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Abstract

Despite the numerous experimental investigations performed over the past cen-
tury and more intensively in the last fifteen years, strain-induced crystallization
in natural rubber still remains hardly understood in its precise mechanisms: a
complete theoretical description for crystallization and melting of the involved
crystallites is still needed to derive relevant physically-based mechanical consti-
tutive equations. Therefore, the present Part I of our work proposes a coherent
theory describing the full nucleation–growth–melting cycle of these crystallites,
by using classical thermodynamics of phase transitions and by accounting for
the topological constraints due to the network. A graphical representation of
crystallite evolution involving strain, temperature, and crystallite size is then
introduced, using a physical parameter to express the change of Gibbs free en-
ergy due to surface creation for a unit volume of crystalline phase. Finally,
experimental results from literature exhibiting shape-memory effects in rubber
are elucidated using this crystallite life cycle theory.

Keywords: cross-linked polymer; crystallization; nucleation; growth; melting;
entanglements

1. Introduction

Intensive experimental investigations conducted in the last twenty years on
strain-induced crystallization (phase transition taking place during deforma-
tion) in natural rubber have provided an expertise of such material responses
under various conditions, e.g. deformation, temperature and strain rate (Tosaka,
2007; Huneau, 2011; Toki, 2014; Albouy and Sotta, 2015; Candau et al., 2014,
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2015a,b,c, 2016). However, the lack of understanding about the mechanisms at
the scale of a crystallite inclines model derivations to adopt phenomenological
approaches (Kroon, 2010; Mistry and Govindjee, 2014; Guilie et al., 2015). The
present Introduction stands for a short overview on how strain-induced crystal-
lization is described at both polymer network and crystallite scales, in order to
point out the missing links.

Information on chain orientation and crystalline fraction, measured by X-
ray diffraction during deformation, naturally lead authors to propose descrip-
tive models of strain-induced crystallization: deformation induces the orien-
tation of polymer chains, the alignment of which helps crystallite formation.
Strain-induced crystallization is thus sometimes compared to flow-induced crys-
tallization, both of them dealing with oriented polymers. In 1947, Flory lays a
cornerstone by representing crystallization of a chain (described as a succession
of freely-jointed statistical segments) as an alignment of a few consecutive seg-
ments in the loading direction. This implies in particular that the remaining
amorphous portion of the chain relaxes, as experimentally observed. Consider-
ing measurements highlighting a large proportion of amorphous chains remain-
ing un-oriented under deformation, Toki and Hsiao (2003) propose a structure
of semi-crystallized network comprised of micro-fibrillar crystallites linked each
other by oriented amorphous chains, and surrounded by un-oriented amorphous
chains. Tosaka et al. (2004) then suggest, invoking a similar organization of
the network, a mechanism of crystallization initiation based on network inho-
mogeneity, and in which chains having higher local stretch ratios crystallize
first. Another model proposed by Tosaka (2009) assumes that the whole net-
work can be represented by a solid elastic and a fluid components in parallel:
crystallites form in the elastic network, while chains from the fluid network only
progressively stick to them. Fukahori (2010) proposes an opposite two-phase
description from experimental considerations: the fluid network (25% of total
volume) crystallizes due to the strain prescribed by the vulcanized (elastic) net-
work. Representations by Albouy et al. (2005, 2014), based on Flory’s idea of
chain relaxation, focus on the evolution of crystallization and melting during
deformation: from a given crystallization (or melting) threshold stretch ratio,
crystallites progressively form (resp. disappear) in the chain while strain in-
creases (resp. decreases) such that the stretch ratio of the remaining amorphous
part remains constant.

However, thresholds and evolution of this phase transition occurring in
strained vulcanized polymer networks remain poorly understood, partially be-
cause of very small crystallite sizes (ca 100 Å) that prevent observations by
microscope. In contrast with larger thermally induced crystallites, admitted
to be of folded-chain type in spherulites for unstrained films (Andrews, 1962),
even the morphology of strain-induced crystallites remains unclear. A bundle-
like morphology is supported, more intuitively than experimentally, by the fact
that chain orientation induced by deformation would prevent chains to fold
(Toki et al., 2002, 2003, 2004). However, it is experimentally observed that
amorphous chains are not as oriented as imagined (Toki et al., 2004), making
rather possible the existence of such foldings. Crystallite dimensions measured
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in chain direction also remain mainly stable while lateral dimensions vary, in-
clining to favor the existence of foldings which create such characteristic lamellar
structures having constant thickness (Candau et al., 2014). The observed ra-
pidity of crystallite formation renders though difficult the diffusion of chains
to create foldings (Toki et al., 2002, 2003; Tosaka et al., 2011), and they are
also contested by the absence of characteristic patterns of lamellar structures
in X-ray (SAXS) investigations (Albouy et al., 2012; Toki et al., 2002; Tosaka
et al., 2011). Finally, in a previous work, we also showed that deformation does
not solely explain nucleation rate of strain-induced crystallization: the necessity
of additionally considering lower values of interface energies (by many orders of
magnitude than those of thermal crystallization) indicates that crystallites are
more likely to be bundle-like (Gros et al., 2015). Most of the authors propose a
mix of the two morphologies, as well as an evolution of morphology upon strain
level (Gaylord and Lohse, 1976; Gaylord, 1976; Rault et al., 2006; Nie et al.,
2014; Candau et al., 2014) also observable in films of unvulcanized natural rub-
ber (Andrews, 1962, 1964; Shimizu et al., 1998, 2000).

Thus, the following question arises when deriving models: how to predict
and include the formation and melting of these small crystallites in constitutive
equations? In Flory’s crystallization model described above, crystalline portion
is assumed to have no folding, and its size is determined such that it satisfies
a thermodynamic equilibrium of the semi-crystallite chain (Flory, 1947). This
model, as well as its developments (Gaylord and Lohse, 1976; Gaylord, 1976;
Smith, 1976), considers one global crystallized portion on a single (or bundle of)
chain(s) and does not propose a physical description of crystallite evolution tak-
ing into account limited sizes. In spite of that, recent mechanical models adopt
it to derive tridimensional constitutive equations of strain-induced crystalliza-
tion, forcing their approach to remain phenomenological (Kroon, 2011; Mistry
and Govindjee, 2014; Guilie et al., 2015; Nateghi et al., 2018; Rastak and Lin-
der, 2018; Khiêm and Itskov, 2018). A better physical description of crystallites
is that of Laghmach et al. (2015), who propose a phase field model (consider-
ing a continuum field and not chain scales) in which the authors clearly state
nucleation, growth and melting theories. Furthermore, Candau et al. (2014) an-
alyze experimental results in the light of the same thermodynamic theories, and
propose a new insight on definitions for crystallization and melting thresholds
of different populations of crystallites appearing successively. In these works,
nucleation and melting of crystallites are described thanks to the classical ther-
modynamic theory, and growth is assumed to be restricted by topological con-
straints (presence of crosslinks and entanglements of chains) in the network.
This appears all the more justified that restricted chain mobility is a major
difference with thermal crystallization, where formed crystallites are larger and
entanglements are looser. Indeed, Laghmach et al. consider an accumulation of
topological constraints expelled from the newly formed crystalline phase, and,
taking into account the associated elastic energy to drive the equilibrium of the
system, provide stable final sizes and shapes of a crystallite. Candau et al.,
also invoking topological constraints, assume that growth stops as soon as crys-
tallites are large enough to be in equilibrium in the amorphous phase. Plagge
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and Klüppel (2018) also use this idea in a recent simple physically-based model
which we describe further in Part II of this work (Gros et al., 2018) along with
its mechanical treatment.

In order to derive tridimensional mechanical models using statistical chains
as in Flory’s description, a consistent theory similar to that proposed by Lagh-
mach et al. to describe crystallite nucleation, growth and melting is an essen-
tial prerequisite, along with a viable definition of crystallization and melting
thresholds expressed in terms of stretch ratios as introduced by Candau et al..
Therefore, the present paper proposes such complete and coherent theoretical
description of the ”nucleation–growth–melting” cycle of strain-induced crystal-
lites, as well as their associated thresholds, to serve as a basis for mechanical
models. The theory derived in Section 2 is mainly based on nucleation and melt-
ing theories described by Laghmach et al. and Candau et al., combined with a
new description of topological constraints in the network in order to account for
both thermodynamic aspects and network topology ; a similar idea has already
been proposed by Plagge and Klüppel (2018). This leads to the derivation of
the governing equations of a crystallite life cycle, of which a graphical represen-
tation follows. As an illustration, this theory is used in Section 3 to elucidate
what triggers crystallite melting in shape-memory behavior of natural rubber
(Katzenberg et al., 2011; Heuwers et al., 2012, 2013a,b; Katzenberg and Tiller,
2016). Part II of this work includes the theory to derive the mechanical tridi-
mensional constitutive equations (Gros et al., 2018). Compared to the works of
Laghmach et al. (2015), Candau et al. (2014), and Plagge and Klüppel (2018), our
theory: (1) depends solely on network characteristics, namely network chain
density or equivalently chain length, (2) considers topological constraints as a
barrier for not only crystallite growth but also nucleation, for which we propose
a derivation which has never been suggested before, and (3) proposes the bases
for a standalone crystallization/melting theory which can be included to various
mechanical frameworks.

2. Theory

2.1. Crystallization

2.1.1. Motivation for topological conditions

Topological constraints, denoting crosslinks and chain entanglements in the
network, act as barriers for crystallites to grow. This is suggested by experimen-
tal observations from Trabelsi et al. (2003) indicating that samples pre-stretched
at 90◦C and let crystallize in the same strained state at −25◦C result in final
shapes of crystallites following the affine deformation of the network. These
shapes keep a constant volume regardless of the stretch ratios, and this vol-
ume seems to be related to that available around a crosslink (itself depending
on network chain density). Tosaka (2007), mentioning these results, empha-
sizes the relationship between crystallite sizes and network structure. Finally,
Chenal et al. (2007) highlight an optimal network chain density corresponding
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to a drastic change in the dependency of both crystallite volume and maximum
crystalline degree on network chain density.

Although these results concern final sizes of crystallites (after growth), they
are here first applied to nucleation, and then to crystallite growth as Laghmach
et al. do. In fact, thermodynamic conditions of crystallization and melting are
not sufficient to explain the absence of crystallization in natural rubber at room
temperature yet lower than melting temperature, because sizes of critical nuclei
(nuclei big enough to grow further) can mathematically be calculated for any
stretch ratio and even for an unstrained state. This motivates the derivation
of another criterion for nucleation, based on the experimental aforementioned
evidences: a crystallite can form only if topological constraints let it enough
space to do so. Furthermore, from an energetic point of view, a formed crystallite
should grow indefinitely and invade the whole amorphous network. Strain-
induced crystallites admitting very narrow sizes, a topological limiting condition
for growth must be defined in order to set the final sizes of a stable crystallite.

In the following, the classical theory of nucleation in a strained network is
first recalled and discussed considering a parallelepipedic crystallite with arbi-
trary sizes; topological conditions are then taken into account.

2.1.2. Homogeneous nucleation in a strained network

When a nucleus appears from chain fluctuations in a homogeneous amor-
phous material, its size determines its evolution: the nucleus disappears if it is
too small, or grows if it is large enough (Mandelkern, 2002). This size condi-
tion can be expressed by the change in Gibbs free energy due to crystallization:
melting is favored when the variation is positive, and on the contrary, crystal-
lization is favored if it is negative. This change in Gibbs free energy ∆G for a
crystalline nucleus in a material without impurities is

∆G = Aγ − V∆Gm (1)

where A is the area of the interface between the nucleus and the amorphous or
melted medium, γ its corresponding interface free energy, V the volume of the
crystallite, and ∆Gm the bulk melting free energy per unit volume (the index
m denotes melting throughout this paper). These two contributions to ∆G,
one unfavorable to crystallization (surface creation represented by Aγ which is
positive) and the other one favorable when ∆Gm > 0 (bulk effects taken into
account with V∆Gm), determine nucleus existence and stability.

A shape of nucleus must be defined in order to specify ∆G. For a nu-
cleus in polymer, interface energies vary depending on the considered surface,
i.e. parallel or normal to chain direction. Let us consider a parallelepipedic
nucleus, whose sizes are (Lk)k∈{1,2,3}, L1 being the size in chain direction (re-
ferred to as the nucleus or crystallite thickness). The assumption L2 = L3 is
often adopted to simplify the reasoning, but since this hypothesis is not verified
from experimental results, primary nucleation theory is written here for arbi-
trary dimensions: L1, L2, L3 are assumed to be independent one to each other.
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In such case, the change in Gibbs free energy due to phase transition is

∆G = 2L2L3γ1 + 2L1L3γ2 + 2L1L2γ3 − L1L2L3∆Gm (2)

where γk are the interface energies corresponding to the interface normal to
the direction k ∈ {1, 2, 3}. These energies are usually referred to as end surface
energy when k = 1 and as lateral surface energy when k = {2, 3}. The expression
of ∆Gm, depending here on the characteristics of the network and not on those
of the nucleus, will be specified afterwards. For small strain rates, growth follows
when the spontaneous nucleus overcomes an energetic barrier induced by the
competition between surface and bulk effects. This barrier is reached for critical
sizes of nucleus denoted (L∗

k)k∈{1,2,3}, such that

∂∆G

∂Lk

∣

∣

∣

∣

Lk=L∗

k

= 0 , ∀k ∈ {1, 2, 3}. (3)

It results in the following system of equations, for non-zero (L∗
k)k∈{1,2,3}:
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∆Gm
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L∗
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(4)

which leads to

L∗
k =

4γk
∆Gm

, k ∈ {1, 2, 3} , (5)

and to
γ1
L∗
1

=
γ2
L∗
2

=
γ3
L∗
3

=
∆Gm

4
. (6)

Eq. (6) highlights the proportionality between sizes and corresponding interface
energies, stipulated by the Gibbs-Wulff theorem (Wulff, 1901). This also implies
that if interface energies are provided, size ratios remain unchanged and equal to
interface energy ratios: γ1 : γ2 : γ3 = L∗

1 : L∗
2 : L∗

3 whatever external conditions
such as deformation or temperature.

The melting free energy ∆Gm still has to be specified. It represents the
difference between the bulk Gibbs free energies of crystalline and amorphous
phases per volume unit of crystalline phase, and is defined as follows:

∆Gm = ∆Hm − T∆S , (7)

where T is the absolute temperature, and melting enthalpy ∆Hm is assumed
to be independent from both chain length and strain. Change in entropy ∆S
shall include the effects of crystallization and of deformation, as depicted in
Figure 1. Considering the fact that entropy is related to the number of possible
configurations of a chain in space, unstrained amorphous state has a higher
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λ Strain

Sc

Sam(λ)

Sam(1)
λ = 1

∆S(λ)

Sam ∆Sdef(λ)

∆Sm

Order

Figure 1: Change in entropy depending on the stretch ratio λ.

entropy Sam(λ = 1) than that of crystalline state Sc. Strain induces a decrease
in this number of configurations, expressed by a change ∆Sdef(λ) = Sam(λ) −
Sam(1) in entropy, and has a favorable effect towards crystallization. Thus,

∆Gm = ∆Hm − T (∆Sm +∆Sdef(λ)) (8)

where ∆Sm is the melting entropy of an unstretched material. By definition of
the melting temperature of a perfect infinite crystal in an unstrained material
T 0
m,

∆Sm =
∆Hm

T 0
m

, (9)

and therefore

∆Gm(λ, T ) =

(

1− T

T 0
m

)

∆Hm − T∆Sdef(λ) (10)

where ∆Sdef can be expressed from statistical properties of long chain molecules
and usually depends on chain length characterized by the number of statistical
Kuhn segments (Treloar, 1975). The expression of ∆Gm, incorporated in those
of critical sizes (Eq. (5)) finally leads to

L∗
k =

4γk
(

1− T
T 0
m

)

∆Hm − T∆Sdef(λ)
, k ∈ {1, 2, 3} . (11)

It is important to keep in mind that interface energies being positive, these
expressions are only defined and physically acceptable when the denominator is
strictly positive. Figure 2 shows the influence of stretch ratio on critical sizes for
different values of interface energies. The strong influence of γ on L∗ emphasizes
again how important the values of these interfacial energies are.

Remark 1. This nucleation theory applies for both folded-chain or bundle-
like types of crystallite, and the choice of morphology, including mixed types,
is expressed through the values of interface energies (Gros et al., 2015). Be-
sides, their dependency upon deformation and temperature are unknown, and
(γk)k∈{1,2,3} are assumed to be constant throughout this paper.
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0.015
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L
∗
(Å

)

Figure 2: Influence of stretch ratio λ and interfacial energy γ on critical sizes L∗ (calculated
with N = 200, T = 293 K). γ varies from 0.005 to 0.035 J/m3.

(a) (b)

l
topo

l

Figure 3: Representation of the network. (a) Undeformed network with crosslinks (filled
circles) and entanglements (open circles). (b) Strained network with characteristic lengths
ltopo and l.

These critical sizes define a so-called critical nucleus (smallest nucleus large
enough to grow further). In the following, nucleation denotes the formation
of a crystallite (whose smallest possible size is that of a critical nucleus), and
crystallization refers to both nucleation and growth.

2.1.3. Crystallization in a network with topological constraints

Figure 3(a) shows an undeformed network with crosslinks (filled circles) and
entanglements (open circles). In the proposed conditions of nucleation and
growth, these topological constraints prevent nuclei to invade the whole network:
as shown in Fig. 3(b) with a strained configuration, entanglements along a chain
prevent nuclei to spread all along it, and in the direction normal to the chain,
crosslinks play this role. As depicted, entanglements do not constitute barriers
in the lateral direction because the crystallite is assumed to be constituted by
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No nucleation Nucleation End of growth

Growth

(a) (b) (c)

l

l
topo

Figure 4: Conditions of crystallization (nucleation and end of growth). (a) The chains of
the strained network (solid lines) are punctuated by crosslinks (filled circles) and entangle-
ments (open circles), which dictate nucleation (dotted lines). (b) When the network is further
strained, the thickness of the critical nucleus is smaller than the length between two entan-
glements and nucleation occurs, defining crystallization threshold. (c) Instantaneous lateral
growth follows until reaching a stable size.

different chains aligned in the deformation direction. The space allowed by these
topological constraints is assimilated to a parallelepiped, whose characteristic
lengths are the distance between two consecutive entanglements along a chain
(denoted ltopo) in chain direction, and that between two crosslinks (denoted l)
in the lateral directions. Entanglements are assumed to follow the deformation
of the chain it belongs to, and the network can thus be seen as a tessellation of
space by parallelepipeds.

For a given stretch ratio λ, the thickness L∗
1 of a critical nucleus can be cal-

culated with Eq. (11), as well as the distance ltopo between two entanglements.
The present condition assumes that nucleation occurs only if the thickness of
the critical nucleus is smaller than the length between two entanglements:

L∗
1(λ) 6 ltopo(λ) . (12)

as depicted in Figures 4(a) and (b), where chains (solid line) join crosslinks
(filled circles) with each other and are impeded by entanglements (open circles).

• In state (a), where the network is lightly strained, the thickness of the
critical nucleus (symbolized as a dotted parallelepiped) is larger than the
length between two entanglements and nucleation does not occur.

• When the network is further strained (Fig. 4(b)), the length between two
entanglements increases compared to state (a) and the thickness of the
critical nucleus decreases (see Fig. 2). Nucleation occurs when these two
lengths become equal.
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Since L∗
1 decreases with λ while ltopo increases with it, the threshold stretch

ratio of crystallization λc is

λc = argmin
λ>0

[

L∗
1(λ)− ltopo(λ)

]

. (13)

Growth is then assumed to be instantaneous after nucleation
(Albouy et al., 2012; Brüning et al., 2012; Candau et al., 2012; Tosaka et al., 2012),

and such reached maximal sizes (denoted (L̆k)k∈{1,2,3}) to be kept afterwards.
The thickness of the crystallite, still limited by the entanglements, does not
change (L̆1 = L∗

1). In lateral directions, growth is assumed to be limited
by crosslinks, as represented in Figure 4(c). Invoking the incompressibility
of the network, the distance between two crosslinks in the lateral direction is
the end-to-end distance l of a chain stretched at 1/

√
λc. Thus, the final sizes

(L̆k)k∈{1,2,3} of the crystallite are finally

L̆k =

{

ltopo(λc) for k = 1 ,

l
(

1√
λc

)

for k ∈ {2, 3} . (14)

2.2. Melting

Melting conditions of the previous crystallite are now investigated. They
simply derive from classical thermodynamic equations and do not introduce
new definition, condition, nor hypothesis.

2.2.1. Definition of the melting point

The change in Gibbs free energy due to the melting of the crystallite (of
sizes (L̆k)k∈{1,2,3}) can be written as follows:

∆G = 2L̆2L̆3γ1 + 2L̆1L̆3γ2 + 2L̆1L̆2γ3 − L̆1L̆2L̆3∆Gm(λ, T ) (15)

where ∆Gm(λ, T ) is given by Eq. (10). Despite the similarity of Eqs. (2) and
(15), the unknowns are here λ and T , not the sizes which are defined by Eq. (14).
The melting point is characterized by ∆G = 0, such that

3
∑

k=1

2γk

L̆k

−∆Gm(λ, T ) = 0 . (16)

Crystallite sizes being known, the melting point is defined by the couple (λ, T )
that satisfies Eq. (16).

2.2.2. Two particular cases and deformation-temperature equivalence

Two particular cases of Eq. (16), also discussed in Laghmach et al. (2015)
and Candau et al. (2015c), are considered. In the case T is known and constant
(not necessarily equal to the temperature at which crystallization took place),
melting stretch ratio λm satisfies

3
∑

k=1

2γk

L̆k

−∆Gm(λm, T ) = 0 . (17)
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When T is equal to the temperature at which crystallization took place, this
describes the usual situation of strain-induced crystallization. λm is defined by
solving Eq. (17) given an expression for ∆Sdef.

In the case where λ is known and constant, melting temperature Tm satisfies

3
∑

k=1

2γk

L̆k

−∆Gm(λ, Tm) = 0 . (18)

This corresponds to the thermal melting of a crystallite in a deformed net-
work. In Eq. (18), Tm is the melting temperature of a crystallite of dimensions
(L̆)k∈{1,2,3} in a network strained at a given stretch ratio λ, which again can be
different from that of crystallization λc. Eq. (18) gives

Tm = T 0
m

(

1−
∑ 2γk

L̆k

∆Hm

)

(

1 +
T 0
m∆Sdef(λ)

∆Hm

)−1

(19)

and Tm depends on (L̆)k∈{1,2,3} and λ.
Remark 2. Given that γ1 is usually of the same order of magnitude as γ2

and γ3, when lateral sizes are large compared to the crystallite thickness, e.g.
lamellar structures, Eq. (19) leads, for an unstrained polymer, to the Gibbs-
Thomson relationship (Mandelkern, 2002). Besides, melting temperature for a
crystallite with infinite dimensions is also easily retrieved.

Considering the two aforementioned particular cases for a crystallite formed
at the stretch ratio λc and the temperature Tc, either a couple (λm, Tc) or a
couple (λc, Tm) satisfying the equilibrium can be determined (Eqs. (17) and
(18) resp.). Furthermore, an infinity of couples (λ, T ) mathematically satisfy
Eq. (16) for each given (L̆)k∈{1,2,3} in the domains we are interested in (the
relationship linking such λ and T is even bijective when λ > 1). From a physical
point of view, it indicates that for any given temperature, there exists a stretch
ratio at which melting point is reached (Miyamoto et al., 2003; Trabelsi et al.,
2003; Rault et al., 2006; Candau et al., 2015c), and vice-versa: temperature
and deformation are equivalently able to trigger the melting of a crystallite, as
introduced by Miyamoto et al. in particular.

2.3. Graphical representation of the crystallite life cycle

The previous derivations highlight the importance of λ, T and crystallite
size in describing nucleation, growth and melting. Hence, this section aims to
provide a geometric representation of the path followed by a crystallite during
its life cycle by using these variables. The description and figures here suppose
that there is no temperature change due to the exothermicity of crystalliza-
tion, that chain relaxation induced by nucleation and growth does not affect
the stretch ratio, and that there is no kinetic and diffusion aspects (melting is
instantaneous). The previous theory where the stable crystallite is limited by
topological constraints in an uniaxial deformation is considered, but the graph-
ical representation holds for more general cases, e.g. no topological constraints,
additional lateral deformation.
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For non-zero (Lk)k∈{1,2,3}, Eq. (2) can be written

∆G = L1L2L3

[

3
∑

k=1

2γk
Lk

−∆Gm(λ, T )

]

(20)

where ∆Gm(λ, T ) is specified by Eq. (10). The volume L1L2L3 of the crystallite
being always positive, the term between brackets provides the sign of ∆G. Its
second term ∆Gm depends on λ and T , and not on crystallite sizes, which are
included instead in the first term, denoted g:

g :=
3
∑

k=1

2γk
Lk

. (21)

This term is an indicator of how large crystallites are: low values of g (resp.
large values) correspond to large (resp. small) sizes of crystallites. It will thus
be used to represent crystallite size, and ∆G is considered as a function of the
3-uple (λ, T, g). From a thermodynamical point of view, g can be interpreted as
a change in Gibbs free energy induced by surface creation/disappearance for a
unit volume of crystalline phase, in opposition to ∆Gm which is related to bulk
effects. The ”density” aspect is emphasized when g is expressed as follows:

g =
1

L1L2L3
(2L2L3γ1 + 2L1L3γ2 + 2L1L2γ3) . (22)

From the previous section, there exists an infinity of 3-uples (λ, T, g) at which
∆G vanishes (Eq. (16)), i.e. satisfying

g −∆Gm(λ, T ) = 0 . (23)

In a spatial representation, this equation defines a surface, plotted in Figure 5
and denoted S , which can also be interpreted as couples of (λ, T ) satisfying
Eq. (23) for a given value of g. The intersection of the surface with the plane
g = 0 (dashed line on the figure) corresponds to the case of an infinite crystallite,
and that with the plan λ = 1 (dotted line in the figure) is the usual case
encountered in classical thermal crystallization of an unstrained material. From
its definition, this surface S is comprised of the equilibrium points between
amorphous and crystalline phases, and separates the space into two parts: the
one ”above” (larger values of g at a given (λ, T )) corresponds to ∆G(λ, T, g) > 0
(stability of the amorphous phase), and the one ”below” (lower values of g)
corresponds to ∆G(λ, T, g) < 0 (stability of crystalline phase).

Furthermore, crystallite sizes at nucleation and after growth are defined
using λ and T thanks to ∆G and topological conditions. It means that although
g does not directly depend on λ and T , particular values taken by g depend on
λ and T , or, in other words, the state of the crystallite at a given value of g
strongly depends on (λ, T ), as represented in Figure 6(a) for a given T . When
nucleation occurs, from Eq. (6), g takes the value

g∗ =

3
∑

k=1

2γk
L∗
k(λ)

=
3

2
∆Gm(λ, T ) , (24)
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Figure 7: Zoom on a restricted area of Fig. 5 and path of crystallization through the equilib-
rium surface, from P∗ to P̆. The melting points are along the intersection I of S with the
plane g = ğ.

(solid line). It is situated ”above” the equilibrium curve defined by g = ∆Gm(λ, T )
(dotted line) which separates crystalline and amorphous domains (Eq. (23)).
From the definition of ∆G and its energetic barrier, values of g larger than
g∗ correspond to unstable nuclei (smaller than the critical sizes). If growth is
limited by topological constraints, the lower value reached by g is

ğ =
3
∑

k=1

2γk

L̆k

(25)

(dashed line, assuming that λ and T do not vary during the instantaneous
growth) where (L̆)k∈{1,2,3} depend only on the stretch ratio λc at which nucle-
ation and growth took place (Eq. (14)). The figure ”g vs. T” for a given λ in
Fig. 6(b) is similar, except that equilibrium curve and g = g∗ curve increase
with respect to T , and that the g = ğ curve is a horizontal line according to
our topological constraints which do not depend on temperature. In both cases,
there exists a domain in which nucleation does not occur if there are topological
constraints.

In order to depict the path of (λ, T, g)-uples followed by a crystallite during
its life cycle, Figure 7 represents the same surface S as in Fig. 5 for a smaller
domain of T , λ and g. The 3-uple (λc, Tc, g

∗) corresponding to a crystallite at
nucleation defines a point P∗ ”above” S . During growth, the 3-uple follows the
black line linking P∗ to the point P̆ of coordinates (λc, Tc, ğ) situated ”below”
S by crossing it and defined by topological constraints of the network. λ and
T are assumed to be constant during growth in Fig. 7.

Once the sizes of the stable crystallite are reached, they do not vary any-
more: the 3-uples of the upcoming paths are all restricted to the (λ, T, ğ)-uples

14
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Figure 8: Equilibrium curve I in the plane g = ğ (intersection with S ). Three melting

paths from point P̆ (stable crystallite) are depicted: by a change in temperature with λ
kept constant (vertical arrow; supercooling effect), by a change in stretch ratio with T kept
constant (horizontal arrow, superstraining effect), and another possible path (dashed arrow).

belonging to the plane g = ğ. The surface S being the set of equilibrium points,
those belonging to the intersection I of S with the plane g = ğ, define possible
melting points for the crystallite. There exists an infinity of paths leading to
melting, consisting in linking P̆ to a melting point belonging to I , as indi-
cated in Fig. 7 by dotted arrows, which cross the melting curve so that the path
followed by the melted crystallite reaches the space where amorphous phase is
stable. In particular and as depicted in Figure 8, if λ is constant, melting is due
to the change in temperature (supercooling effect), and if T is constant, melt-
ing is due to deformation (superstraining effect as introduced by Candau et al.
(2014, 2015c)). Any other path letting both λ and T vary is possible. This
figure is similar to that proposed in Chapter 4, Figure C2 in Candau (2014)
considering experimental results.

Remark 3. One can distinguish melting points from equilibrium points for
sake of clarity. The equilibrium surface is comprised of the 3-uples satisfying
∆G(λ, T, g) = 0 and exists prior to any consideration of a specific crystallite.
It defines which amorphous phase or crystalline phase is favored under the con-
ditions given by a 3-uple. Melting points, on the contrary, are relative to a spe-
cific crystallite and conditions: they are equilibrium points which can be reached
given a crystallite size, i.e. those belonging to I . Furthermore, lowering T
or increasing λ may increase crystallite size: under such assumptions, only the
area formed by two arrows (constant λ and constant T ) and I a priori keeps the
crystallite as it is, and reachable melting points are restricted to those comprised
between (λc, Tm, ğ) and (λm, Tc, ğ) belonging to I in Fig. 8.

3. Illustration of the theory

Equivalence of temperature and deformation for triggering melting has al-
ready been investigated by Candau et al. (2015c) in the light of experimental
results, and a corresponding theory has been derived in the previous section.
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The present section therefore emphasizes on how to represent melting condi-
tions as a surface of (λ, T, g)-uples satisfying ∆G(λ, T, g) = 0, allows to deal
with crystallization and melting analysis with the presence of changes in both
temperature and strain.

As a preamble, it is to note that the theory of Section 2 applies to an ide-
alized network comprised of chains having all the same length. A real network,
constituted of chains having different lengths (Miyamoto et al., 2003), is here as-
sumed to be comprised of several different idealized networks, and all the chains
to deform with the same stretch ratio (Candau et al., 2014). Using such descrip-
tion of the network, this section explicates experimental mechanical response of
Heuwers et al. (2013a) of a lightly crosslinked natural rubber undergoing a par-
ticular cyclic deformation during which temperature changes. In the following,
the experimental procedure and the corresponding results are first described,
followed by the life cycle of crystallites under these experimental conditions for
a single idealized network and then for the real network.

3.1. Experimental procedure

The experimental step sequence, used by Heuwers et al. (2013a) and making
both strain and temperature vary, is depicted in Figure 9(a). Corresponding
data of the measured mechanical response (force) are plotted in Figure 9(b)
along with points A to H. The different steps are as follows.

1. Loading (A to C): a lightly crosslinked sample of natural rubber is stretched

at a given temperature Ts up to a stretch ratio λ
(exp)
max , whose value depends

on crosslinking degree in Ref. 23, and which is assumed to be larger than
the macroscopic crystallization threshold. This loading path exhibits a
very standard mechanical response: force increases and material stiffens.

2. Cooling and pause (C to D): at λ
(exp)
max , temperature is decreased from

Ts to Tp, and the system remains still during five minutes. In Ref. 23,
Ts = 50◦C, Tp = 10◦C. During these cooling and pausing steps, force
significantly decreases.

3. First unload (D to E): unload starts again and is stopped when the

decreasing force vanishes, defining a stretch ratio denoted λ
(exp)
t .

4. Heating (E to F ): at λ
(exp)
t , temperature is then increased back to Ts,

triggering a sudden increase in force.

5. Second unload (F to H): unload finally continues until force comes back
to zero again.

3.2. Crystallite life cycle

During the loading path A-B-C, experiments usually exhibit a macroscopic
threshold stretch ratio at which crystallization starts, followed by successive
apparition of crystallites in the network as deformation continues. At the end
of the loading path (point C), there are several populations of crystallites having
different sizes and belonging to different idealized network (Candau et al., 2014).
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Figure 9: (a) Experimental step sequence and (b) corresponding mechanical response (data
extracted from Ref. 23). Points A to H are particular points used in the text.

Let us first consider a single crystallite of given sizes (L̆k)k∈{1,2,3} at point
D, formed during the loading path and being larger than at point C due to
the growth favored by cooling and chain rearrangement. From the equilibrium
surface as in Fig. 5, both strain and temperature decreases induce larger super-
cooling and superstraining than at Ts. As depicted in Fig. 8, this crystallite can
melt because of deformation (steps 3 or 5) or temperature (step 4). Noticing
that Figs. 8 and 9(a) admit the same axes, an identical representation is used
in Figure 10 to depict these three cases as paths followed during the steps from
D to G. P̆ represents the crystallite at point D and I its melting curve as

in Fig. 8. λ
(Tp)
m and λ

(Ts)
m denote the threshold stretch ratios of melting of the

considered crystallite corresponding to temperatures Tp and Ts respectively.

• Path D-E-F -G (solid arrow): if unload stops at a stretch ratio λt, first

assumed to be larger than λ
(Tp)
m and smaller than λ

(Ts)
m , and temperature

is increased to Ts, it is very likely that the path crosses the equilibrium
curve I (defining point M), meaning that the crystallite melts during
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this heating process.

• Path D-E′-F ′-G (dotted arrow): if unload is stopped at λ′
t such that

λ′
t < λ

(Tp)
m , the crystallite has already melted (path crossing I at point

M ′) such as in a standard unload at constant Tp

• Path D-E′′-F ′′-G (dash-dotted arrow): finally, if the path has not crossed
yet the equilibrium curve at the end of the heating step, it means that the

stretch ratio λ′′
t at which unload stops is higher than λ

(Ts)
m and that the

crystallite melts during the following unload process from point F ′′ to G
(path intersecting I at M ′′).

The first and third cases are two examples of possible paths previously com-
mented as ”letting both λ and T vary” for melting.

These considerations, described for a single population of crystallites in an
idealized network, can be generalized to all the crystallites formed in the ma-
terial, having different sizes and made from chains of different lengths, i.e. in
different idealized networks. Their corresponding equilibrium curves are differ-
ent as well and can be represented as a melting area denoted {I }, as depicted
in Figure 11. Since the intersection of the path of a crystallite with its melting
curve means that it melts, the depiction of path crossing the melting area {I }
corresponds to a progressive melting of the crystallites in the sample. Let us
draw the attention on the fact that this representation is for the whole range
{ğ} of the ğ calculated from different crystallite sizes in the sample, and not for
a given single ğ, i.e. for a given size of crystallite, as it was the case in Figs. 8
or 10. The starting point is thus denoted {P̆} to indicate that it is not a single
point there but a set of them.

Remark 4. Keeping the prior construction in mind, the mechanical response
shown in Fig. 9(b) can be simply described by a descriptive model of the network
evolution based on Flory’s representation of a semi-crystallized chain.

18



ACCEPTED MANUSCRIPT

λ
(exp)
t λ

(exp)
max

Tp

Ts

Topt

λ

T

End of melting

{P̆}

{I }

g ∈ {ğ}
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Figure 11: Melting area {I } crossed by the paths of crystallites from different idealized
networks constituting the real network during unload (D to H).

Remark 5. The efficiency of the sample as an energy storage material, em-
phasized by Heuwers et al., is calculated by the ratio of the area under the curve
from F to H (stored energy) to that under the curve from A to C (provided en-
ergy) of the mechanical response (Fig. 9(b)). It means that for a given loading
process, the higher force the point F reaches, the better the efficiency becomes.
Considering the three possible melting paths previously described and the fact
that melting leads to an increase of λ and of the force, this is equivalent to look
for a total melting of the crystallites during the heating process. As shown in
Fig. 11, melting of remaining crystallites still continues in the unloading pro-

cess after the heating step (λ < λ
(exp)
t ), until finishing crossing the meting area

(indicated by a circle). To optimize energy storage, temperature should thus be
increased up to Topt (see Fig. 11), even higher than initial stretching tempera-
ture, until all crystallites are melted. This seems all the more interesting that
force increases with temperature.

4. Conclusion

After a brief overview of previous representations of strain-induced crys-
tallization in natural rubber in lieu of an introduction, this paper proposes a
consistent theory describing the complete nucleation–growth–melting cycle of
crystallites taking into account classical thermodynamic theories and the en-
tangled nature of polymer networks through topological constraints. Its main
features are as follows.

• Nucleation treatment follows that of classical homogeneous nucleation,
to which a topological condition due to limited chain mobility is added,
considering that nucleation cannot take place if entanglements spatially
prevent it. Growth, assumed to be instantaneous, is again limited by
entanglements, and because of the proposed nucleation condition, only
lateral growth is permitted. Melting condition is driven by a standard
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consideration of Gibbs free energy, the analysis of which emphasizes an
equivalence between temperature and deformation effects.

• A new physical parameter g, related to a change of Gibbs free energy due
to surface creation for a unit volume of crystalline phase, is introduced as
an indicator of crystallite size.

• The 3-uple (λ, T, g) is used to describe crystallite evolution in a network,
and to propose a graphical representation of the crystallite life cycle.

This theory succeeds in describing experimental results on energy storage using
shape-memory properties of lightly crosslinked natural rubber, providing bases
for further understanding of how to trigger crystallite melting and optimize
storage efficiency. Part II of this work (Gros et al., 2018) includes the theory to
derive mechanical constitutive equations of a tridimensional model for modeling
strain-induced crystallization in natural rubber. It uses the work presented here
to govern crystallization and melting evolution in a network having a chain-
length distribution, using statistical chains of different lengths.
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der krystallflächen. Zeitschrift für Krystallographie und Mineralogie 34 (1-6),
449–530.
URL http://dx.doi.org/10.1524/zkri.1901.34.1.449

26


