC is rather in the reaching phase (but not the

sliding phase) because of the excited unmodeled dynam-

ics leading to a small chattering compared to the B-SMC

(compare two last rows in Table 5), which should not be

misleading. In any case, it can be seen that even for such

a small sampling time 5 ms compared to other works with

larger sampling times (see [73]), the SMC should be im-

plemented based on the backward discretization to avoid

the excitation of such unmodeled dynamics.

Considering the differentiators, it seems that the ef-

fect of the discretization is quite visible compared to the

discretization of the controller reported above, where the

chattering generated by the F-STD may even lead to insta-

bility (see the word Osc. in Table 5). On the other hand,

considering the phase lag, the B-STD shows the minimum

amount of phase lag leading to better closed-loop perfor-

mances among all differentiators. The Euler differentiation

presents the maximum variation since the Euler method is

a pure differentiation without any filtration causing high-

frequency noise amplification.

As it was mentioned above, the SMC is designed based

on the propeller and motor dynamics without taking into

account the structural flexibilities. As a result, under spe-

cific conditions such unmodeled dynamics are excited and

appeared in the results. The authors believe that the effect

of the discretization on the unmodeled dynamics corre-

sponding to the structural bending modes should be stud-

ied in more detail for other applications.
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