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ON THE RATIONAL HOMOTOPY TYPE OF EMBEDDING SPACES

OF MANIFOLDS IN Rn

BENOIT FRESSE, VICTOR TURCHIN, AND THOMAS WILLWACHER

Abstract. We study the spaces of embeddings of manifolds in a Euclidean

space. More precisely we look at the homotopy fiber of the inclusion of these

spaces to the spaces of immersions. As a main result we express the rational

homotopy type of connected components of those embedding spaces through

combinatorially defined L∞-algebras of diagrams.

1. Introduction

1.1. Background. Let L be a smooth compact submanifold possibly with bound-

ary in Rm. Let Emb(L,Rn) be the space of smooth embeddings L ֒→ Rn, n−m ≥ 2.

We allow L to be disconnected with components of possibly different dimensions.

For example, one can choose L =
∐r

k=1 S mk ⊂ Rm, m = max(mk) + 1. The sets of

isotopy classes of such links were studied by Haefliger in [35–37].

Let i : L ֒→ Rn be the trivial embedding, which we define by composing

the canonical inclusion L ⊂ Rm with a fixed linear embedding of Rm into Rn (for

instance, we can choose to identify Rm with the subspace spanned by the m first

coordinate axes of Rn). Define the space of embeddings modulo immersions as the

homotopy fiber over the trivial embedding i of the obvious map from the space of

smooth embeddings to the space of immersions:

Emb(L,Rn) := hofiber(Emb(L,Rn)→ Imm(L,Rn)). (1)

Key words and phrases. Embedding calculus, graph-complexes, infinitesimal bimodules over

an operad, rational homotopy theory, graph-complexes, isotopuy classes of embeddings, Maurer-

Cartan elements.
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Roughly, Emb(L,Rn) can be thought of as a space of embeddings trivial as immer-

sions. More precisely a point in such a space is a pair ( f , h), where f : L ֒→ Rn is

a smooth embedding and h : L × [0, 1]→ Rn is a regular homotopy from f to the

inclusion i. The rational homology groups of these spaces Emb(L,Rn) have been

extensively studied in [1, 2] under the codimension restriction n ≥ 2m + 1. (Note

that the embedding spaces are connected in this codimension range.) In this paper

we enlarge the range of codimension to n ≥ m + 2 and we describe the rational

homotopy type of the components of such spaces. In addition we show that the

results of rational homotopy theory allow one to obtain some information about

the set of isotopy classes π0 Emb(L,Rn).

For technical reasons we replace L by its open tubular neighborhood N(L) ⊂

Rm. Note that the map L ֒→ N(L) induces a weak homotopy equivalence on our

embedding spaces (see [58, Proof of Proposition 1.2]):

Emb(N(L),Rn)
≃
−→ Emb(L,Rn). (2)

We also want to study the case where some of the components of the manifold

L extend to infinity. We assume for simplicity that any such unbounded compo-

nent of L is closed and coincides with a Euclidean subspace near infinity. We then

consider the space of embeddings modulo immersions Emb∂(L,R
n) in which em-

beddings and immersions coincide with the inclusion L ⊂ Rm ⊂ Rn outside some

ball of a sufficiently big radius. For example, one can take L =
∐r

i=1 Rmi ⊂ Rm,

m = max(mi) + 1 (or just m = m1 if r = 1), a disjoint union of r affine

spaces Rmi parallel to the coordinate plane spanned by the first mi basis vec-

tors. These spaces Emb∂(
∐r

i=1 Rmi ,Rn), called spaces of string links modulo

immersions, have been studied in [2, 3, 57, 58]. It was shown in [58, Corol-

lary 2.6] that the rational homotopy groups of these spaces are computed by

certain hairy graph complexes, provided that n ≥ 2max(mi) + 2. Moreover, it

was conjectured in [58, Conjecture 3.1] that the result holds in the lower range

n ≥ max(mi) + 3. This conjecture is proven by our Corollary 1.3. Note that

the sets π0 Emb(
∐r

i=1 S mi,Rn) = π0 Emb∂(
∐r

i=1 Rmi ,Rn) form finitely generated

abelian groups in this range (see [35–37], [58, Theorem 4.2, Lemma 4.7], Propo-

sition 5.9). We study these spaces and we discuss the comparison of our results

with Haefliger’s in sections 5.5-5.7.

For technical reasons, we again replace such a “long manifold” L by N∞(L) :=

N(L) ∪ (Rm \ Dm
R

), the tubular neighborhood of L in Rm union the complement of

a ball of a sufficiently big radius R. We still have a weak homotopy equivalence:

Emb∂(N∞(L),Rn)
≃
−→ Emb∂(L,R

n). (3)
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Note that the bounded framework (the case where L ⊂ Rm is a compact submani-

fold) can be reduced to the unbounded one by taking N∞(L) = N(L) ∪ (Rm \ Dm
R

),

where Dm
R

is a ball that contains N(L), so that:

Emb(N(L),Rn) ≃ Emb∂(N∞(L),Rn). (4)

1.2. Main results. From now on we assume that M ⊂ Rm is the complement of a

compact submanifold in Rm (possibly with boundary). We also consider the space

M∗ := M ∪ {∞}, topologized as a subset of S m = Rm ∪ {∞}. The Goodwillie–

Weiss Taylor tower of Emb∂(M,Rn) has been expressed by Arone and the second

author through derived mapping spaces of infinitesimal bimodules (see [2, Propo-

sition 6.9], [61, Section 6]). The results obtained in these references, combined

with the convergence result of Goodwillie, Klein and Weiss [31–33]1, imply that,

for n − m ≥ 3 or n − m ≥ 2 and M ( Rm, one has a weak equivalence

Emb∂(M,Rn) ≃ IBimodh
Fm

(IF M ,Fn), (5)

where Fk is the Fulton–MacPherson operad equivalent to the little discs operad

Ek (see [52]), IF M is a sequence of locally compactified configuration spaces of

points in M∗, and IBimodh
Fm

(. . . ) is the derived mapping space in the category of

infinitesimal bimodules (see Section 2.7). In the case of a bounded submanifold,

one has a similar formula in which instead of infinitesimal bimodules, the mapping

space of right modules is used (see [2, Proposition 6.9], [9, Proposition 6.1], [61,

Theorem 2.1]). The additional infinitesimal left action is necessary to encode the

behavior of embeddings at infinity. We assume that the reader is familiar with this

formula and with the underlying algebraic objects.

The main goal of this paper is to understand the right-hand side of (5) in

the realm of the rational homotopy theory. We formulate our result in terms of

graph complexes. We use the Sullivan rational homotopy theory and the Sullivan

differential graded algebras of piece-wise linear differential forms Ω∗(X) which

can be associated to any space X (for instance, we are going to consider the case

X = M∗). We say, by abusing classical conventions, that a differential graded

commutative algebra R defines a Sullivan model of the space X when R is quasi-

isomorphic to the Sullivan differential graded algebra Ω∗(X).2

1For the convergence one needs the ambient dimension n minus the handle dimension of M∗ to

be at least three.
2In the literature, a Sullivan model usually refers to an object equipped with a connected cell

complex structure in the model category of differential graded commutative algebras. But we do
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Let A be some (possibly non-unital) differential graded commutative algebra.

(In our result, we take for A the augmentation ideal of a Sullivan model of the

pointed space M∗.) We denote by HGCA,n the complex of Q-linear series of graphs

with “hairs” (external legs), each of which decorated by an element of our algebra,

as in the following example:

a1 a2

a3

, a1, a2, a3 ∈ A.

We assume that the graphs of this complex HGCA,n are connected and have inter-

nal vertices of valence greater than or equal to three. Multiple edges and tadpoles

(edges connecting a vertex to itself) are allowed. We also assume that the decora-

tion of the hairs is Q-multilinear in A.

We equip this decorated hairy graph complex HGCA,n with a homological

grading (as opposed to the differential graded algebra A, which we equip with

a cohomological grading, as usual in the Sullivan rational homotopy theory). To

be explicit, we endow a graph Γ ∈ HGCA,n with #E edges, #V internal vertices,

and with hairs labelled by homogeneous elements a1, . . . , ak ∈ A, with the homo-

logical degree

deg(Γ) = (n − 1)#E − n#V −

k∑

i=1

|ai|,

where |ai| denotes the cohomological degree of the elements ai in A.

We endow the decorated hairy graph complex with a differential graded L∞-

algebra structure, which we briefly sketch for the moment, referring to sections 3.2

and 3.3 for more details. The differential δ : HGCA,n → HGCA,n consists of three

pieces

δ = dA + δsplit + δ join. (6)

The piece dA is induced by the internal differential of the differential graded com-

mutative algebra A. The piece δsplit is given by the sum of the following splitting

not need to require the existence of such a cell complex structure for our models in general. There-

fore, we abusively use the phrase “Sullivan model” to refer to any differential graded commutative

algebra quasi-isomorphic to Ω∗(X). Besides we do not make any assumption on the spaces X to

which we apply this concept. In particular, we do not necessarily assume that X is connected, so

that the definition of a connected cell complex model of the differential graded algebraΩ∗(X) does

not make sense in our context in general.
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operation on internal vertices:

7→
∑

, so that δsplitΓ =
∑

v vertex

±Γ split v. (7)

The piece δ join is defined by the sum of the operations that consists of joining a

subset of the hairs of our graph into one hair and multiplying the corresponding

decorations in A:

δ join

Γ

a1 a2 . . . ak

=
∑

S⊂hairs
|S |≥2

±
Γ

a1. . .

∏
j∈S a j

. (8)

The higher L∞-operations are defined similarly to δ join. In brief, the rth L∞-

operation ℓr(Γ1, . . . , Γr), r ≥ 2, is the sum of the graphs that we obtain by joining

hair subsets of the graphs Γ1, . . . , Γr all together and by multiplying the corre-

sponding decorations. For example, the Lie bracket has the following schematic

description:

Γ

,
Γ′
 =
∑ Γ Γ′

, (9)

where we suppress the A decorations on hairs for simplicity. (They are multi-

plied whenever hairs are joined.) Note that, by convention, this Lie bracket has

degree −1 (just as the Whitehead product in homotopy theory) and we adopt a

similar convention for the higher L∞-operations. Thus, in comparison to the stan-

dard grading convention for L∞-algebra structures, we shift the degree of the L∞-

operations by one (see Section 2.1).

Our main result is the following.

Theorem 1.1. Let M ⊂ Rm be a complement to a compact submanifold (possibly

with boundary) and let R be a Sullivan model of the pointed space M∗ = M ∪ {∞}

(with the base-point at infinity). We assume that R is equipped with an augmenta-

tion (corresponding to the base point). For n − m ≥ 2, we have a weak homotopy

equivalence

IBimodh
Fm

(IF M ,F
Q

n ) ≃ MC•(HGCR̄,n),
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where A = R̄ denotes the augmentation ideal of our differential graded commu-

tative algebra R and MC•(HGCR̄,n) denotes the simplicial set of Maurer–Cartan

forms with values in the complete L∞-algebra HGCR̄,n.3

To relate our computation to the right-hand side of (5) one may invoke the

following result.

Theorem 1.2. Let M be a complement to a compact submanifold in Rm. For

n − m ≥ 3 or n − m ≥ 2 and M ( Rm, the natural map

IBimodh
Fm

(IF M,Fn)→ IBimodh
Fm

(IF M ,F
Q

n ) (10)

defines a rational equivalence of nilpotent spaces componentwise and is finite-to-

one at the π0-level.

From Theorem 1.1 and equivalence (5), it follows that one can compute the

rational homotopy type of the connected components Emb∂(M,Rn)ψ of the em-

bedding spaces Emb∂(M,Rn) through our hairy graph complexes.

Corollary 1.3. Under the assumptions of Theorem 1.2, we have the following

statements:

a. Every component of Emb∂(M,Rn) is nilpotent.

b. We have a naturally defined finite-to-one map from the set of connected

components of the space Emb∂(M,Rn) to the set of Maurer–Cartan elements

of the L∞-algebra HGCR̄,n modulo gauge equivalence:

m : π0 Emb∂(M,Rn)→ MC(HGCR̄,n)/ ∼ . (11)

c. The model of the rational homotopy type of a connected component

Emb∂(M,Rn)ψ is given by the positive degree truncation of the twisted

L∞-algebra HGC
m(ψ)

R̄,n
, which we associate to the Maurer–Cartan element

m(ψ) ∈ MC(HGCR̄,n) corresponding to ψ ∈ Emb∂(M,Rn).

d. The Maurer–Cartan element that corresponds to the trivial embedding i :

M ֒→ Rn is m(i) = 0.

3We recall the explicit definition of a Maurer–Cartan element in a complete L∞-algebra and the

definition of this simplicial set of Maurer–Cartan forms in Section 5.1.
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Throughout the paper, the positive degree truncation of an L∞-algebra g refers

to the L∞-subalgebra g>0 ⊂ g which agrees with gk in degree k ≥ 2, is given by the

kernel ker(g1
d
−→ g0) in degree k = 1, and vanishes in degree k ≤ 0.

The third statement of the corollary (c) implies the identity

π
Q

k
Emb∂(M,Rn)ψ � Hk(HGC

m(ψ)

R̄,n
),

for all k ≥ 1, where π
Q

k
denotes the rationalization of the abelian group πk for

k ≥ 2, and the Malcev completion of the nilpotent group π1 for k = 1 (see [51, Ap-

pendix A.3], see also [23, Chapter I.8] for a general introduction to the Malcev

completion of groups). The product on π
Q

1
= H1(HGC

m(ψ)

R̄,n
) is given by the Baker-

Campbell-Hausdorff formula (see for example [8, Theorem 1.1]). The action of

π
Q

1
on π

Q

k
, k ≥ 2, is expressed as the exponent of the adjoint action of H1(HGC

m(ψ)

R̄,n
)

on Hk(HGC
m(ψ)

R̄,n
) (see [14, Section 12.5.1]). The rational homology groups of

Emb∂(M,Rn)ψ can also be computed as the Chevalley–Eilenberg homology of the

L∞-algebra (HGC
m(ψ)

R̄,n
)>0 (see [8, Corollary 1.3], [29], Section 6). The last state-

ment of the corollary (d) follows from the fact that the component of the trivial

embedding under the composition of (5) and (10) is sent to the component of

the map IF M → Fm

∗
−→ F

Q
n that factors through the commutative operad in sets

Com (see Section 2.8). Recall that Com is given by the base-point in each arity

Com(r) = ∗, so that we may write Com = ∗ for this operad in what follows.

Theorem 1.2 follows from an application of Mienné’s theory of Postnikov

decompositions of operads and of bimodules over operads (see [47, 48]). This

theory enables one to adapt Haefliger’s proof that the rationalization of the space

of sections of a nilpotent fibration can be computed by a model (see [38, 39]).

We also refer to [59] for the claim that the rationalization induces a finite-to-one

correspondence on the sets of homotopy classes of maps with values in a nilpotent

space. The proof of these counterparts of the claims of Theorem 1.2 in the context

of spaces can be obtained by using a Postnikov decomposition of the target object

of our mapping spaces. In the context of operads, we actually need to consider

a decomposition by arity in addition to the decomposition by Postnikov sections.

To ensure the convergence of this double decomposition, we need to prove that

the source object of our mapping space is equivalent to a cell complex of free

infinitesimal bimodules of bounded dimension arity-wise, and that the fibers of

the arity decomposition of the target object have a connectivity n(r) that tends to

∞ faster than the dimension bounds of the cells of the source object. We basically

check that these assumptions are fulfilled by the infinitesimal bimodules IF M
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and Fn in order to get the conclusion of Theorem 1.2 for our mapping spaces. We

explain this verification in detail in Section 4.2.

The results outlined in this introduction enable us to define a map

π0 Emb∂(M,Rn) � π0IBimodh
Fm

(IF M ,Fn)→ π0MC•(HGCR̄,n) = MC(HGCR̄,n)/∼,

and hence, an invariant of “M-knots”. We know that this map is finite-to-one.

However, we do not know yet how this map can be efficiently computed. It is

likely that it can be expressed in terms of Bott-Taubes-Kontsevich type config-

uration space integrals. It is also possible that it can be expressed more sim-

ply in terms of the rational homotopy type of the complement of the embedding

Rn\ψ(M) and maybe in addition taking into account a chain version of the Alexan-

der duality.

1.3. Range improvement. We reiterate that even though Theorem 1.1 and Corol-

lary 1.3 are stated for a manifold M ⊂ Rm, which is a complement to a compact

submanifold, because of the equivalences (2) and (4), Corollary 1.3 applies to any

compact manifold L (with components of possibly different dimensions) embed-

dable in Rm. For R̄ in HGCR̄,n, we take a Sullivan model of L. Similarly, because

of equivalence (3), Corollary 1.3 can be applied to a closed submanifold L ⊂ Rm,

which near infinity looks like a finite disjoint union of affine subspaces. In the

latter case for R we take an augmented Sullivan model of the one-point compacti-

fication L∗ = L ∪ {∞} of L, considered as pointed at∞.

The range when Corollary 1.3 applies can be slightly improved. Namely, the

manifold L does not need to be embeddable in Rm, it is enough if it admits an

immersion i : L # Rm. In case L is not compact, i is supposed to be proper,

injective outside a compact subset, and to have as image near infinity a disjoint

union of affine subspaces. We can then similarly define spaces Emb(L,Rn) and

Emb∂(L,R
n). Define N(L) as the normal disc bundle over L, and N∞(L) =: M as

N(L) union Rm \ Dm
R

the complement to a closed disc of some big radius R. The

immersion i can be extended to an immersion N(L) # Rm, respectively N∞(L) #

Rm. Then in this more general situation, the equivalences (2-4) still hold.

For the generalized Theorem 1.1 and Corollary 1.3, the manifold M can be

taken as follows. First let |M∗| be any compact pointed m-manifold with a base-

point ∗ in its interior M∗ ⊂ |M∗|. Let also

i : |M∗|# S m = Rm ∪ {∞},

be an immersion such that i−1(∞) = ∗. The manifold M is then defined as

M := M∗ \ {∗}. We consider the spaces Emb∂(M,Rn), Imm∂(M,Rn), Emb∂(M,Rn)
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of embeddings, immersions, and embeddings modulo immersions for which the

corresponding maps M → Rn coincide with M
i
−→ Rm ⊂ Rn near ∗.

Corollary 1.3(a-c) for a manifold M as above can be proved by exactly the

same arguments, provided n − m ≥ 3 or n − m ≥ 2 and M∗ has no component

S m. We need the codimension-two-requirement because in the proof we use the

relative formality of the little discs operads (see Subection 2.8). Besides, we need

to make sure that the ambient dimension n minus the handle dimension of M∗ is

greater than or equal to three, because this assumption is necessary for the con-

vergence of the Goodwillie-Weiss tower [31–33], and for this reason, we do not

allow the manifold M to have a closed component in the case where the codimen-

sion is two4. In Section 4.3 we explain how the main steps in the proof need to be

adjusted for this more general situation.

1.4. Plan of the paper. The paper is organized as follows. In Section 2, we

set our notation for later use and we briefly recall constructions of the literature

that we use throughout the paper. More specifically, we review Pirashvili’s Dold–

Kan theory of Γ-modules, which we use in our study of our mapping spaces of

infinitesimal bimodules over operads, and we review relative formality results for

the little discs operads, which we use to reduce our mapping spaces to hairy graph

complexes in the rational homotopy theory setting. We also briefly review the

definition of the Fulton–MacPherson operad Fn and of the infinitesimal bimodule

IF M in this section. We introduce the hairy graph complexes HGCA,n in Section 3

and we complete the proof of our main theorems afterwards in Section 4. We

eventually address some examples and applications in Section 5 where we also

compare our results with previous work of the literature.

Acknowledgement. The authors thank G. Arone, U. Buijs, Y. Félix, P. Lam-

brechts, A. Skopenkov, D. Stanley and D. Tanré for communication.

2. Preliminaries

2.1. Generalities. We generally work over the ground field Q (i.e., all vector

spaces, algebras, etc. will be defined over Q). The phrase differential graded will

be abbreviated by dg. By a dg vector space we usually mean a cochain complex,

which can also be considered as a chain complex by inversing the grading.

In general, we apply grading conventions inspired by topological applications.

For instance, we apply cohomological conventions for dg commutative algebras

4Such a component must be S m, as an immersion of a closed m-manifold in an m-manifold is

always a covering map.
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as usual in rational homotopy theory (in particular, we assume that the differential

of a dg commutative algebra increases degrees by 1), but we adopt homological

conventions for dg Lie algebras and L∞-algebras (thus, we consider a differential

that decreases degrees by 1 in the case of a dg Lie algebra). In addition, we assume

that the bracket of a dg Lie algebra has degree −1 (like the Whitehead product in

homotopy theory). We similarly assume that all higher brackets operations of an

L∞-algebra have degree −1. With these grading conventions the Maurer–Cartan

elements lie in degree 0.

We denote the category of non-negatively graded dg commutative algebras by

dgCom. We equip it with the usual model structure, in which the weak equiva-

lences are the quasi-isomorphisms and the fibrations are the maps that are surjec-

tive in all degrees.

In general, for a simplicial model category C, we use the name of the cate-

gory to refer to the mapping space C(A, B), which we can associate to any objects

A, B ∈ C. We also use the notation C(A, B) when C is not simplicial. (In this

case, we assume that we have a canonical choice of simplicial frame or of cosim-

plicial frame.) The derived mapping space, denoted by Ch(A, B), is defined by

taking Ch(A, B) = C(QA,RB) for a cofibrant replacement QA of A and a fibrant

replacement RB of B.

We denote the morphism sets of a category by MorC(. . . ) in general, but we

will simplify this notation for certain categories of diagrams in dg vector spaces

and in dg commutative algebras (see Section 3.1).

2.2. Topological spaces and simplicial sets. By Top we denote the category of

compactly generated (possibly non-Hausdorff) topological spaces. This category

is cartesian closed, like the category of simplicial sets sset, and moreover we

have a Quillen equivalence of model categories that preserves the cartesian closed

structure (see [41, Section 2.4]5):

| . | : sset⇄ Top : S •,

where we consider the geometric realization functor | . | on the one hand and the

singular complex functor S • on the other hand. By a “space” we understand either

an object in Top or a simplicial set. Because of this equivalence, sometimes we

will be sloppy and will not make a difference between these two categories.

2.3. On Γ-modules and Ω-modules. Let Γ be the category of finite pointed sets.

We use the expression ‘right Γ-module’ for the category of contravariant functors

5This category is denoted by K in this reference.
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T : Γop → C with values in any category C, whereas the expression ‘left Γ-

module’ refers to the category of covariant functors T : Γ→ C. We also consider

the categoryΩ of finite (non-pointed) sets with surjections as morphisms. We then

use the expression ‘right Ω-module’ for the category of contravariant functors T :

Ωop → C and ‘left Ω-module’ for the category of covariant functors T : Ω → C.

We denote the category of left Γ-modules in C by CΓ, and the category of left

Ω-modules by CΩ.

Suppose now that M is a left Γ-module in some abelian category C. For

S ∗ = {∗} ⊔ S a pointed set and s ∈ S , we define πs,S ∗ : S ∗ → S ∗ \ {s} to be the map

that sends s to the base-point and all other elements to themselves. Then we have

a left Ω-module crM, the cross-effect, such that crM(S ) ⊂ M(S ∗) is the joint

kernel of the mapsM(πs,S ∗). The following result is due to Pirashvili (see [50]).

Proposition 2.1 (Pirashvili). The cross-effect functor cr : CΓ → CΩ between left

Γ-modules and left Ω-modules in an abelian category C is an isomorphism of

categories. In particular, for a pair of left Γ-modules A, B ∈ CΓ, we have the

identity:

MorCΓ(A, B) = MorCΩ(cr A, cr B).

In what follows, we apply this statement in the case where C is the category

of dg vector spaces. We also consider left Γ-modules in the category of dg com-

mutative algebras (which is non abelian). We use the terminology ‘left Hopf Γ-

modules’ for this category of left Γ-modules. In general, if C is a cofibrantly

generated model category, then we can equip the category of left Γ-modules in

C with the projective model structure. The weak equivalences in this model cate-

gory CΓ are the objectwise weak equivalences and the fibrations are the objectwise

fibrations.

2.4. Right Γ-modules in topological spaces and in simplicial sets. For our pur-

pose, we also consider the injective model structure on the category of right Γ-

modules in simplicial sets ssetΓ
op

. The weak equivalences of this model category

are the objectwise weak equivalences again, while we take objectwise cofibrations

as cofibrations.

The category ssetΓ
op

can also be equipped with a Reedy model structure, de-

fined in [7], with the same class of weak-equivalences as the projective and in-

jective model structures, but where the class of cofibrations and the fibrations

depends on the definition of latching maps and of matching maps in the category

of right Γ-modules. This definition of a Reedy model structure on ssetΓ
op

is a

generalization of the classical definition of the Reedy model category of diagrams
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on a Reedy indexing category in the case where the indexing category, like Γop,

contains non trivial automorphisms (see also [7] for this subject).

The Reedy model structure on the category of right Γ-modules in simplicial

sets is Quillen equivalent to both the injective model structure and the projective

model structure (use that the identity functor carries the Reedy cofibrations to

injective cofibrations, the Reedy fibrations to projective fibrations, and preserves

all weak-equivalences). This observation implies that we can use any of these

model structures to compute the (derived) mapping spaces of right Γ-modules

ssetΓ
op,h(· · · ).

We can also adapt the definition of the Reedy model structure for the cate-

gory of right Γ-modules in topological spaces. (We will explain in Section 2.6

that this Reedy model structure is a particular case of the Reedy model structures

associated to the categories of operadic infinitesimal bimodules that we use in this

paper.) The Quillen equivalence of Section 2.2, between topological spaces and

simplicial sets, extends to a Quillen equivalence between the Reedy model cate-

gory of right Γ-modules in topological spaces and the Reedy model category of

right Γ-modules in simplicial sets:

| . | : ssetΓ
op

⇄ TopΓ
op

: S •,

We can actually see that the functors | . | and S • preserve all weak-equivalences

of right Γ-modules (not only the weak-equivalences between cofibrant or fibrant

objects), because such an assertion holds in the model categories of simplicial sets

and topological spaces. We can again use this equivalence to pass from results on

the homotopy of right Γ-modules in topological spaces to results on the homotopy

of right Γ-modules in simplicial sets.

2.5. Rational homotopy theory of Γ-modules. By standard results of rational

homotopy theory (see [12, Section 8], see also [24, Section II.7.2]), the Sullivan

functor of piece-wise linear differential forms Ω∗ and the adjoint Sullivan realiza-

tion functor G define a Quillen adjunction

G : dgCom⇄ ssetop : Ω∗.

(Recall that dgCom denotes the category of non-negatively graded dg commuta-

tive algebras.) The derived unit of this Quillen adjunction sends a space X to its

rationalization. We explicitly have XQ := LG(Ω∗(X)), for any X ∈ sset, where LG

denotes the derived functor of G.

In what follows, we also apply the Sullivan functor of piece-wise linear

differential forms to topological spaces. Then we set by an abuse of nota-

tion Ω∗(X) = Ω∗(S •(X)), where we consider the image of our space X under
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the singular complex functor S • (see Section 2.2). Note that the existence of

the Quillen adjunction implies that we have an equivalence of mapping spaces

sseth(X, LG(R)) ≃ dgComh(R,Ω∗(X)) when we consider the image of dg com-

mutative algebra R under the derived functor of the Sullivan realization functor

G. In particular, we have sseth(X, YQ) ≃ dgComh(R,Ω∗(X)) when we consider

the rationalization of a space Y , for any choice of a dg commutative algebra R

quasi-isomorphic to Ω∗(Y). (Recall that we use the phrase “Sullivan model of the

space Y” for any choice of such a dg commutative algebra R.)

By objectwise application of the functors Ω∗ and G, we obtain an adjunction:

G : dgComΓ ⇄ (ssetΓ
op

)op : Ω∗, (12)

between the category of right Γ-modules in simplicial sets ssetΓ
op

and the cat-

egory of left Γ-modules in dg commutative algebras dgComΓ. (Recall that we

use the phrase ‘left Hopf Γ-module’ to refer to this category of left Γ-modules

dgComΓ.) The above adjunction is clearly a Quillen adjunction for the projec-

tive model structure on dgComΓ and the injective model structure on ssetΓ
op

(the

functor Ω∗ preserves the weak equivalences and carries the cofibrations of the in-

jective model structure on ssetΓ
op

to fibrations in the projective model category of

diagrams dgComΓ since it does so objectwise)6. Thus we can upgrade the classical

Sullivan rational homotopy theory of spaces to right Γ-modules.

We can obviously compute the model of a right Γ-module Ω∗(X) objectwise

since the functor Ω∗ preserves all weak-equivalences of simplicial sets. In what

follows, we also apply the Sullivan model functor to right Γ-modules in topo-

logical spaces and we still write Ω∗(X) = Ω∗(S •(X)) in this case, by the same

abuse of notation as in the category of spaces. We easily check that a cofibrant

object of the category of left Hopf Γ-modules dgComΓ is cofibrant in the cat-

egory of dg commutative algebras objectwise. We deduce from this observa-

tion that the rationalization of a right Γ-module XQ reduces to the rationaliza-

tion of the spaces underlying our object objectwise. We still have the relation

ssetΓ
op,h(X, YQ) ≃ dgComΓ,h(R,Ω∗(X)) at the mapping space level, for any choice

of a left Hopf Γ-module R quasi-isomorphic to Ω∗(Y). We more generally have

the relation ssetΓ
op,h(X, LG(R)) ≃ dgComΓ,h(R,Ω∗(X)) when we take the image of

a left Hopf Γ-module R under the derived realization functor LG. In subsequent

6The same observation holds if we equip dgComΓ and ssetΓ
op

with the Reedy model structure

(using the general result of [6] in the case of the category dgComΓ), but we only use the case

of the projective and injective model structures in this paper, because the left Γ-module in dg

commutative algebras that we consider in our applications is naturally cofibrant with respect to the

projective model structure.
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arguments, we also use an extension of this relation for mapping spaces of right Γ-

modules in topological spaces by using that the Quillen equivalence between the

categories of right Γ-modules in simplicial sets and in topological spaces gives an

equivalence at the mapping space level.

2.6. Homotopy theory of operads and infinitesimal bimodules. We let Σ be

the category of finite sets with bijections as morphisms and Λ be the category

of finite sets with injective maps as morphisms. We again consider the category

of right Σ-modules, which we define as the category of contravariant functors

T : Σop → C with values in any category C, the category of right Λ-modules,

which consists of the contravariant functors T : Λop → C, and the symmetrically

defined categories of left Σ-modules and of left Λ-modules. In the literature, the

expression ‘symmetric sequence’ or ‘collection’ is also used for our categories of

right Σ-modules. In [23,24], the expression ‘Λ-sequence’ is used for the category

of right Λ-modules while the expression ‘covariant Λ-sequence’ is used for the

category of left Λ-modules.

In what follows, we notably consider the category of topological right Σ-

modules TopΣ
op

and the category of topological rightΛ-modules TopΛ
op

. We equip

TopΣ
op

with the projective model structure and TopΛ
op

with the Reedy model struc-

ture (see [24, Sections II.8.1 and II.8.3]).

The topological operads that we use in this paper are reduced in the sense

that their arity zero component is reduced to a point. Recall that the underlying

collection of a reduced operad inherits a right Λ-module structure. We use this

observation to equip the category of reduced operads with the Reedy model struc-

ture transferred from the category of right Λ-modules (see [24, Section II.8.4]).

The Fulton–MacPherson operad Fm, of which we briefly recall the definition in

the next subsection, is Reedy cofibrant.

Recall that an infinitesimal bimodule over an operad P is a right Σ-module M,

endowed with a rightP-module structure, governed by right composition products

◦i : M(k) ⊗ P(ℓ) → M(k + ℓ − 1), k ≥ 1, ℓ ≥ 0, 1 ≤ i ≤ k, together with a

compatible infinitesimal left P-action, governed by composition products of the

form ◦i : P(k) ⊗ M(ℓ) → M(k + ℓ − 1), k ≥ 1, ℓ ≥ 0, 1 ≤ i ≤ k. For details,

see [18]. The category of infinitesimal P-bimodules is denoted by IBimodP.

For any reduced well-pointed topological operad P, the category IBimodP
can be equipped with the projective model structure, transferred by adjunction

from the projective model structure on TopΣ
op

. The category IBimodP can also be

equipped with the Reedy model structure, which is transferred by adjunction from

the Reedy model structure on TopΛ
op

. (By [18, Theorem 5.1], this construction
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returns a valid model structure as soon as the operad P is well-pointed in the

sense that the operadic unit defines a cofibration of topological spaces in arity one

∗ → P(1).) Note that the derived mapping spaces IBimodh
P(· · · ) coming from the

projective and Reedy model structures are equivalent (see [18, Theorem 5.9], or

use the general result of [19, Proposition 4.4]).

In the paper, we use that the structure of a right Γ-module is the same as

the structure of an infinitesimal Com-bimodule, where Com is the set-theoretic

operad of unital commutative algebras (the commutative operad), given by the

one-point set Com(r) = ∗ in every arity r ≥ 0 (see [60, Lemma 4.3]). Thus,

with our notation, we have a category identity TopΓ
op

= IBimodCom. The Reedy

model structure of the category of infinitesimal bimodules IBimodCom, which we

consider in this paragraph, is also identified with the Reedy model structure of

the category of right Γ-modules in topological spaces which we considered in the

previous paragraphs.

2.7. Fulton–MacPherson compactified configuration space. The Fulton–

MacPherson operad, denoted by Fn, is a classical model of En-operad. This op-

erad was introduced by Getzler-Jones [30], by using a real differential-geometric

variant of the Fulton–MacPherson compactifications of the configuration spaces

of points in Rn.7 Recall that the points of Fn(S ), where S is any finite sets, are rep-

resented by rooted trees with leaves indexed by S , and where each internal vertex

with k children is labelled by a configuration of k points in Rn modulo scaling and

translation. The internal vertices are required to have at least 2 children, as in the

following picture, where we take S = {1, . . . , 6} as index set for the leaves of our

tree:

1 2

3 4 5

6

7This type of compactification is sometimes called Fulton–MacPherson–Axelrod–Singer

compactification.
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We consider a similarly defined infinitesimal Fn-bimodule IF n [61, Sec-

tion 6]8. Points in IF n(S ) are rooted trees with leaves indexed by S , one distin-

guished vertex, the pearl, and with the following decorations. Non-pearl vertices

with k children are labelled by a configuration of k points in Rn modulo scaling

and translation. The pearl (with say k children) is labelled by a configuration of k

points in Rn (but not modulo scaling or translation). The pearl is allowed to have

any arity ≥ 0, while all the other internal vertices have an arity ≥ 2. If the pearl has

arity zero, then this means that all the points escape to infinity in Rn ∪ {∞} = S n.

The following picture gives the representation of such a pearled tree.

1 2

3 4 5

6

Now let M ⊂ Rm be an open subset containing a neighborhood of ∞. Recall

that we write M∗ := M ∪ {∞} for the space obtained by adding to M the point at

infinity in S m = Rm ∪ {∞}. We consider the infinitesimal Fm-bimodule IF M ⊂

IF m composed of those configurations that lie in the pre-image of M×r
∗ under the

map IF m(r) → (S m)r. As a space, IF M(k) is the Fulton–MacPherson–Axelrod–

Singer local compactification of the configuration space C∗(k, M∗) of k + 1 points

in M∗, one of which is fixed to be∞.

We need the following result.

Proposition 2.2. The infinitesimal Fm-bimodule IF M is cofibrant in IBimodFm

equipped with the Reedy model structure.

Proof. Implicitly this result appeared in the proof of [61, Theorem 6.5]. Recall

that, by [18, Theorem 5.4], an infinitesimal bimodule over a reduced operad P is

cofibrant in the Reedy model structure if and only it is cofibrant as an infinitesimal

bimodule overP>0 in the projective model structure, where P>0 is the operad such

that P>0(0) = ∅ and P>0(k) = P(k), for k > 0. The fact that IF M is cofibrant in

IBimod(Fm)>0
is analogous to [61, Lemma 2.2]9. �

8In [61], this infinitesimal bimodule is denoted by C∗[•, S
n].

9In [61], the second author considers the projective model structure on IBimodFm
, in which for

the cofibrancy of an object, the action of Fm(0) should also be free. Because of this the cofibrant
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2.8. Relative rational formality of the little disks operads: Recollections from

[27, 62]. It is shown in [27] that the natural maps Fm → Fn, induced by the

inclusion Rm → Rn, are rationally formal for n−m ≥ 2. Concretely, reformulating

slightly [27, Theorems C and D], one has a commutative diagram of reduced

operads

Fm F
Q

n

Rm R
Q
n

∗ Hn

∼ ∼

∼

relating the map Fm → F
Q

n to one factorizing through the commutative operad

Com = ∗. Here Rm and Rn are intermediate operads whose precise form is not

relevant at this point, whereas Hn = LG(H∗(Fn)) is defined by taking the image

of the cohomology of the topological operad Fn under the derived functor of the

Sullivan realization functor LG. (We then regard the object H∗(Fn) as a dg Hopf

cooperad equipped with a trivial differential.)

Recall that, for n ≥ 2, the cohomology of the Fulton–MacPherson operad

H∗(Fn) is identified with the n-Poisson cooperad Poisc
n, the dual of the operad

Poisn that governs the category of graded commutative algebras equipped with a

Poisson bracket of degree n−1. Let Comc denote the dual cooperad of the operad

of commutative algebras in vector spaces. We have a morphism of graded Hopf

cooperads H∗(Fn) = Poisc
n → Comc, dual to the morphism of graded operads

Com→ Poisn, which reflects the obvious restriction of structure functor from the

category of graded Poisson algebras governed by the operad Poisn to the category

of graded commutative algebras. We have LG(Comc) = G(Comc) = ∗ and the

morphism ∗ → Hn in the above diagram is identified with the image of the mor-

phism of graded Hopf cooperads H∗(Fn) → Comc under the derived functor of

the Sullivan realization functor LG.

Let us note that by generalities on model categories we may assume that the

upper left vertical arrow of our diagram is a fibration10. Then we may use that

object considered in [61] and denoted by C̃∗[•, M∗] is more complicated – it is obtained from

C∗[•, M∗] =: IF M by adding non-labelled hairs of length ≤ 1.
10Let A ← B → C be a zigag in a model category. We may factorize the second map into

B
∼
−֒→ B′ ։ C and then lift to obtain a zigzag A← B′ ։ C. In our case we apply this construction

to the arrow category equipped with the projective model structure.
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Fm is Reedy cofibrant and invert the arrow. Furthermore, note that, trivially, all

objects on the right act on themselves considered as operadic infinitesimal bimod-

ules. For later reference we shall hence record the following diagram of operads

(three left-hand columns) and infinitesimal bimodules (right-hand column).

Fm Fm F
Q

n F
Q

n

Rm R
Q
n R

Q
n

∗ Hn Hn

=

∼ ∼

∼

∼

∼

(13)

We will make use of the restriction functors associated to the operad morphism of

the right-hand side for our infinitesimal bimodule structures. We can for instance

regard the object Hn as an infinitesimal Com-bimodule by restriction through the

operad morphism Com = ∗ → Hn. Recall that this implies that Hn inherits a

natural right Γ-module structure in the category of topological spaces. We go

back to this subject in Section 2.10.

2.9. Graph complexes and graph (co)operads. We shall use the graph coop-

erads Graphsn defined by Kontsevich [44]. Let us briefly recall the definition.

An admissible graph with r external and k internal vertices is an undirected graph

such that the following holds.

• The external vertices are numbered 1, . . . , r.

• There is at least one external vertex in any connected component.

• All internal vertices have at least valence 3.

Tadpoles and multiple edges are allowed. Here is an example of an admissible

graph

1 2 3 4 5 .

A graph with #E edges and #V internal vertices is assigned degree (n−1)#E−n#V .

An n-orientation on an admissible graph is the following data:

• For n even it is an ordering of the set of edges up to even permutations.
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• For n odd it is an ordering of the set of half-edges and vertices up to even

permutations.

We call an admissible graph with orientation data an oriented graph.

We now define the space Graphsn(r) as the Q-linear combinations of isomor-

phism classes of (n-)oriented admissible graphs with r external vertices, together

with an orientation. We identify an oriented graph with minus the same graph

with opposite orientation.

The spaces Graphsn(r) assemble into a dg Hopf cooperad. The differential is

obtained by edge contraction.

δ i = i δ =

The dg commutative algebra structure is given by gluing graphs along external

vertices.

1 2 3 4 ∧ 1 2 3 4 = 1 2 3 4

Finally the cooperadic cocompositions are defined by subgraph contraction.

1 2 3 4 5 7→ 1 2 * ⊗ 3 4 5 + 1 2 * ⊗ 3 4 5

Note that each dg commutative algebra Graphsn(r) is quasi-free, generated

by the internally connected graphs IGn(r) ⊂ Graphs(r), so that, as graded com-

mutative algebra Graphsn(r) = S (IGn(r)). There is a natural map of dg Hopf

cooperads

Graphsn → H∗(Fn)

given on the algebra generators IGn by sending any graph with internal vertices

to zero, and by sending the edge between vertices i and j to the generator ωi j ∈

H∗(Fn). We then have the following important statement.

Theorem 2.3 (Kontsevich [44], Lambrechts-Volić [45]). The map of dg Hopf co-

operads Graphsn → H∗(Fn) is a quasi-isomorphism for every n ≥ 2.

2.10. The left Γ-module structure of the graph cooperad. We recalled in Sec-

tion 2.8 that the graded Hopf cooperad H∗(Fn) is equipped with a morphism

H∗(Fn) → Comc, where Comc is the dual cooperad of the operad that gov-

erns the category of commutative algebras in vector spaces. We explicitly have
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Comc(r) = Q. We have an immediate description of the restriction of this mor-

phism to the dg Hopf cooperad of graphs as the morphism Graphsn → Comc such

that γ 7→ 0 if the graph γ has at least one edge.

We mention in Section 2.8 that the operad Hn = LG(H∗(Fn)), which we define

by taking the image of the cohomology cooperad H∗(Fn) under the left derived

functor of the Sullivan realization functor LG, inherits the structure of an infinites-

imal bimodule over the commutative operad, and as a consequence, forms a right

Γ-module in the category of topological spaces. We can dually see that the coho-

mology cooperad H∗(Fn) inherits the structure of an infinitesimal bicomodule over

the commutative cooperad. We also have an isomorphism between the category of

infinitesimal Comc-bicomodules in a category and the category of left Γ-modules

(just as we observed that the category of infinitesimal Com-bimodules in topolog-

ical spaces is isomorphic to the category of right Γ-modules). Hence, providing

H∗(Fn) with such an infinitesimal bicomodule structure amounts to providing this

object with a left Hopf Γ-module structure. The right Γ-module structure of the

object Hn = LG(H∗(Fn)) actually corresponds to this left Hopf Γ-module struc-

ture of the cohomology H∗(Fn) when we take the objectwise realization functor

of (12) for Γ-modules.

By restriction, we get that the cooperad of graphs Graphsn inherits an infini-

tesimal Comc-bicomodule structure and hence, a left Hopf Γ-module structure like

the cohomology cooperad H∗(Fn). We then consider the collection Graphsn(S )

associated to arbitrary finite sets S , which we define by an obvious generalization

of the definitions of Section 2.9. We take this object Graphsn(S ) to define the

image of a pointed set S ∗ = {∗} ⊔ S under our functor on the category Γ, while

we determine the morphism f∗ : Graphsn(S ) → Graphsn(T ) associated to a map

f : S ∗ → T∗ of pointed sets S ∗ = {∗} ⊔ S and T∗ = {∗} ⊔ T as follows. Let

γ ∈ Graphs(S ). We consider the external vertices vs indexed by the elements

such that s ∈ f −1(∗). We take f∗γ = 0 if some of these external vertices vs have

an incident edge in γ. We discard these external vertices otherwise and we merge

the external vertices vs associated to the elements s ∈ f −1(t) in the fiber of an in-

dex t ∈ T to obtain the graph f∗γ ∈ Graphsn(T ) (with the merged external vertex

indexed by the corresponding element t ∈ T ).

The collection IGn is preserved by the left Γ-module structure of the cooperad

Graphsn and hence, inherits the structure of a left Γ-module in the category of

graded vector spaces. The cross effect of this collections cr IGn is identified with

the collection of internally connected graphs with no isolated external vertices. We

easily see that this leftΩ-module cr IGn is free in the sense that every morphism of

left Ω-modules on cr IGn is uniquely determined by a morphism of left Σ-modules
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on a left Σ-module of generators pIGn ⊂ cr IGn, which consists of graphs all of

whose external vertices have valence exactly one. We will call such internally

connected graphs primitive. For example:

1 2

3

∈ pIGn

is a primitive graph.

2.11. Induction and restriction of operadic bimodules.

Proposition 2.4. Let P → Q be a morphism of well-pointed reduced operads (see

Section 2.6). Then the induction and restriction functors

IndQP : IBimodP ⇄ IBimodQ : ResQ
P

form a Quillen adjunction, where we equip the categories of infinitesimal bimod-

ules with the Reedy model structure.

Proof. This statement is the counterpart for infinitesimal bimodules and the Reedy

model structure of the claim of [21, Theorem 15.B] for right modules and the pro-

jective model structure. The argument of this reference applies without change in

our setting. Namely, we just use that fibrations and weak equivalences of infin-

itesimal bimodules over operads are created in the category of right Λ-modules

and that ResQ
P

is the identity at the Λ-module level to conclude that the restriction

functor ResQ
P

preserves fibrations and weak equivalences. The result follows. �

We denote the derived functor associated to IndQP by LIndQP.

Recall that M∗ = M ∪ {∞} denotes the pointed m-manifold defined by adding

a point at infinity to our open subset M ⊂ Rm ⊂ Rm ∪ {∞} = S m. Below, by M×•
∗ ,

we denote the right Γ-module (equivalently the infinitesimal Com-bimodule) that

assigns the space of pointed maps S ∗ → M∗ to any finite pointed set S ∗.

Proposition 2.5. We have LIndCom
Fm
IF M ≃ M×•

∗ .

Proof. The object IF M is already Reedy cofibrant by Proposition 2.2. Hence

LIndCom
Fm
IF M ≃ IndCom

Fm
IF M . The latter object is obtained by contracting all

boundary components to points, and hence we obtain just M×•
∗ . �
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3. Hopf Γ-modules and hairy graph complexes

3.1. Model structure. Recall that we use the expression ‘left Hopf Γ-module’ for

the category of left Γ-modules in dg commutative algebras. In what follows, we

similarly call ‘left Hopf Σ-modules’ the objects of the category of left Σ-modules

in dg commutative algebras. To avoid clumsy notation, we will abbreviate the no-

tation of the morphism sets MordgComΣ(. . . ) of the category of left Hopf Σ-modules

dgComΣ by MorHΣ(. . . ) and we will similarly abbreviate the notation of the mor-

phism sets MordgComΓ(. . . ) of the category of left Hopf Γ-modules dgComΓ by

MorHΓ(. . . ). We will also use the short notation MorΣ, MorΓ, MorΩ for the mor-

phisms sets of the categories of left Σ-modules, of left Γ-modules and of left Ω-

modules in dg vector spaces.

We endow the category dgComΣ with a model structure by declaring the fibra-

tions and weak equivalences to be objectwise fibrations and weak equivalences,

respectively. We endow the category dgComΓ with the projective model struc-

ture. Note that, in particular, every object in dgComΓ is fibrant since every object

in dgComΣ is.

We will need the following statement.

Lemma 3.1. For any object M ∈ dgComΓ the simplicial left Hopf Γ-module

M∆• :=M⊗ Ω∗(∆•) is a simplicial frame forM.

Proof. This result follows from the classical properties of the Sullivan dg algebra

Ω∗(∆•), namely that we have H∗(Ω∗(∆k)) = Q, for any simplicial dimension k ≥ 0,

and that the morphism Ω∗(∆•) → Ω∗(∂∆•) is surjective degree-wise (see for in-

stance [24, Theorem II.7.1.5] for an account of the applications of the Sullivan dg

algebra for the definition of simplicial frames in the category of dg commutative

algebras). The first acyclicity claim implies that the morphismM =M∆0

→M∆k

is a quasi-isomorphism, while the latter claim implies that the matching mor-

phism M∆k

→ M∂∆k

is a fibration, because the kth matching object Mk(M
∆•)

of the simplicial left Hopf Γ-module M∆• is identified with the tensor product

M∂∆k

= M⊗ Ω∗(∂∆•) (see loc. cit. for the proof of an analogous identity in the

category of dg commutative algebras). �

3.2. Hairy graph complex.

Lemma 3.2. Suppose thatM is a left Hopf Γ-module. Then there is a bijection

MorHΓ(Graphso
n,M

o) � MorΣ(pIGo
n, crMo),
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where the superscript (−)o means that we consider objects equipped with a zero

differential, cr is the cross-effect functor (see Section 2.3) and pIGn is the Σ-

module of the primitive internally connected graphs as in Section 2.9.

Proof. Since Graphso
n is free as a left Hopf Σ-module, generated by the internally

connected graphs IGn, we have that

MorHΓ(Graphso
n,M

o) = MorΓ(IG
o
n,M

o). (14)

By Proposition 2.1 the cross effect functor induces an equivalence of categories

between left Γ-modules and left Ω-modules in any abelian category. We hence

find

MorΓ(IG
o
n,M

o) = MorΩ(cr IGo
n, crMo). (15)

Now cr IGo
n is a free left Ω-module, generated by the Σ-module pIGn, so that

MorΩ(cr IGo
n, crMo) = MorΣ(pIGo

n, crMo). (16)

�

We introduce the notation

HGCM,n := HomΣ(pIGo
n, crMo)

and call HGCM,n the space ofM-decorated hairy graphs. Here HomΣ(−,−) de-

notes the graded vector space of homogeneous homomorphisms of left Σ-modules.

Proposition 3.3. The space HGCM,n is equipped with an L∞-structure {ℓk}k≥1

(functorially in M), with differential δ = ℓ1 and higher L∞-operations ℓk,

k ≥ 2, together with a descending complete filtration HGCM,n = F
1HGCM,n ⊃

F 2HGCM,n ⊃ · · · that is compatible with the L∞-structure in the sense that

ℓk(F
p1HGCM,n, . . . ,F

pk HGCM,n) ⊂ F p1+···+pkHGCM,n. (17)

The Maurer–Cartan elements of HGCM,n are in one-to-one correspondence with

the morphisms of left Hopf Γ-modules Graphsn →M.

We recall the explicit definition of a Maurer–Cartan element in a complete

L∞-algebra later on (in Section 5.1), when we tackle examples of applications of

our result. For the moment, we only need a conceptual definition of L∞-structures

and of Maurer–Cartan elements in terms of zeros of vector fields on graded affine

schemes that we shall quickly recall, see for instance [28, Section 4]. Consider an
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L∞-algebra g with differential δ = ℓ1 and higher L∞-operations ℓk, k ≥ 2, that is

equipped with a complete descending filtration

g = F 1
g ⊃ F 2

g ⊃ · · ·

compatible with the L∞-operations as in (17). Then for any graded commutative

algebra R we may consider the completed tensor product R ⊗̂ g, which is again

a filtered complete L∞-algebra by R-linear extension of the operations. We may

then consider the functions

UR : (R ⊗̂ g)0 → (R ⊗̂ g)−1

x 7→
∑

k≥1

1

k!
ℓk(x, . . . , x).

(18)

We can recover the operations ℓk, k ≥ 1, by graded polarization from these func-

tions, for a varying R (see [28, Section 4]). We may conversely define a sequence

of operations ℓk, k ≥ 1, by providing the function UR, for each graded commu-

tative algebra R, as long as we can verify that this function has a power series

expansion as above, with terms ℓk being R-linear extensions of multilinear func-

tions defined over Q. We moreover get that the structure relations of L∞-algebras

for the operations ℓk are then equivalent to the relation

UR[ǫ](x + ǫUR(x)) = UR[ǫ](x), (19)

for the power series UR, for any graded commutative algebra R, any element

x ∈ (R ⊗̂ g)0, and where ǫ is a formal variable of degree +1. Let us note that

with, this approach, we define the differential of our L∞-algebra as the linear term

δ = ℓ1 of our power series UR, and the above relation (19) integrates the relation

of differential δ2 = 0 when we focus on the linear term. This representation of

the structure of L∞-algebras has the advantage of avoiding signs. Geometrically,

and as it is used in previous literature, one interprets g as a pro-algebraic graded

variety with functor of points R → (R ⊗̂ g)0. Then the power seriesUR encodes a

vector field Q on this graded variety of degree -1, and the L∞-relations (19) state

that Q2 = 0, i.e., that Q is a homological vector field. That said, we will never use

this latter algebro-geometric interpretation, and the reader may safely ignore it.

Proof of Proposition 3.3. We equip HGCM,n = HomΣ(pIGo
n, crMo) with the de-

scending complete filtration inherited from the filtration on pIGn by the number

of edges in graphs. That is, F pHGCM,n consists of those homomorphisms that
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vanish on all graphs that have fewer than p edges. Now consider a graded algebra

R and note that

R ⊗̂ HGCM,n � HomΣ/R(R ⊗ pIGo
n,R ⊗ crMo),

where we take R-linear homomorphisms, i.e., we extend our ground ring to R.

For this isomorphism we also use that there are only finitely many graphs with a

given number of edges.

Lemma 3.2 naturally extends to R-coefficients to give us an isomorphism

(R⊗̂HGCM,n)0 � MorΣ/R(R⊗pIGo
n,R⊗crMo)

Φ
−→ MorHΓ/R(R⊗Graphso

n,R⊗M
o).

Recall also that the inverse map is given by restriction to generators and projection

to cogenerators. Explicitly, the inverse sends a morphism F on the right-hand side

to π ◦ F ◦ ι, where ι : pIGn → Graphsn is the natural inclusion and π :M→ crM

is the projection, hiding R-linear extension from the notation.

We then define the functionUR : (R ⊗̂ HGCM,n)0 → (R ⊗̂ HGCM,n)−1 to be

UR(x) := π ◦ (dM ◦ Φ(x) −Φ(x) ◦ dGraphsn
) ◦ ι. (20)

For this proof we shall also abbreviate the commutator with the differentials ap-

pearing in this formula to

[d, (−)] := dM ◦ (−) − (−) ◦ dGraphsn
.

Let us first verify the L∞-relations in the form (19). To this end we first note that

for any morphism F ∈ MorHΓ/R(R ⊗ Graphso
n,R ⊗M

o) the combination

F + ǫ[d, F] : R[ǫ] ⊗ Graphso
n → R[ǫ] ⊗Mo

is a morphism of Hopf Γ-modules over R[ǫ], where ǫ is again a formal variable of

degree +1. Note also that for any morphism F̃ : R[ǫ]⊗Graphso
n → R[ǫ]⊗Mo of

Hopf Γ-modules we have

Φ(π ◦ F̃ ◦ ι) = F̃

and hence

UR[ǫ](π ◦ F̃ ◦ ι) = π ◦ [d, F̃] ◦ ι.

We use this to verify (19) as follows:

UR[ǫ](x + ǫUR(x)) = UR[ǫ](π ◦Φ(x) ◦ ι + ǫπ ◦ [d,Φ(x)] ◦ ι)

= UR[ǫ] (π ◦ (Φ(x) + ǫ[d,Φ(x)]) ◦ ι)

= π ◦

[d,Φ(x)] + [d, ǫ[d,Φ(x)]]︸           ︷︷           ︸
=0

 ◦ ι = U
R[ǫ](x).
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For the final simplification we used that the differentials square to zero.

Furthermore, note that UR(x) is obtained by composing copies of x with R-

linear extensions of the structure maps (product, Γ structure and differential) of

M and Graphsn. Hence it is clear thatUR(x) is indeed of the form (18), obtained

using the R-linear extensions of k-linear maps ℓk on HGCM,n, and hence we obtain

indeed an L∞-structure on HGCM,n. Furthermore, all structure maps used in the

definition of ℓk either leave the number of edges of graphs in Graphsn constant,

or decrease the number of edges. Hence the compatibility (17) follows.

Finally, by very definition the Maurer-Cartan elements in R ⊗̂ HGCM,n are

those satisfying UR(x) = 0, and hence precisely those elements that correspond

under the isomorphism Φ to left Hopf Γ-module maps R ⊗Graphsn → R ⊗M.

�

As a corollary we find the following result.

Proposition 3.4. The left Hopf Γ-module Graphsn (see Section 2.9) is cofibrant

in the projective model structure.

Proof. Recall that Comc denotes the dual cooperad of the operad of commutative

algebras in vector spaces (see Section 2.10). This cooperad Comc is identified

with the initial object of the category of left Hopf Γ-modules. Let the following

lifting problem be given.

Comc A

Graphsn B

∼ .

By the preceding proposition this lifting problem is equivalent to the problem of

lifting some Maurer–Cartan element m ∈ HGCB,n to a Maurer–Cartan element

m′ ∈ HGCA,n along the morphism of L∞-algebras

HGCA,n → HGCB,n.

However, this morphism is compatible with the descending complete filtrations

on both sides, and the associated graded morphism is a surjection and a quasi-

isomorphism. Hence the lifting is unobstructed. (The obstructions lie in the

homology of the kernels of the surjective quasi-isomorphisms grpHGCA,n
∼
−→

grpHGCB,n.) �
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3.3. Explicit combinatorial formulas for the L∞-structure on the hairy graph

complex. The definition of the L∞-structure on HGCM,n in the proof of Proposi-

tion 3.3 is concise and in particular takes care of all prefactors and signs. However,

it is not very explicit. In this section we work out the explicit combinatorial form

of the operations ℓk, modulo signs and prefactors, in the special case M = R⊗•,

where R is an augmented dg commutative algebra. The left Hopf Γ-module struc-

ture of this objectM = R⊗• is determined by the commutative algebra structure of

R and we have crM = R̄⊗•. For thisM we denote the graph complex alternatively

by

HGCR̄,n := HGCM,n.

It will be advantageous to identify

HGCR̄,n = HomΣ(pIGn, R̄
•) �
∏

r≥1

pIGn(r)∗ ⊗̂Σr
R̄⊗r =: pIG∗n ⊗̂Σ R̄•,

where we complete the tensor product with respect to the filtration by number of

edges. We shall think of elements of the dual space pIG∗n of pIGn also as graphs.

We can hence depict elements of HGCR̄,n as series of graphs with external legs

which are decorated by elements of R̄.

a1 a2

a3

, a1, a2, a3 ∈ R̄.

Using this picture, let us describe combinatorially the L∞-structure on the

graph complex HGCR̄,n, by tracing the construction of the proof of Proposition 3.3.

Concretely, let us compute the L∞-operation

ℓk(Γ1, . . . , Γk),

for Γ1, . . . , Γk ∈ HGCR̄,n graphs with R̄-decorated legs. To this end we have to

compute the ǫ1 · · · ǫk coefficient in the series (see (20))

UQ[ǫ1,...,ǫk](ǫ1Γ1 + · · · + ǫkΓk︸              ︷︷              ︸
=:Γ

),

where ǫ j is a variable of degree negative to the degree of Γ j. Let us also write R :=

Q[ǫ1, . . . , ǫn]. Recall also that the linear term of our seriesUR, which corresponds
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to the case k = 1 of this computation, collects the terms of the differential of our

L∞-algebra.

We first have to extend our Γ to a map

Γ′ ∈ MorΩ/R(R ⊗ cr IGo
n,R ⊗ crMo) ⊂

MorΣ/R(R ⊗ cr IGo
n,R ⊗ crMo) � R ⊗̂ cr IG∗n⊗̂ΣR̄

•

according to (16). Note that elements of the right-hand side can again be con-

sidered as graphs, but now with multiple external vertices that are R̄-decorated,

and that can have valency ≥ 1. Tracing the construction one can then see that

the desired element Γ′ is combinatorially obtained by summing over all ways of

fusing arbitrary subsets of hairs to external vertices, multiplying the decorations,

as indicated in the following picture.

Γ j

a1 a2
. . . ak

7→
∑
±

Γ j

a1a2
. . . . . .

Next we have to take Γ′ and extend it further to a map

Γ′′ ∈ MorΓ/R(R ⊗ IGo
n,R ⊗M

o) � R ⊗̂ IG∗n⊗̂ΣR
•

according to (15). Graphically, this just amounts to summing over all ways of

inserting zero-valent external vertices in our graphs, decorated by the unit element

1 ∈ R.

Γ j

a1a2
. . . . . .

7→
∑ Γ j

1a1a2
. . .

1
. . .

1 1

Finally we have to work out the identification (14) to obtain an element

F ∈ MorHΓ/R(R ⊗Graphso
n,R ⊗M

o) ⊂

MorΣ(R ⊗Graphso
n,R ⊗M

o) ⊂ R ⊗̂Graphs∗n⊗̂R⊗•. (21)

Given an element γ = γ1 · · · γr ∈ Graphsn that decomposes into r internally con-

nected components, our desired map F acts as F(γ) = Γ′′(γ1) · · ·Γ′′(γr). Graphi-

cally this means that F, as an element of the very right-hand side of (21), is ob-

tained by fusing several copies of Γ′′ at the external vertices, thus taking formally
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an ”exponential” of Γ′′. Here is a schematic picture of the graphs produced.

∑ Γ1 Γ2 Γ3

1a1a2
. . .

1
. . . a 1 a a

To the element F we then need to apply the differential, given by the differentials

on source and target. Afterwards we restrict the map again to the generators pIG

and project to R̄⊗•. Note in particular that the restriction to pIG is the same as

the projection Graphs∗n → pIG∗ that discards all graphs that are not internally

connected or have external vertices of valency , 1. Furthermore, recall that we

only need to keep the coefficient of ǫ1 · · · ǫk, or equivalently only those terms in

which each Γ j appears exactly once. Terms in F that contribute non-trivially to

the end result ℓk(Γ1, . . . , Γk) thus can easily be seen to have either of two forms.

a. All external vertices have valence exactly one, except for one, which has

higher valence. Then the differential on Graphs∗n splits off all edges on the

unique vertex to make it into a valence one vertex as well.

Γ1 Γ2

a a aaa a a

7→
Γ1 Γ2

a a aaa a a

The pieces thus produced contribute to both the differential and higher L∞-

operations as depicted in (8), (9).

b. The graph is internally connected (in particular k = 1) and all vertices are

already of valence one. Then there are contributing pieces of the differential

on Graphs∗n splitting internal vertices, producing (7), and also another piece

by the differential on R̄.

In the case of the computation of ℓ1, we retrieve the terms of the differential of

HGCR̄,n depicted in the introduction of the paper. Namely, in (a), we retrieve the

term δ join of this differential δ = dR + δsplit + δ join, whereas (b) gives the term δsplit

and the term dR. For the higher operations ℓk, for k ≥ 2, we retrieve the picture

given in the introduction (9) in the particular case k = 2. Indeed, from (a), we

obtain that the operations ℓk, k ≥ 2, take k graphs and glue a non-empty subset of

hairs of each graph to a newly created vertex with a hair, which we decorate by

the product of the decorations of the fused hairs.

In the sequel we use the following notation.
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Notation 3.5. For a non-unital dg commutative algebra A, we define

HGCA,n := HGCĀ∗,n,

where A∗ = Q1 ⊕ A is obtained by adjoining a unit to A, so that A = Ā∗.

3.4. Hairy graph complex for homotopy commutative algebras. The L∞-

algebra HGCR̄,n of the previous subsection depends on the choice of a model R

for M∗, which can be relatively big in general. In this section, we improve the

situation by extending the construction HGCR̄,n to homotopy commutative alge-

bras. This allows us to take for R the cohomology H∗(M∗) of the space M∗, which

we equip with a homotopy commutative algebra structure that we can transfer

from the Sullivan algebra Ω∗(M∗) using perturbation techniques. We refer to

Kadeishvili’s memoir [42] for the application of this idea in rational homotopy

theory (see also [43] for a survey).

We actually modify Kadeishvili’s definition of this model of the rational ho-

motopy of a space on the cohomology. Namely, Kadeishvili uses C∞-algebras

(called commutative A∞-algebras in the first cited reference), which are identified

with algebras over the operadic cobar construction of the (operadic suspension of

the) Lie cooperad ΩLiec (see [30], see also [46, Section 13.1] for an account of

this correspondence). But the transfer argument used by Kadeishvili to provide

the cohomology H̄∗(M∗) with a homotopy commutative algebra structure can also

be applied to the cobar constructionΩLc
∞, where, instead of the Lie cooperad Liec,

we consider the cooperad of L∞-coalgebras Lc
∞.

In what follows, we use the notation Lie for the operadic desuspension of the

usual Lie operad in the category of graded vector spaces, so that the structure

of an algebra over this operad Lie is governed by a Lie bracket of degree 1, as

we assume in our grading conventions (see Section 2.1). Recall also that the op-

erad that governs the category of L∞-algebras is identified with the operadic cobar

construction L∞ = ΩComc
+ of the cooperad of cocommutative non-counital coal-

gebras Comc
+ (when we adopt our grading conventions for L∞-algebra structures

again).

This operad L∞ = ΩComc
+ defines a resolution of the Lie operad Lie, with

a quasi-isomorphism L∞ = ΩComc
+

∼
−→ Lie deduced from the Koszul duality

of operads (see again [30] or [46, Section 13.2]). The cooperads Liec and Lc
∞,

which we considered in the previous paragraph, are dual to the operads Lie and

L∞ = ΩComc
+ in the category of (differential) graded vector spaces. We also have

Lc
∞ = BCom+, where we take the operadic bar construction B of the operad of

non-unital commutative algebras Com+. We can dualize the quasi-isomorphism
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L∞
∼
−→ Lie to get a quasi-isomorphism of dg cooperads Liec ∼

−→ Lc
∞. This quasi-

isomorphism induces a quasi-isomorphism of dg operads when we pass to the

cobar construction ΩLiec ∼
−→ ΩLc

∞ and we also have a quasi-isomorphism of dg

operads ΩLc
∞

∼
−→ Com+ by the operadic bar duality (see loc. cit.). Hence, both dg

operads ΩLiec and ΩLc
∞ are identified with resolutions of the operad of non-unital

commutative algebras Com+.

We consider the category of algebras over the cobar construction of the coop-

erad of L∞-coalgebrasΩLc
∞ as a model for the category of homotopy commutative

algebras rather than the category of algebras over the dg operad C∞ = ΩLiec be-

cause we have an explicit formula for the L∞-structure of the hairy graph complex

in this context, whereas we only have a theoretical result asserting the existence

of such a structure in the case of algebras over the dg operad C∞ = ΩLiec. We just

give brief explanations on this theoretical result at the end of the section.

For the moment, we can assume that C is any dg cooperad among Liec and

Lc
∞. Briefly recall that the structure of an algebra A over the cobar construction of

a dg cooperad ΩC is equivalent to the structure defined by a twisting coderivation

DA on the cofree C-coalgebra C(A), where we call twisting coderivation a map

DA : C(A) → C(A), of (cohomological) degree 1, which is a coderivation with

respect to the operations of the C-coalgebra structure on C(A), which is trivial on

the dg vector space A ⊂ C(A), and which satisfies the relation δDA+DAδ+D2
A = 0

with respect to the natural differential δ induced by the internal differential of the

cooperad C and of the dg vector space A on the cofree C-coalgebra C(A). This

twisting coderivation can also be determined by a map ρA : C(A) → A, of degree

1, and which is also trivial on the dg vector space A ⊂ C(A). Furthermore, we can

express the equation of twisting coderivations δDA+DAδ+D2
A = 0 in terms of this

map (see [20] for a detailed account of this correspondence). (The assumption

that ρA vanishes on the dg vector space A ⊂ C(A) reflects our convention that we

integrate the unary operation of a homotopy commutative algebra structure in the

differential dA of the dg vector space that underlies our object A.)

The vector spaces Lc
∞(r) = BCom+(r) are spanned by rooted trees T with

r leaves indexed by 1, . . . , r. The degree of a tree T with p internal vertices is

given by −p (in cohomological conventions). The map ρA : C(A) → A, which

determines the structure of an ΩLc
∞-algebra on A, can therefore be defined by

giving a collection of maps

ρT
A : A⊗r → A,

associated to such trees T , and such that ρT
A(aσ(1), . . . , aσ(r)) = ρ

σT
A

(a1, . . . , ar) for

every permutation σ, where σT is defined by applying the permutation σ to the
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indices of the leaves of our tree. We just take ρ
|

A
= 0 for a trivial tree without

vertices T = |, because this operation ρ
|

A
represents the value of the map ρA :

C(A) → A on the summand A ⊂ C(A) (which is trivial under our conventions).

We assume that ρT
A

has degree 1 − p (for a tree with p vertices) and the relations

of an ΩLc
∞-algebra structure, equivalent to the equation of twisting coderivations

for the coderivation DA corresponding to ρA, are equivalent to the relations

dAρ
T
A + ±ρ

T
AdA +

∑

e

ρ
T/e

A
+
∑

T=S ′◦ie S ′′

ρS ′

A ◦ie ρ
S ′′

A = 0,

for the operations associated to the trees T , where dA denotes the internal dif-

ferential of the dg vector space A (which acts by derivation in the case of the

tensor product A⊗r), the first sum runs over edge contraction operations T 7→ T/e,

and the second sum runs over the operadic decompositions T = S ′ ◦ie S ′′ in

the category of trees. The sign ± corresponds to the permutation of the map

dA of degree 1 and of the operation ρT
A of degree 1 − p, and is determined

by the general conventions of differential graded algebra. Recall that the op-

eradic composite S ′ ◦ie S ′′ of trees S ′ and S ′′ is obtained by plugging the tree

S ′′ into the leave of the tree S ′ indexed by ie. In our sum, we actually con-

sider decompositions T = S ′ ◦ie S ′′ where we can perform a shuffle of the in-

dices of the “free” leaves of S ′ and S ′′ inside the tree T . The index ie is a

dummy variable, because we actually assume that our sum runs over isomor-

phism classes of such decompositions T = S ′ ◦ie S ′′. The operation ρS ′

A
◦ie ρ

S ′′

A

is given by ρS ′

A
◦ie ρ

S ′′

A
(a1, . . . , ar) = ±ρ

S ′

A
(ai1 , . . . , ρ

S ′′

A
(a j1 , . . . , a jℓ), . . . , aik), for all

a1, . . . , ar ∈ A, where (i1, . . . , îe, . . . , ik) and ( j1, . . . , jℓ) reflects the shuffle of the

indices of the “free” leaves of the trees S ′ and S ′′ inside T . (The sign ± cor-

responds to the permutation of variables involved in this formula and is again

determined by the general conventions of differential graded algebra.)

Every (non-unital) dg commutative algebra is an ΩLc
∞-algebra by restriction

of structure through the operad morphism ΩLc
∞ → Com+. The ΩLc

∞-algebra

structure of a dg commutative algebra can also be determined by the following

formula:

ρT
A(a1, . . . , ar) =


0, if T has more than 1 vertex,

a1 · · · ar, otherwise.

By general results of the homotopy theory of algebras over operads (for which we

refer to [40]), the category of ΩLc
∞-algebras is endowed with a natural model

structure (like the category of non-unital dg commutative algebras), which is
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transferred from the category of dg vector spaces. Besides, we obtain that the

functors of extension of structure and of restriction of structure associated to the

quasi-isomorphism ΩLc
∞ → Com+ define a Quillen equivalence. In particular,

every ΩLc
∞-algebra is quasi-isomorphic to non-unital dg commutative algebra.

We now describe our definition of an L∞-algebra structure on HGCA,n when

A is an ΩLc
∞-algebra. We modify the definition of the component δ join of the

differential δ = dA + δsplit + δ join by taking:

δ join

Γ

a1 a2 . . . ak

=
∑

T

∑

S⊂hairs
|S |≥2

±
Γ

a1. . . T

ρT
A
({ai}i∈S )

.

The variable T runs over the elements of a tree basis of Lc
∞ = BCom+. The

variable S runs over the subsets of hairs of the graph Γ. The hairs of S are plugged

in the leaves of the tree T and the root of that tree becomes a new hair decorated

by ρT
A

applied to the respective decorations of the hairs in S . In this process, we

just discard the tree T = | (and we therefore assume that our hair set S has at least

two elements) since we have ρ
|

A
= 0.

For graphs Γ1, . . . , Γr ∈ HGCA,n with k1, . . . , kr hairs, decorated by elements

ai
1
, . . . , ai

k1
∈ A, i = 1, . . . , r, we define the higher r-ary L∞-operations ℓr, r ≥ 2,

by the following similar formulas:

ℓr(Γ1, . . . , Γr) =
∑

T

∑

S

±
Γ1 Γ2 · · · Γr

T

ρT
A({ai}i∈S )

.

The variable T runs again over the elements of a tree basis of Lc
∞ = BCom+. The

variable S runs over the subsets of hairs of the graphs Γ1, . . . , Γr such that each

graph contributes by at least one hair.

The validity of this construction is easy to check from our explicit description

of the structure of an ΩLc
∞-algebra. We also immediately see that this construc-

tion is functorial with respect to morphisms of ΩLc
∞-algebras and that a quasi-

isomorphism of ΩLc
∞-algebras induces a quasi-isomorphism on the hairy graph
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complex by a standard spectral sequence argument. Hence our construction pro-

vides a coherent generalization of the decorated graph complex of commutative

algebras. Note simply that we deal with non-unital algebras when we consider

the category of ΩLc
∞-algebras, which are therefore equivalent to the augmenta-

tion ideal R̄ of augmented unital dg commutative algebras R rather than to the

(augmented) unital dg commutative algebras that we considered so far.

In the context of homotopy commutative algebras, we also have a class of ho-

motopy morphisms (also called ∞-morphisms in the literature), which are equiv-

alent to morphisms of the homotopy category. In general, a homotopy morphism

of algebras over the cobar constructionΩC of a dg cooperad C, can be defined by

giving a morphism of C-coalgebras F : (C(A),DA) → (C(B),DB), where we con-

sider the twisted cofree C-coalgebras (C(A),DA) and (C(B),DB) associated to the

ΩC-algebra structures on A and B (see [20] for an account of the correspondence

between this class of homotopy morphisms and the morphisms of the homotopy

category of ΩC-algebras). Such a morphism can also be determined by a map

ψ : C(A) → B, of degree 0, and which satisfies coherence constraints which

are equivalent to the preservation of differentials when we pass to the morphism

of C-coalgebras F : (C(A),DA) → (C(B),DB) (see again [20] for an account

of this correspondence). Note that we do not take the convention that the map

ψ : C(A) → B vanishes on the summand A ⊂ C(A) in our definition of homo-

topy morphisms. This linear component of our map can actually be identified

with a morphism of dg vector spaces f : A → B which underlies our homotopy

morphism of ΩC-algebras.

In the case C = Lc
∞, the map ψ : C(A) → B, which determines a homotopy

morphism of ΩLc
∞-algebras, can be defined by giving a collection of maps

ψT : A⊗r → B,

associated to the trees T , and such that we again have the equivariance relation

ψT (aσ(1), . . . , aσ(r)) = ψσT (a1, . . . , ar) for every permutation σ. Note that the linear

part of ψ, thus the morphism of dg vector spaces f : A → B underlying ψ, is

encoded by the map ψ| : A→ B associated to the trivial tree T = |. We assume that

ψT has degree −p (for a tree with p internal vertices) and the coherence constraints

of homotopy morphisms is equivalent to the relations

dBψT − ±ψT dA +
∑

T=S ′(S ′′
1
,...,S ′′m)

ρS ′

B (ψS ′′
1
, . . . , ψS ′′m) =

∑

e

ψT/e +
∑

T=S ′◦ie S ′′

ψS ′ ◦ie ρ
S ′′

A
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where dA (respectively, dB) denotes the internal differential of the dg vector space

A (respectively, B), and ρS
A

(respectively, ρS
B
) denotes the operations that de-

termine the ΩLc
∞-algebra structure of A (respectively, B). The first sum runs

over the operadic tree decompositions T = S ′(S ′′
1
, . . . , S ′′m), where S ′ is a tree

with m leaves in which we plug the trees S ′′1 , . . . , S
′′
m. We also assume that we

can perform a shuffle of the indices of the leaves of the trees S ′′
1
, . . . , S ′′m in-

side T . The map ρS ′

B
(ψS ′′

1
, . . . , ψS ′′m) is given by ρS ′

B
(ψS ′′

1
, . . . , ψS ′′m)(a1, . . . , ar) =

±ρS ′

B
(ψS ′′

1
(ai1

1
, . . . , ai1

k1

), . . . , ψS ′′
1
(aim

1
, . . . , aim

km
)), for all a1, . . . , ar ∈ A, where

(i1
1
, . . . , i1

k1
, . . . , im

1
, . . . , im

km
) reflects again the shuffle of the indices of the leaves

of the trees S ′′
1
, . . . , S ′′m inside T .

To any such homotopy morphism, we associate the L∞-morphism

Ψ : HGCA,n → HGCB,n

whose r-ary component acts on graphs schematically as follows

Ψr(Γ1, . . . , Γr) =
∑
±
Γ1 Γ2 · · · Γr

Tk· · ·T1

ψT1
(. . . ) ψTk

(. . . )

Here we sum over all ways of connecting the hairs to a forest. Each hair of every

graph Γi must go into some tree T j (which can be the trivial tree |). The new hair

at the root of the tree T j in the forest is decorated by ψT j
applied to the decorations

of the hairs the tree connects to. Note that each map Ψr has degree zero.

In the case of the cohomology H∗(X) of a space X, the ΩLc
∞-algebra that

makes H∗(X) a model of the rational homotopy of the space X is obtained by

transfer, after picking a quasi-isomorphism of dg vector spaces H∗(X)
∼
−→ Ω∗(X)

where we regard H∗(X) as a dg vector space equipped with a trivial differential.

The transferred structure can be defined by applying perturbation methods to the

coalgebras (as in [42] and in [15]) or by model category arguments (see [6] and

[22]). In all cases, the obtained object H∗(X) is connected to Ω∗(X) by a zigzag

of quasi-isomorphisms of ΩLc
∞-algebras, and therefore, we can take this model in

our applications to graph complexes. Note simply that we take the augmentation

ideal of the cohomology algebra for the pointed space X = M∗ rather than the

cohomology algebra itself in these applications.
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We mentioned at the beginning of this subsection that we can also lift the

definition of the decorated hairy graph complex to the classical category of C∞-

algebras (at least theoretically). We can obtain such a result by observing that we

can define a morphism ΩLc
∞ → ΩLiec by lifting the quasi-isomorphism ΩLiec ∼−→

Com+, using that ΩLc
∞ forms a cofibrant object in the category of dg operads.

Indeed, this observation implies that every C∞-algebra A inherits an ΩLc
∞-algebra

structure by restriction of structure, and as a result, we can use the construction of

this paragraph to associate a decorated hairy graph complex HGCA,n to A.

We finally note that to compute the set of equivalence classes of MC elements,

it is enough to know a C∞ structure of A. In other words, one does not need to

produce its lift to an ΩLc
∞ structure, see Remark 5.4.

4. Proof of the main Theorems

4.1. Proof of Theorem 1.1. Our goal is to compute the homotopy type of the

mapping space

IBimodh
Fm

(IF M ,F
Q

n ) = IBimodh
Fm

(IF M , (Res
F

Q
n

Fm
F Q

n ))

Here we consider the category of infinitesimal bimodules as equipped with the

Reedy model structure. (Recall that the homotopy type of the derived mapping

space between two objects is the same for the projective and Reedy model struc-

tures.) Let us transform the mapping space as follows, using diagram (13)

IBimodh
Fm

(IF M,Res
F

Q
n

Fm
F Q

n ) ≃ IBimodh
Fm

(IF M,Res
R
Q
n

Fm
RQ

n ) ≃

IBimodh
Fm

(IF M ,Res
Hn

Fm
Hn) ≃ IBimodh

Fm
(IF M ,ResCom

Fm
Res

Hn

Com
Hn).

Here we used that weak equivalences of infinitesimal bimodules induce weak

equivalences on the derived mapping space. For the final equality we used that the

lower composition in (13) factorizes through the commutative operad Com = ∗.

We now use the adjunction between induction and restriction (Proposition 2.4)

to obtain the following extra simplification:

IBimodh
Fm

(IF M ,ResCom
Fm

ResHn

Com
Hn) � IBimodh

Com(LIndCom
Fm
IF M ,ResHn

Com
Hn).

We finally use Proposition 2.5 to find that

IBimodh
Fm

(IF M , (ResFn

Fm
Fn)Q) ≃ IBimodh

Com(M×•
∗ ,ResHn

Com
Hn).
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Now, infinitesimal Com-bimodules are the same as topological right Γ-modules.

We can hence write the result of this relation as

IBimodh
Com(M×•

∗ ,ResHn

Com
Hn) = TopΓ

op,h(M×•
∗ ,Hn).

Recall that the operad Hn is given by Hn = LG(H∗(Fn)), where we consider

the derived functor of the Sullivan realization functor on dg commutative algebras

G, and that this identity Hn = LG(H∗(Fn)) also holds in the category of right Γ-

modules. From the observations of Section 2.5, we can simplify our result further

to

TopΓ
op,h(M×•

∗ , LG(H∗(Fn))) ≃ dgComΓ,h(H∗(Fn),Ω∗(M×•
∗ )) ≃

dgComΓ,h(H∗(Fn),R⊗•),

where in the last relation we pick an (augmented) Sullivan model R of the

space M∗.

To compute the derived mapping space we use the graph complex model

Graphsn ≃ H∗(Fn)

from Section 2.9. By Proposition 3.4 we have that Graphsn is cofibrant as a left

Hopf Γ-module (with respect to the projective model structure). Furthermore R⊗•

is fibrant since so is any object in the projective model structure. We can hence

write

dgComΓ,h(H∗(Fn),R⊗•) ≃ dgComΓ(Graphsn,R
⊗•)

to compute the mapping space we use the simplicial frame from Lemma 3.1. By

combining this expression with the result of Proposition 3.3, we obtain:

dgComΓ(Graphsn,R
⊗•) = MorHΓ(Graphsn,R

⊗• ⊗ Ω∗(∆•))

= MC(Def(Graphsn,R
⊗• ⊗ Ω∗(∆•)))

= MC(Def(Graphsn,R
⊗•)⊗̂Ω∗(∆•)) = MC•(HGCR̄,n).

4.2. Proof of Theorem 1.2. Our next goal is to prove that the mapping spaces

IBimodh
Fm

(IF M ,Fn) are nilpotent under the assumptions of Theorem 1.2, that

the rationalization of these mapping spaces are equivalent to the mapping spaces

IBimodh
Fm

(IF M ,F
Q

n ) with values in the rationalization of the infinitesimal bimod-

ule Fn, and that the rationalization map is finite-to-one on homotopy classes.

We rely on Mienné’s theory of Postnikov decompositions of operads and of

infinitesimal bimodules over operads, as we briefly explained in the introduction
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of the paper. We refer to [47] for a detailed account of this theory in the con-

text of operads empty in arity zero (the category of non-unitary operads in the

terminology of loc. cit.). The extension of the theory to reduced operads (called

unitary operads in loc. cit.) and to infinitesimal bimodules is the subject of the

memoir [48] in preparation. The theory is very similar in this case, using concepts

introduced in [24] for the study of the homotopy of reduced operads and in [18]

for the study of the homotopy of infinitesimal bimodules. Notably, we use that

every reduced operad P has a decomposition P = lims coskΛs P such that

MorOp(−, cosk≤sP) = MorOp≤s
(−,P),

where Op≤s denotes the category of s-truncated (reduced) operads, the category

of operads that are defined up to arity ≤ s, and we consider the image of the object

P under the obvious forgetful functor (−)≤s : Op→ Op≤s.

The coskeletal decompositionP = lims coskΛs Pwas introduced in [24, Section

II.8.4] in the context of reduced operads and was used in [18] in the context of

infinitesimal bimodules. In both settings coskΛs P is determined, as a symmetric

sequence, by the Λ-structure of P:

coskΛs P(n) = lim
u∈MorΛ(r,n)

r≤s

P(r),

In what follows, we mainly use that we have coskΛs P(s) = P(s) and that

coskΛs−1P(s) is identified with M(P)(s), the sth matching object of the reduced

operad P.

If P is Reedy fibrant, then the morphisms coskΛs P → coskΛs−1P that define

this coskeletal decomposition of the operad are Reedy fibrations, and in particu-

lar, form a fibration of simplicial sets coskΛs P(r) → coskΛs−1P(r) in each arity r.

The Postnikov decompositions that we consider are decompositions of these mor-

phisms into towers of morphisms:

coskΛs P = lim
t

Pt(coskΛs P/coskΛs−1P)→ · · ·

· · · → Pt(coskΛs P/coskΛs−1P)→ Pt−1(coskΛs P/coskΛs−1P)→ · · ·

· · · → P0(coskΛs P/coskΛs−1P) = coskΛs−1P,

which we obtain by applying the classical construction of Postnikov decomposi-

tions to the morphisms coskΛs P(r) → coskΛs−1P(r) in the category of simplicial

sets (we just check that the operad structure passes to the Postnikov sections).
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The morphisms Pt(coskΛs P/coskΛs−1P) → Pt−1(coskΛs P/coskΛs−1P) are still Reedy

fibrations.

In the simplifying case where P consists of simply connected spaces, the main

result of Mienné’s theory asserts that such morphisms fit in Postnikov extension

diagrams of the following form in the category of s-truncated operads:

Pt(coskΛs P/coskΛs−1P)≤s L(NπtP(s), t + 1)

Pt−1(coskΛs P/coskΛs−1P)≤s K(NπtP(s), t + 1)

where NπtP(s) is the homotopy group πt of the fiber of the matching map P(s)→

MP(s) regarded as an additive operad concentrated in arity s, we consider the

associated Eilenberg–MacLane space K(NπtP(s), t + 1) and the corresponding

path space fibration sequence K(NπtP(s), t)→ L(NπtP(s), t+1)→ K(NπtP(s), t+

1) with L(NπtP(s), t + 1) = PK(NπtP(s), t + 1) ∼ ∗.

We have an analogous statement in the context of infinitesimal bimodules. In

the case of an operad P (which we regard as an infinitesimal bimodule over itself),

we can also use the Postnikov decompositions and the above Postnikov extension

diagrams in the category of operads to get the Postnikov decomposition of our

object P in the category of infinitesimal bimodules.

We use these decompositions to study mapping spaces of infinitesimal bimod-

ules IBimodh
R(M,P), whereR is any operad endowed with an operad mapR → P.

We get, at the mapping space level, the tower decomposition

IBimodh
R(M,P) = lim

s
IBimodh

R,≤s(M,P)→ · · ·

· · · → IBimodh
R,≤s(M,P)

(∗)
−−→ IBimodh

R,≤s−1(M,P)→ · · ·

· · · → IBimodh
R,≤0(M,P) = ∗,

which we can associate to the coskeletal decomposition of the target object since

IBimodh
R,≤s(M,P) = IBimodh

R(M, coskΛs P), and we decompose the morphisms of

this tower further, as

IBimodh
R,≤s(M,P) = lim

t
IBimodh

R,≤s(M, Pt(coskΛs P/coskΛs−1P))→ · · · →

IBimodh
R,≤s(M, Pt(coskΛs P/coskΛs−1P))

(∗∗)
−−→ IBimodh

R,≤s(M, Pt−1(coskΛs P/coskΛs−1P))

→ · · · → IBimodh
R,≤s(M, P0(coskΛs P/coskΛs−1P)) = IBimodh

R,≤s−1(M,P),
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by using the Postnikov decomposition on the target. We get that the morphisms

(**), in the latter tower of mapping spaces, are identified with the principal fibra-

tions of simplicial sets with the mapping spaces

G〈s, t〉 = IBimodh
R,≤s(M,K(NπtP(s), t))

as fibers. We have in general:

πiIBimodh
R,≤s(M,K(π(s), t)) = H̃t−i

Σs
(LIndecM(s), π(s)),

for any Σs-module π(s) (regarded as an infinitesimal bimodule concentrated in

arity s), where LIndec denotes the (derived) functor of indecomposables from

the category of infinitesimal bimodules to the category of right Λ-modules in

pointed spaces, and we consider the reduced Σs-equivariant cohomology of the

based Σs-space LIndecM(s) with coefficients in π(s). The indecomposable quo-

tient IndecM of an infinitesimal bimoduleM is defined by moding out the spaces

M(r) by the Σr-subspaces spanned by the image of the composition operations

◦i : R(k) → M(r − k + 1) → M(r) and ◦i : M(r − k + 1) → R(k) → M(r)

such that k ≥ 2 (when we assume that the operad R is reduced). This object

IndecM naturally inherits the structure of a right Λ-module in pointed simplicial

sets. Note that, in the above formula, we consider the reduced homology relative

to the natural base point of the indecomposable quotient.

This refined tower decomposition of mapping spaces of infinitesimal bimod-

ules is used to establish the claims of the following statement. We proceed by

induction, by using the expression of the fibers of our decomposition, and we use

an analysis of the connectivity of these fibers to pass to the limit of the tower

whenever necessary.

Theorem 4.1 ([48]). Let P be a Reedy fibrant object in the category of infinitesi-

mal bimodules over an operad R. For simplicity, we are still going to assume that

P consists of simply connected spaces. LetM be any infinitesimal R-bimodule.

a. If we have a finite dimension bound m(s), in each arity s ≥ 1, such that

Hi
Σs

(LIndecM(s), π(s)) = 0 for i ≤ m(s),

for any choice of Σs-module of coefficients π(s), then the mapping spaces

IBimodh
R,≤s(M,P) are nilpotent, for all s ≥ 1, and satisfy the relation

IBimodh
R,≤s(M,P)

Q

φ ∼ IBimodh
R,≤s(M,PQ)φ̂,

for any choice of base point φ ∈ IBimodh
R,≤s(M,P), where φ̂ denotes the

composite of φ :M≤s → P≤s with the rationalization map P≤s → P
Q
≤s.
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b. If we assume further that the matching map P(s) → MP(s) is n(s)-

connected for a connectivity bound n(s) such that n(s)−m(s)→ ∞, then the

connectivity of the maps IBimodh
R,≤s(M,P) → IBimodh

R,≤s−1(M,P), which

connect the truncated mapping spaces of the previous assertion, tends to

infinity when s→ ∞, and we can also pass to the limit s→ ∞ in our state-

ment. Thus, we get that the “total” mapping space IBimodh
R(M,P) is also

nilpotent in this case, and we still have the relation

IBimodh
R(M,P)

Q

φ ∼ IBimodh
R(M,PQ)φ̂

at this level, for any choice of base point φ ∈ IBimodh
R(M,P), where we

again denote by φ̂ the composite of this morphism φ : M → P with the

rationalization map P → PQ.

c. In the previous assertions, if we assume in addition that the homotopy

groups NπtP(s) associated to the infinitesimal bimodule P are finitely gen-

erated in each degree t and in each arity s, and that the cohomology groups

Hi
Σs

(LIndecM(s), π(s)) are finitely generated abelian groups in each de-

gree i, for any choice of finitely generated Σs-module of coefficients π(s),

then the rationalization map P → PQ also induces a finite-to-one map on

the connected components of our mapping spaces.

We checked in [25, Lemma 10.7] that the matching map P(s) → MP(s) is

(n − 2)(s − 1)-connected in the case of the operad P = Fn. On the other hand, one

has that IF M is cofibrant and therefore LIndec(IF M) = Indec(IF M). In each

arity, IF M(s) is a manifold with corners and

Indec(IF M)(s) = IF M(s)/∂IF M(s) = M∧s
∗ /∆

sM∗.

The right-most space is the quotient of the s-th smash power of M∗ by the fat diag-

onal ∆sM∗. The space M∧s
∗ /∆

sM∗ is a Σs-cofibrant pointed space of dimension ms.

In case the codimension n − m ≥ 3, we can take m(s) = ms and one has that

n(s) − m(s) = (n − 2)(s − 1) − ms→ ∞.

In case the codimension n −m = 2, one has that M , Rm and therefore the handle

dimension of M∗ is ≤ m − 1. The assignment M∗ 7→ M∧s
∗ /∆

sM∗ is homotopy

invariant and would give an equivalent pointed Σs-space if M∗ is replaced by a

homotopy equivalent pointed CW-complex X∗ of dimension ≤ m − 1. The dimen-

sion of X∧s
∗ /∆

sX∗ is m(s) = (m − 1)s and therefore the convergency requirement
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n(s) − m(s) → ∞ is again satisfied. Finiteness property follows from the fact that

any homotopy group of the configuration space C(s,Rn) ≃ Fn(s), n ≥ 3, is finitely

generated (see again [25, Lemma 10.7]11) and that M (and therefore M∧s
∗ /∆

sM∗ as

well) is homotopy equivalent to a finite CW complex.

4.3. Range improvement. In this subsection we explain why Theorem 1.1 and

Corollary 1.3.a-c hold for more general manifolds Mm as described in Section 1.3.

One has M ⊂ M∗ = M ∪ {∗} and the immersion i : M∗ # S m = Rm ∪ {∞} satisfies

i−1(∞) = ∗. The corresponding infinitesimal Fm-bimodule IF M is defined as

follows. Let iO(M) denote the category of open subsets U ⊂ M, such that U ∪ {∗}

is open in M∗ and i|U is injective. Define

IF M := colim
U∈iO(M)

IF i(U)

as a colimit in the category of infinitesimal Fm-bimodules. Note that as a space

IF M(k) is the Fulton–MacPherson–Axelrod–Singer local compactification [53]

of the configuration space of k + 1 distinct labeled points in M∗, with the first

being fixed to be ∗.

The equivalence (5) is proved in exactly the same way as [61, Theorem 2.1

or Theorem 6.3]. Propositions 2.2, 2.5 and Theorems 1.1, 1.2 are also proved by

exactly the same arguments.

5. Examples and applications

In this section we provide some applications. In general the cohomology of

the graph complex HGCA,n is not known. However, one can perform low degree

computations and make certain qualitative statements.

5.1. Maurer–Cartan elements. The goal of this section is to understand the type

of hairy diagrams that appear in degree 0 and that can contribute to Maurer–Cartan

(MC) elements. Recall that a MC element of a complete L∞-algebra g is, under our

grading convention, a degree zero element m ∈ g that satisfies the MC equation:

dm +
1

2
[m,m] +

1

3!
[m,m,m] + . . . =

∞∑

i=1

1

i!
ℓi(m, . . . ,m︸    ︷︷    ︸

i

) = 0.

11An expression of π∗Fn(s) in terms of the homotopy groups of spheres is given in the proof of

this reference.
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The m-twisted L∞ algebra gm has the differential

dm = d + [m,−] +
1

2
[m,m,−] + . . . =

∞∑

i=0

1

i!
ℓi+1(m, . . . ,m︸    ︷︷    ︸

i

,−)

and (higher) brackets

ℓm
k (−, . . . ,−︸   ︷︷   ︸

k

) =

∞∑

i=0

1

i!
ℓi+k(m, . . . ,m︸    ︷︷    ︸

i

,−, . . . ,−︸   ︷︷   ︸
k

).

Also recall that MC•(g) is the simplicial set MC(g⊗̂Ω∗(∆•)) of MC elements.

In particular the gauge relations are 1-simplices in this set, or, in other words, MC

elements of g⊗̂Ω∗(∆1).

For a dg commutative algebra or homotopy commutative algebra A we denote

by dim(A), the maximal degree where A is non-zero. However, we do not know

in general whether a space M∗ of the form considered in our main theorem admits

a Sullivan model of finite dimension. On the other hand, under the assumptions

of Theorem 1.2, one can always choose a homotopy commutative algebra model

A of M∗ of algebraic codimension n − dim(A) ≥ 3. For example, we can take the

augmentation ideal of the cohomology algebra H∗(M∗) equipped with the trans-

ferred homotopy commutative algebra structure that makes this object a model of

the pointed space M∗ in the category of homotopy commutative algebras (see the

account of Section 3.4). In many relevant applications natural dg commutative

algebra models of finite type and of that codimension exist also, and hence, we

can take them instead, avoiding the use of homotopy commutative algebras.

Proposition 5.1. Let A be a dg commutative algebra or homotopy commutative

algebra of finite type with ∆ := n − dim(A) − 3 ≥ 0, then the complex HGCA,n

is bounded below and is finite-dimensional in every degree. Moreover, its part

of non-positive degree
(
HGCA,n

)
≤0 is spanned by trees with ≤ n−3

1+∆
leaves. Any

such tree with N leaves has all its leaves labeled by elements of A of degree ≥

(N − 1)(1 + ∆) + 1.

Proof. The first statement and the fact that all hairy graphs of genus ≥ 1 appear in

strictly positive degrees are easy to check, see [58, Lemma 4.3] for the proof of a

similar result. For the second statement we note that the trees with N leaves have

the smallest degree when they are unitrivalent. Such trees have 2N − 3 edges and

N − 2 internal vertices. The smallest possible degree of such a tree is (2N − 3)(n−

1) − (N − 2)n − N(n − 3 − ∆). Assuming that this degree is ≤ 0 implies N ≤ n−3
1+∆

.
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If a unitrivalent tree of degree ≤ 0 has one leaf labeled by an element of degree

I and all the other N−1 leaves labeled by elements of the maximal possible degree

n − 3 − ∆, one has (2N − 3)(n − 1) − (N − 2)n − (N − 1)(n − 3 − ∆) − I ≤ 0. The

latter inequality implies I ≥ (N − 1)(1 + ∆) + 1. �

Corollary 5.2. Under the assumptions of Proposition 5.1, we have the relations

MC
(
HGCA,n

)/
∼ = MC

(
HGCA>0,n

)/
∼

and H0

(
HGCA,n

)
= H0

(
HGCA>0,n

)
.

By A>0 we understand the naive truncation (A>0)i =


Ai, i > 0,

0, i = 0.

Proof. By Proposition 5.1, only linear combinations of trees can produce a MC

element of HGCA,n. Moreover all its A labels must be of degree ≥ (N −1)(1+∆)+

1 ≥ (2 − 1)(1 + 0) + 1 = 2. Similarly only trees with A labels of degree ≥ 1 can

contribute to the gauge relations. For H0 the argument is the same. �

5.2. MC elements in terms of unitrivalent trees. In this subsection we explain

how MC elements can be encoded in terms of unitrivalent trees modulo IHX re-

lations. We hope that this description will be easier to relate to the known higher

dimensional knot invariants, see sections 5.5-5.9.

For any dg commutative algebra A and an integer n ≥ 3, consider the space

UTTA,n defined as follows. It is spanned by the unitrivalent trees of HGCA,n

(which means trees, whose all internal vertices are trivalent). In addition to the

orientation relation as in HGCA,n, we quotient this space by IHX relations — im-

ages of δsplit of trees whose all internal vertices are trivalent except one, which is

four-valent. Note that UTTA,n is a quotient-complex of HGCA,n, moreover UTTA,n

inherits from HGCA,n a dg Lie algebra structure by means of this quotient map.

Proposition 5.3. Assuming n − dim(A) ≥ 3, the quotient map HGCA,n → UTTA,n

induces a bijection on the sets of gauge equivalence classes of MC elements.

Proof. Denote by TGCA,n the L∞-algebra spanned by all trees of HGCA,n. It

is naturally a quotient L∞-algebra of HGCA,n. It follows from Proposition 5.1,

that TGCA,n has the same set of Maurer–Cartan elements and gauge relations

as HGCA,n. On the other hand, both TGCA,n and UTTA,n = TGCA,n/IHX ad-

mit a complete filtration by the number of hairs minus one. The quotient map

TGCA,n → HGCA,n induces surjective quasi-isomorphisms of associated graded

quotients griTGCA,n → griUTTA,n, i ≥ 1. We use here the fact that the cyclic
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L∞ operad is quasi-isomorphic to the cyclic Lie operad. By the same argu-

ment as in the proof of Proposition 3.4, we get an equivalence of simplicial sets

MC•(TGCA,n) ≃ MC•(UTTA,n). In particular, we get a bijection on the sets of

connected components. �

Remark 5.4. The discussion and result apply mutatis mutandis to the case of a

homotopy commutative algebra A, except that in this case UTTA,n is generally

not a dg Lie algebra, but inherits an L∞-structure from HGCA,n. It is easy to see

that the induced L∞-algebra structure of UTTA,n is determined by the C∞-algebra

structure of A restricted along the operad inclusion C∞ → ΩLc
∞.

5.3. Finiteness. One important question is when the set of isotopy classes of

embeddings is finite. Thanks to Corollary 1.3.b we are able to conclude that the

set π0 Emb∂(M,Rn) is finite if the corresponding set MC/∼ of gauge equivalence

classes of Maurer–Cartan elements is finite.

Example 5.5. π0 Emb(S 3 × S 3,R11) is finite. In particular there are finitely many

isotopy classes of embeddings S 3 × S 3 ֒→ R11 which are trivial as immersions.12

Indeed, first we notice that S 3 × S 3 is formal. On the other hand, according

to Proposition 5.1, degree zero diagrams in HGCH∗(S 3)⊗H∗(S 3),11 are trees with ≤
11−3
1+2
= 2 + 2

3
leaves. But any such tree α β has never degree zero. Thus the

set MC
(
HGCH∗(S 3)⊗H∗(S 3),11

)
has only one element 0.

5.4. M-unknots. The hairy graph complex HGCR̄,n depends only on the Sullivan

model R of M∗. The following is an immediate consequence of Corollary 1.3.c-d.

Corollary 5.6. Let i : M ⊂ Rm ⊂ Rn and i′ : M′ ⊂ Rm′ ⊂ Rn satisfy the assump-

tions of Theorem 1.2. If the models Ω∗(M∗) ≃ Ω
∗(M′

∗) are quasi-isomorphic as

augmented dg commutative algebras, then the components of the trivial embed-

ding are rationally equivalent: Emb∂(M,Rn)i ≃Q Emb∂(M′,Rn)i′ .

Example 5.7. It is easy to check that Emb(RP2,R6) is connected.13 Since RP2

is embeddable in R4 and Ω∗(RP2) ≃ Q, one gets Emb(RP2,R6) ≃Q ∗. More

generally, Emb(
∐

r RP2,R6) ≃Q C(r,R6) ≃ F6(r).

Proposition 5.8. Under the assumptions of Theorem 1.2, the rational homotopy

groups of any component Emb∂(M,Rn)ψ are subquotients of those of the compo-

nent of the trivial embedding Emb∂(M,Rn)i.

12In fact, by the Haefliger-Zeeman unknotting theorem (see [34, 63], [54, Theorem 2.6.b]), the

space Emb(S 3 × S 3,R11) is connected.
13This is because Emb(RP2,R6) is connected and Imm(RP2,R6) is simply-connected.
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Proof. Let m be a Maurer–Cartan element of HGCR̄,n corresponding to ψ. In

the complex HGCm

R̄,n
consider the filtration by the genus of the graphs plus the

number of hairs. The differential d0 in the associated spectral sequence is the

non-deformed differential of HGCR̄,n. Thus the E1 term in positive degrees is iso-

morphic to the positive degree homology of HGCR̄,n which exactly consists of the

rational homotopy groups of Emb∂(M,Rn)i. �

In Section 5.6.1 we show that the component of the trivial embedding and that

of the Hopf link of Emb(S m1
∐

S m2 ,Rm1+m2+1) have different rational homotopy

groups.

5.5. String links. In this subsection we apply our results to the spaces

Emb∂
(∐r

i=1 Rmi ,Rn
)
, n − max(mi) ≥ 3, of string links modulo immersions which

were defined in the introduction. In this case the corresponding manifold M∗ =

M ∪ {∞} deformation retracts to a wedge of spheres ∨r
i=1

S mi . We can hence take

as a Sullivan model

R = Q[ω1, . . . , ωr]/(ωiω j)i, j=1,...,r,

where ωi is a generator of degree mi, and all products of generators vanish. In

particular R̄ is an r-dimensional graded vector space spanned by ω1, . . . , ωr. It

follows that HGCR̄,n is a complex of hairy graphs with hairs coming in r colors,

corresonding to the possible decorations of the hairs by the ωi. This graph com-

plex was denoted by HGCm1...mr;n in [58].

In this case the L∞-structure is fairly simple: The differential is just δ = δsplit

(cf. (6)), since dR = 0 and δ join = 0 by the vanishing of all products in R̄. By

the same reason the L∞-structure is trivial. This reflects the fact that the space of

string links is in fact a loop space [17].

By our computations we can then conclude that for n − max(mi) ≥ 3 and

ψ ∈ Emb∂
(∐r

i=1 Rmi ,Rn
)

we have that

Emb∂
(
⊔r

i=1R
mi ,Rn)

ψ ≃Q MC•(HGCR̄,n)α>0,

where α is a Maurer–Cartan element corresponding to (the connected component

of) ψ. In particular this means that the rational homotopy groups may be computed

as

πk(Emb∂(M,Rn), ψ) ⊗ Q � Hk(HGCα

R̄,n
) = Hk(HGCR̄,n)

for k ≥ 1. For the last identity we used that the L∞-structure is trivial and hence the

twist does not alter our complex. (Note also that all components of the space of
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string links have the same homotopy type as the space in question is a loop space.)

The statement is true for k = 1 since by the loop space structure, π1 is abelian.

This result has been proved for n ≥ 2 max(mi) + 2 in [58] and was conjectured to

hold in codimension greater than or equal to three [58, Conjecture 3.1]. Similarly,

we obtain that

H∗(Emb∂(M,Rn)ψ,Q) � S
(
H>0(HGCR̄,n)

)
.

In other words, the homology is just the symmetric product of the homotopy,

which again could be deduced by the fact the space of string links is a loop space.

Since the L∞ structure is abelian, the Maurer–Cartan equation and gauge ac-

tion are abelian as well and we get

MC(HGCR̄,n)/∼ = H0(HGCR̄,n). (22)

On the other hand, using Haefliger’s work on the isotopy classes of spheri-

cal links [35, 37] together with [25, Corollary 20] of the authors’ work on

the rational homotopy type of the delooping of Emb∂(R
m,Rn), n − m ≥ 3,

Songhafouo-Tsopméné and the second author proved [58, Theorem 4.2] that

π0 Emb∂
(∐r

i=1 Rmi ,Rn
)

with respect to the concatenation of links is a finitely gen-

erated abelian group isomorphic to H0(HGCR̄,n) when tensored with Q:

Q ⊗ π0 Emb∂
(
⊔r

i=1R
mi ,Rn) ≃ H0(HGCR̄,n). (23)

Note also that by Proposition 5.1 only trees can contribute to the non-positive

degrees. Using this and the fact that the cyclic L∞ operad is quasi-isomorphic to

the cyclic Lie operad, the space H0(HGCR̄,n) can be described as the space spanned

by unitrivalent trees of degree zero with leaves labeled by 1, . . . , r, and quotiented

out by IHX relations. This fact is quite remarkable as it relates the study of spaces

of higher dimensional links to the theory of Vassiliev invariants of classical knots

and links in R3, where the spaces of unitrivalent diagrams modulo IHX relations

naturally appear [4, 5]. For more general embedding spaces, the MC element as a

knot invariant can also be formulated purely in terms of unitrivalent trees modulo

IHX, see Proposition 5.3.

5.6. Spherical links. A. Haefliger proved that π0 Emb
(∐r

i=1 S mi,Rn
)
, n >

max(mi) + 2, is always a finitely generated abelian group [35–37]. The prod-

uct on this set is defined as follows. Given two links f and g, we place them in

two disjoint balls. We then connect each f (S mi) with g(S mi) by a thin tube along

any path. Note that because of the codimension condition the complement is sim-

ply connected and the choice of the paths does not matter for the resulting isotopy
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class of the link. The product is obviously commutative and associative. There

are inverses because in codimension > 2 the isotopy classes of links coincide with

concordance classes.

This product can be easily extended to π0 Emb
(∐r

i=1 S mi ,Rn
)
, n > max(mi)+2.

Proposition 5.9. For n > max(mi) + 2,

π0 Emb
(
⊔r

i=1S mi ,Rn) = π0 Emb∂
(
⊔r

i=1R
mi ,Rn) .

Proof. The surjective projection

π0 Emb
(
⊔r

i=1S mi ,Rn)→
r⊕

i=1

π0 Emb (S mi,Rn)

splits. Denote its kernel by πU
0

Emb
(∐r

i=1 S mi,Rn
)
. The upper script U stands for

“unknots” — every component of such links is unknotted. Similarly define the

groups πU
0

Emb
(∐r

i=1 S mi ,Rn
)
, πU

0
Emb∂

(∐r
i=1 Rmi ,Rn

)
, πU

0
Emb∂

(∐r
i=1 Rmi ,Rn

)
.

One can easily see that all these four groups are isomorphic:

πU
0 Emb

(
⊔r

i=1S mi ,Rn) = πU
0 Emb

(
⊔r

i=1S mi,Rn) =
πU

0 Emb∂
(
⊔r

i=1R
mi ,Rn) = πU

0 Emb∂
(
⊔r

i=1R
mi ,Rn) ,

see [58, Lemma 4.7] or [37, Section 2.6] for a similar statement. On the other

hand, for one component embedding spaces, the isomorphism

π0 Emb (S mi,Rn) = π0 Emb∂ (Rmi ,Rn)

is proved in [26, Theorem 1.1] (see also Section 5.7). �

In fact one also has a bijection on the corresponding sets MC/∼ of Maurer–

Cartan elements. In this case M∗ is homotopy equivalent to
(∐r

i=1 S mi
)∐
{∗}.

Hence,

R̄ = H∗
(
⊔r

i=1S mi
)
= ⊕r

i=1H∗(S mi). (24)

Let 1i ∈ H0(S mi) and ωi ∈ Hmi(S mi) denote the generating cohomology classes of

the summand S mi.

The corresponding hairy graph complex is spanned by graphs with hairs of

2r possible labels: 11, ω1, . . ., 1r, ωr. The relations are ωiω j = 0, 1i1 j = δi j1 j,

1iω j = δi jω j, 1 ≤ i, j ≤ r.
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It follows from Corollary 5.2, Proposition 5.9 and equations (22) and (23), that

in the range n > max(mi) + 2,

Q ⊗ π0 Emb
(
⊔r

i=1S mi ,Rn) = Q ⊗ π0 Emb∂
(
⊔r

i=1R
mi ,Rn) =

H0

(
HGCH∗(⊔iS

mi ),n

)
= H0

(
HGCH̃∗(∨iS

mi ),n

)
=

MC
(
HGCH∗(⊔iS

mi ),n

)/
∼ = MC

(
HGCH̃∗(∨iS

mi ),n

)/
∼.

5.6.1. Example of components of different homotopy type. Unlike in the

case of string links, the rational homotopy type of different components of

Emb
(
⊔r

i=1S mi,Rn
)

can be different. For example, we consider the space

Emb
(
S m1 ⊔ S m2,Rm1+m2+1

)
. In the corresponding non-deformed hairy graph com-

plex, the graph

m = ω1 ω2

is a cycle of degree zero. We expect that, in the Maurer–Cartan element assigned

to a link i : S m1 ⊔ S m2 ֒→ Rm1+m2+1, the coefficient of this graph m is given by the

linking number of the components of the link. In particular, the Maurer–Cartan

element corresponding to the Hopf link is m. Now if we look at the graph

S = 11 12 ,

it is a non-trivial cycle (of degree m1 + m2) in the non-deformed complex. But it

is no more a cycle for the m-twisted graph complex:

dm(S ) = [m, S ] = ω1 ω2 11
+ ω1 ω2 12

.

Topologically this corresponds to the fact that the fibration

Emb
(
S m1 ⊔ S m2 ,Rm1+m2+1

)
→ S m1+m2 (25)

that assigns to a link the direction of the vector between the images of the base-

points of the spheres, has a section for the component of the trivial link, and does

not admit a section for the Hopf link. In the former case the homotopy groups of

S m1+m2 appear as direct summands of those of the link space, while for the latter

case this is not true even rationally.



50 BENOIT FRESSE, VICTOR TURCHIN, AND THOMAS WILLWACHER

5.7. Spherical and long embeddings. The approach with graph complexes that

we develop in this paper can also be used to compare the homotopy type of dif-

ferent embedding spaces. The first non-trivial question is how the homotopy type

of Emb(S m,Rn) is related to that of Emb∂(R
m,Rn). In [26] we study this prob-

lem. Note that [13, Section 4] gives a connection between the embedding spaces

Emb(S m,Rn) and the long embedding spaces Emb∂(R
m,Rn). It turns out though

that working modulo immersions and assuming n − m > 2 makes this connection

more straightforward. By the authors’ [26, Theorem 1.1], one has a fiber sequence

Emb(S m,Rn)→ S n−m−1 → B Emb∂(R
m,Rn), (26)

n − m > 2, where B denotes the classifying space functor.

On the level of graph-complexes this fiber sequence can be seen as fol-

lows. The graph complexes corresponding to Emb∂(R
m,Rn) and Emb(S m,Rn) are

HGCR̄,n and HGCR,n, respectively, where

R = H∗(S m) = Q[ω]/ω2 = Q1 ⊕ Qω.

Explicitly, elements of HGCR,n are hairy graphs with hairs being either decorated

by 1 or ω, while elements of HGCR̄,n are hairy graphs all of whose hairs are deco-

rated by ω. The graphs

L = 1 ω T = 1 ω ω

are the ones that correspond to the rational homotopy of S n−m−1. The graph L

is always non-zero and T is nonzero if and only if n − m is odd. Let U be a

subspace in HGCR,n spanned by L and T . One has that the (graded vector space)

direct sum U ⊕ HGCR̄,n is a subcomplex in HGCR,n. The authors proved (see

[26, Theorem 2.1]) that the inclusion

U ⊕ HGCR̄,n ⊂ HGCR,n

is a quasi-isomorphism.

The fiber sequence (26) implies that π0 Emb(S m,Rn) = π0 Emb∂(R
m,Rn) and

that all components of Emb(S m,Rn) have the same homotopy type. The latter fact

can also be seen from the observation that Emb∂(R
m,Rn) acts on Emb(S m,Rn) for

which π0 Emb(S m,Rn) is a torsor of π0 Emb∂(R
m,Rn).

The group π0 Emb(S m,Rn) = π0 Emb∂(R
m,Rn), n − m > 2, is a finitely gener-

ated abelian group usually torsion except two cases

(a) n = 4k − 1, m = 2k − 1, k ≥ 2; (b) n = 6k, m = 4k − 1, k ≥ 1.
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In the latter two cases this group is infinite and has rank one [25, Corol-

lary 20].14 The corresponding Maurer–Cartan elements (generators of the groups

H0(HGCR̄,n)) are, respectively,

Lω = ω ω and Tω = ω ω ω .

Geometrically, the class Lω appears as image, under inclusion

Ω2kV2k−1(R4k−1)→ Emb∂(R
2k−1,R4k−1),

of the SO(2k) Euler class in the rational homotopy of the Stiefel manifold

V2k−1(R4k−1) = SO(4k−1)/SO(2k). In case (b), the MC element Tω corresponds to

the Haefliger trefoil S 4k−1 ֒→ R6k [35].

The twisting by Lω changes neither the differential, nor any (higher) bracket

of HGCH∗(S 2k−1),4k−1. This is because for even codimension n − m, any graph with

two ω-hairs attached to an internal vertex is zero. The twisting by Tω changes

both the differential and the L∞ structure of HGCH∗(S 4k−1),6k. One can show that

HGCTω

H∗(S 4k−1),6k
is L∞ isomorphic to the non-deformed one HGCH∗(S 4k−1),6k.

In [26], we also determine the rational homotopy type of Emb(S m,Rn), n−m >

2 (see [26, Corollary 1.3]). We prove that each component of Emb(S m,Rn) is

rationally a product of K(Q, j)’s in all cases except when n is odd and m is even.

In the latter case Emb(S m,Rn) ≃Q Emb∂(R
m,Rn) × S n−m−1 and the failure of not

being rationally abelian is only in the factor S n−m−1.

5.8. Non-linear Maurer–Cartan equation. In all the examples that we con-

sidered so far the Maurer–Cartan equation for a hairy graph complex HGCA,n

was reduced to a linear equation and the set MC(HGCA,n)/∼ is identified with

H0(HGCA,n). However, it is not generally the case. Consider, for example,

Emb(S 2×S 2,R7). Since S 2×S 2 is embeddable in R5, our approach can be applied.

One has

R = Q[ω1, ω2]/ω2
1=ω

2
2=0,

where |ω1| = |ω2| = 2. In degree zero HGCR,n has two graphs

L1 = ω1 ω1 ∧ ω2 ; L2 = ω2 ω1 ∧ ω2 .

(In fact there is one more graph of degree zero: the H-shaped one with all its four

hairs labelled by ω1 ∧ω2, but it can be killed by gauge transformations as it is the

14This fact can also be easily deduced from Haefliger’s [36, Corollary 6.7 and Remark 6.8].



52 BENOIT FRESSE, VICTOR TURCHIN, AND THOMAS WILLWACHER

boundary of the X-shaped graph again with all its four hairs labelled by ω1 ∧ ω2.

Compare also with Proposition 5.3.) If m = λ1L1 + λ2L2, λ1, λ2 ∈ Q, then the

Maurer–Cartan equation becomes

0 =
1

2
[m,m] = λ1λ2 ×

ω1 ∧ ω2 ω1 ∧ ω2 ω1 ∧ ω2

.

Thus, the set

MC/∼ = {λ1L1 + λ2L2 | λ1 = 0 or λ2 = 0}.

We conjecture that in this case, the MC element is related to the Boéchat-Haefliger

invariant [10, 11]

BH : π0 Emb(S 2 × S 2,R7)→ H2(S 2 × S 2,Z) = Z2,

which was shown in [11] to have as image 2Z × 0
⋃

0 × 2Z. Up to an action of

the torsion π0 Emb(S 4,R7) = Z12 (that preserves BH), this invariant determines

the isotopy class of embedding [16, 56].

5.9. Non-linear gauge relation. Even if the MC equation happens to be linear

and the MC elements are just zero-cycles, the gauge action can still be non-linear.

As an example consider Emb(S 1 × S 2,R6). Since the manifold S 1 × S 2 is formal,

we take

R = H∗(S 1 × S 2) = Q[α, β]
/
β2,

where |α| = 1, |β| = 2. Consider the following diagrams in HGCR,6:

Lα = α α ∧ β

Lβ = β α ∧ β
Tα∧β =

α ∧ β α ∧ β α ∧ β

By Proposition 5.1, Lβ and Tα∧β are the only graphs in HGCR,6 of degree zero.

Any MC element has the form λLβ + µTα∧β, λ, µ ∈ Q. We claim that the gauge

relation is

λLβ + µTα∧β ∼ λLβ if λ , 0. (27)

Indeed, the following

m = λLβ + µtTα∧β −
µ

λ
dtLα ∈ MC

(
HGCR,6 ⊗ Ω

∗(∆1)
)
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is a MC element (note that [Lα, Lβ] = Tα∧β) and m|t=0 = λLβ, m|t=1 = λLβ + µTα∧β.

It is easy to see that all the other gauge equivalences are generated by this one.

We conclude

MC/∼ = {λLβ + µTα∧β | µ = 0 or λ = 0}.

We conjecture that the coefficient λ in the MC element corresponds to the

Whitney invariant [55, Section 1]

W : π0 Emb(S 1 × S 2,R6)→ H1(S 1 × S 2,Z) ≃ H2(S 1 × S 2,Z) ≃ Z,

while the coefficient µ corresponds to the action of π0 Emb(S 3,R6) = Z ≃Q

π0 Emb(S 3,R6) (the generators are Haefliger’s trefoil in π0 Emb(S 3,R6) = Z [35],

and the tripod Tω ∈ H0(HGCH∗(S 3),6) = Q, see Section 5.7). It was shown by

A. Skopenkov in [55] that

• for any integer i there exists an embedding S 1 × S 2 ֒→ R6 of Whitney

invariant i;

• two isotopy classes of such embeddings have the same Whitney number if

and only if they are in the same orbit of the π0 Emb(S 3,R6)-action;

• all π0 Emb(S 3,R6)-orbits in π0 Emb(S 1 × S 2,R6) are finite except the one of

Whitney invariant 0.

In fact in [55] A. Skopenkov completely classifies isotopy classes of smooth

embeddings of any closed connected orientable 3-manifold in R6 in terms of the

Whitney invariant and the π0 Emb(S 3,R6)-action. On the other hand any compact

orientable 3-manifold is parallelizable [49] and therefore is immersible in R4. Ac-

cording to Section 1.3 our approach can be applied. In fact, the above computation

stays exactly the same, except that for a compact connected orientable M the class

Lα above gets replaced by classes Lαi
labelled by a basis {αi}i of H1(M). This can

be compared to and is precisely in agreement with Skopenkov’s results. Note that

in the general case we can still take the cohomology R = H∗(M) as a model for

M, but now we must account for higher homotopy commutative operations. These

higher operations however all produce graphs with ≥ 2 vertices and hence do not

enter the above computation.

6. Sullivan models

For completeness, let us remark that Theorem 1.1 also allows us to write down

a Sullivan model for the components of the embedding space, using standard re-

sults in the literature. Recall that by HGCH̄∗(M∗),n we understand the L∞ algebra

induced by the homotopy commutative structure of H̄∗(M∗), see Section 3.4.
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Proposition 6.1. In the setting of Theorem 1.1 and for n ≥ 4 and H∗(M∗)

concentrated in degrees ≤ n − 3 we have that every connected component of

MC•(HGCH̄∗(M∗),n) is nilpotent and of finite (homological and homotopical) type.

Let m ∈ MC(HGCH̄∗(M∗),n) be a Maurer–Cartan element, let HGCm

H̄∗(M∗),n
be the

twisted L∞-algebra and let (HGCm

H̄∗(M∗),n
)>0 be its positive degree truncation. Then

the (cohomological) Chevalley-Eilenberg complex

C∗CE

(
(HGCm

H̄∗(M∗),n
)>0

)

is a Sullivan model for the connected component MC•(HGCH̄∗(M∗),n)m of m. In par-

ticular, the cohomology of this component is the Chevalley-Eilenberg cohomology

Hk(MC•(HGCH̄∗(M∗),n)m) � Hk
CE

(
(HGCm

H̄∗(M∗),n
)>0

)
.

Proof. By [8, Theorem 5.5] the homotopy groups of the connected component

corresponding to the MC element m are computed by H∗(HGCm

H̄∗(M∗),n
), which is

clearly degree-wise nilpotent and of finite type as the underlying L∞-algebra is.

Hence the Maurer–Cartan spaces are nilpotent.

The statement about the Chevalley-Eilenberg complex is obtained by applying

[8, Corollary 1.3].

�

Remark 6.2. One can also build a model (essentially) out of the Chevalley-

Eilenberg complex of (HGCm

R̄,n
)>0 for a general dg commutative algebra model

R of M∗ of finite type. One just has to interpret the Chevalley-Eilenberg complex

appropriately, as follows. One first notes that HGCR̄,n is in fact the dual of an

L∞-coalgebra HGR̄,n. Concretely, while elements of HGCR̄,n are formal (possibly)

infinite series of graphs, elements of HGR̄,n are finite linear combinations of (the

dual) graphs. Then the homological Chevalley complex of the positive degree

truncation (HGm

R̄,n
)>0 of the twist of HGR̄,n, is a dg commutative algebra model for

the corresponding connected component of MC•(HGCR̄,n). To see this one first

notes that we have a map of L∞-coalgebras HGR̄,n → HGH̄∗(M∗),n and accordingly

a map of the (homological) Chevalley-Eilenberg complexes

CCE
∗

(
(HGm

R̄,n
)>0

)
→ CCE

∗

(
(HGm′

H̄∗(M∗),n
)>0

)
,

where m is the image of the Maurer–Cartan element m′ ∈ MC(HGCH̄∗(M∗),n). The

map above is again a quasi-isomorphism of dg commutative algebras, as one can

see from the spectral sequence associated to the bounded below exhaustive filtra-

tion on the number of edges in graphs on both sides.
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