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To deal with the complex design issues of Dynamically Reconfigurable Systems-on-Chip (DRSoCs), it is extremely relevant to raise
the abstraction level in which models are expressed. A high abstraction level allows great flexibility and reusability while bypassing
low-level implementation details. In this context, model-driven engineering (MDE) provides support to build and transform
precise and structured models for a particular purpose at different levels of abstraction. Indeed, high-level models are successively
refined to low-level models until reaching the executable ones. *us, this paper presents an MDE-based framework for DRSoCs
design enabling the transformation of UML/MARTE specifications to SystemC/TLM implementation. To achieve a high degree of
expressiveness for modeling dynamic reconfiguration, we use a suitable software engineering approach based on service-oriented
component architecture. Since MARTE does not cover the common features of dynamic reconfiguration domain and service
orientation concepts, new stereotypes are created by refinement to add missing capabilities to the profile. Likewise, SystemC does
not provide native support for dynamic reconfiguration, thus leading us to adopt a design pattern based solution for DRSoCs
implementation in compliance with standards. *e proposed framework is validated through a reconfigurable active 3-way
crossover case study in which we demonstrate the practicability of the approach by gradual model transformations with reduced
implementation effort and significant design productivity gain.

1. Introduction

Raising the abstraction level in order to overcome the ex-
plosive complexity and competitive pressures of Systems-
on-Chip (SoCs) especially those qualified as dynamically
reconfigurable is highly recommended by designers. Elec-
tronic system-level methodologies (ESL) enable the use of
appropriate abstractions to achieve as quickly as possible
simulation models in order to avoid time-consuming low-
level simulations. For ESL design, electronic design auto-
mation (EDA) tools have been developed for the specifi-
cation, design, verification, implementation, and test of
electronic systems. To address challenges of ESL tasks,
transaction-level modeling (TLM) has emerged as an effi-
cient methodology with an acceptable simulation speed and
modeling accuracy compared to register transfer level (RTL)

[1]. Of all system-level description languages, SystemC [2]
seems to be the most appropriate to meet the TLM re-
quirements. SystemC-based transaction-level modeling in-
volves communication between SystemC processes using
function calls, while respecting the principle of separating
communication from computation. By replacing all pin-
level events with a single function call, it is possible to reach
speedup factors up to 10.000 x [3].

Dynamically Reconfigurable Systems (DRSs) can be
defined differently depending on the research community.
In electronics, DRSs are able to dynamically modify their
functions at runtime allowing the activation (addition) and
deactivation (removal) of hardware components [4]. A DRS
is considered in [5] as a system whose subsystems can be
modified or have their settings modified during operation to
achieve a specific goal. In software engineering, adaptive
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systems assimilated to DRS are subject to behavior or
structure adaptation at runtime in response to unplanned or
planned execution changes (user requirements, resources
limitations, and environmental conditions) [6]. Most
reconfigurable systems are based on FPGA (field-pro-
grammable gate array) technology; their dynamic partial
reconfiguration (DPR) capability enables reconfiguring parts
of them during runtime without the need to stop the device.
Such systems, capable of dynamically loading and unloading
IP Cores (Intellectual Property Cores) while the rest of the
system is still running, are called Dynamically Reconfig-
urable Systems-on-Chip (DRSoCs). For modeling DRSoC
features at a high abstraction level, traditional codesign
techniques become obsolete; indeed, vendor design flows
such as ISE or Vivado design tools from Xilinx work at a
relatively low abstraction level [7]. Although there is a plethora
of methodologies for embedded system codesign, the model-
driven engineering (MDE) seems to federate both research
and industry communities by supporting abstract models and
automated methods to process them. *ese models may be
expressed with unified modeling language (UML) [8] or with
domain-specific languages (DSL) like AutoModel [9], D’Ar-
tagnan [10], ESPeciaL [11] or with UML profiles such as TUT
[12], UML for SystemC [13–15], SysML [16], and UML profile
for modeling and analysis of real-time embedded systems
(MARTE) [17]. Concretely, none of these languages and
profiles has been developed to cover comprehensively DRSoC
features; we are faced with the major challenge of filling the
lack of UML-based tools for DPR modeling.

When trying to model dynamic reconfiguration in Sys-
temC, the designer has to circumvent a significant hurdle;
indeed, new instances cannot be generated once simulation
has already started prohibiting any dynamic creation of en-
tities. *is problem would be wrongly tackled by suspending
the simulation and making changes to the elaboration phase.
*e elaboration aims to create internal data structures within
the kernel as required to support the semantics of simulation;
thus, the dynamic reconfiguration process is still not modeled
[18]. Without altering the SystemC kernel while complying
with the standard, two different strategies for DPR modeling
may be used to represent reconfigurable areas: treating them
as C++ objects or as SystemC modules [19]. Modeling
reconfigurable areas as C++ objects makes it impossible to use
SystemC dynamic processes, given that objects are passive.
For a hardware designer, it is more intuitive to use modules
than to use objects.

In order to get a high expressiveness degree for DPR
modeling, we explored software engineering approaches for
dynamic adaptation. An approach that fulfills DPR re-
quirements would be to conciliate both service-oriented and
component-based approaches resulting in service compo-
nent architecture (SCA) [20–22]. Indeed, the two ap-
proaches are complementary; a component is an
implementation that provides and requires resources while a
service is a runtime artifact that publishes an interface and
that requests dynamically the service providers it needs [21].
To leverage SCA extension breakthroughs for software de-
velopment, we applied its principles to DRSoC modeling
especially since hardware design is naturally component-

based. Twomain advantages of integrating SCA concepts into
SoC platform are worth highlighting. Firstly, heterogeneous
interoperable components can be seamlessly integrated at
different abstraction levels resulting in an effective design
space exploration. Secondly, interchangeable modules com-
municate through well-defined interfaces without too many
implementation details, thereby improving the scalability and
substitutability in DRSoCs beyond simply reusing IP [23].

To cope with the lack of partial and dynamic recon-
figurable FPGA modeling tools at ESL, we propose a
MARTE-based service-oriented component modeling
framework targeting the automatic generation of SystemC
code at transaction level. Key contributions are as follows:

(i) A high-level design flow is provided to enable
SystemC/TLM code generation from an extended
MARTE front end according to the model-based
development tenets. A fully integrated Eclipse
toolchain is built to materialize the proposal.

(ii) *e MARTE profile is extended with DPR and SCA
domain-specific semantics for systems modeling,
since no specified support is provided by the
MARTE standard for this purpose.

(iii) A reconfigurable SystemC module for dynamic
spawned creation is modeled and implemented
relying on calls to sc_spawn function and use of the
abstract factory design pattern providing the nec-
essary level of abstraction.

(iv) *e MARTE profile is also extended with SystemC/
TLM concepts in order to smoothly move to the
executable code of the underlying system.

*e remainder of the paper is organized as follows.
Section 2 gives a brief overview of a set of modeling concepts,
languages, and tools used in this work. Section 3 presents the
previous literature related to DPR modeling at a high ab-
straction level. Following a bottom-up approach (driven
from the SystemC platform), it reviews the most important
solutions for modeling Dynamically Reconfigurable Systems
with SystemC and UML. Section 4 details the proposed
modeling framework with an emphasis on MARTE profile
specialization covering DPR specific concepts while de-
scribing the refined stereotypes of the involved subprofiles.
Section 5 experimentally validates the framework and
projects our proposal on a reconfigurable audio FIR filter
within an active 3-way crossover. Section 6 closes this paper
and presents further perspectives for future work. Details on
transformation rules, generated SystemC/TLM model, and
automatic code generation of the business logic are de-
scribed in the appendix.

For the sake of clarity, Table 1 lists the abbreviations used
throughout this paper.

2. Preliminaries

In this section, we will introduce some preliminary
knowledge for understanding the work.

Metamodel. *e abstract syntax of UML is specified
using a UML model called the UML metamodel. *e
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abstract syntax defines the set of UML modeling concepts,
their attributes, and their relationships, as well as the rules
for combining these concepts to construct UML models [8].
*e UMLmetamodel is MOF-based and typically consists of
metaclasses and meta-associations with their properties.

Stereotype. A stereotype defines an extension for one or
more metaclasses and allows the use of platform or domain-
specific terminology or notation in place of, or in addition to,
those used for the extended metaclasses [8].

Extension. An extension is a kind of association used to
indicate that the properties of a metaclass are extended
through a stereotype and gives the ability to flexibly add/
remove stereotypes to/from classes.

Profile.A profile defines limited extensions to a reference
metamodel with the purpose of adapting the metamodel to a
specific platform or domain. *e primary extension con-
struct is the stereotype. It is possible for one profile to reuse
all of or parts of another and to extend other profiles.

MARTE. *e UML profile for modeling and analysis of
real-time and embedded systems defines foundations for
model-based descriptions of real-time and embedded sys-
tems covering the entire development process. It is com-
posed of extension units (subprofiles and model libraries)
each involved in several use cases. In the context of MDE,
MARTE defines precise semantics facilitating the automatic
transformation of models as well as the integration of
analysis and modeling tools.

SystemC. SystemC is a C++ class library providing a
mechanism for modeling hardware and software together at
multiple levels of abstraction. Systems are represented by a

module hierarchy to manage structure and connectivity. A
module can contain ports, exports, channels, processes,
events, instances of other modules, other data members, and
member functions. SystemC is often associated with elec-
tronic system-level (ESL) design and with transaction-level
modeling (TLM).

TLM. TLM is a transaction-basedmodeling approach for
describing systems at a higher abstraction level above RTL,
with emphasis on the separation of communication from
computation within a system. By eliminating unnecessary
details, it offers an adequate trade-off between simulation
speed and accuracy while enabling interoperability of
models. TLM-2.0 classes are layered on top of the SystemC
class library and consist of a set of core interfaces, the global
quantum, the initiator and target sockets, the generic pay-
load and base protocol, and the utilities.

sc_spawn. sc_spawn is a SystemC function used to create
a static or dynamic spawned process instance. A spawned
process is typically a dynamic process, but if sc_spawn is
called before the end of elaboration, it would be a static
process. Function sc_spawn may be called during elabora-
tion or from a static, dynamic, spawned, or unspawned
process during the simulation phase [2].

Papyrus. Papyrus is an environment for editing any type
of Eclipse Modeling Framework (EMF) model, in particular
supporting UML2 and associated modeling languages such
as SysML and MARTE. Papyrus is a complete UML mod-
eling environment, it can also be used to develop UML
profiles and generate code from UML models.

ATL. ATL (Atlas Transformation Language) is a model
transformation language specified as both a metamodel and
a textual concrete syntax. In MDE, ATL allows producing a
number of target models from a set of source models
through transformation rules.

Acceleo. Acceleo is a template-based code generator that
uses any EMF based models to generate any kind of code
according to the principles of model-to-text transformation.

3. Related Works

*e modeling of embedded systems with UML has been the
subject of several research works [9, 24–27]. However, few of
them deal with DPR features at high abstraction level.
Existing works fall short of sufficiently addressing both el-
evation of design abstraction levels and precise DPR se-
mantics inside modeling tools. While the majority of works
advocate the use of UML and/or SystemC for DPR mod-
eling, others focus on optimization at RTL. Furthermore,
two main branches dominate research on DRS modeling
with SystemC. *e first one proposes solutions based on
modified SystemC kernel [28, 29], while the second pro-
motes compliance with the standard without altering the
simulation kernel. *at being said, most researchers rec-
ommend complying with the standard and consider non-
standard simulation kernel as a bottleneck for design
process.

In [30], the proposed approach involves a Process-based
Reconfigurable SystemC Module (PRM) for design space
exploration speedup. *e PRM uses Unix calls for process

Table 1: List of abbreviations used in this research article.

Abbreviation Meaning
ATL Atlas Transformation Language
DPR Dynamic partial reconfiguration
DRS Dynamically Reconfigurable System
DRSoC Dynamically Reconfigurable System-on-Chip
EMF Eclipse Modeling Framework
ESL Electronic system-level
FIR Finite impulse response
FPGA Field-programmable gate array
GCM Generic component model
GQAM Generic quantitative analysis modeling
GRM Generic resource modeling
HLAM High-level application modeling
HRM Hardware resource modeling
IP Intellectual property

MARTE Modeling and analysis of real-time and embedded
systems

MDE Model-driven engineering
NFP Nonfunctional properties
RTL Register transfer level
SCA Service component architecture
SoC System-on-chip
SOCM Service-oriented component model
SRM Software resource modeling
TLM Transaction-level modeling
UML Unified modeling language
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manipulation and interprocess communication leading to
an OS-dependent solution. A PRM is composed of a static
part, a dynamic part, and a user control server (single-re-
quest Unix server). Partial dynamic reconfiguration is
modeled by assigning different processes to the PRM in a
static way and selecting one of them each time, therefore
limiting the addition of new configurations during
simulation.

*e authors in [31] propose a layered dynamic resource
manager that provides a set of services to perform efficient
scheduling and control of the sequence and processes related
to the partial reconfiguration of FPGAs. Furthermore, a
SystemC-based simulation framework has been defined by
introducing the concept of Dynamic Module. *e reconfi-
guration process is simulated as swap between the different
module models running in different SystemC threads by
switching from one to another inside the Dynamic Module.
*e main drawback of this framework is that, for a Dynamic
Module, the number of threads implementing its various
behaviors must be determined statically at compile time.

Many approaches for modeling reconfigurable SoCs and
NoCs based on ASIC with SystemC standard features and
TLM at both system level and RTL are presented in [32].
Special types of socket are used to model the selectors
concept allowing connection of different lines to the same
port at different times. *e dynamically reconfigured
functional blocks are modeled with reconfigurable com-
ponents based on a look-up table. *ough the set of cur-
rently used connections is determined dynamically during
simulation, all components are generated statically and
possible connections between components are statically
implemented. *e dynamic reconfiguration of a component
can be implemented by using reconfigurable library ele-
ments. A reconfigurable element is associated with a class,
and the behavior of a specific instance of a class can be
dynamically configured by using C++ case operator. As a
second solution, the reconfiguration possibilities are spec-
ified in terms of logic functions.*en, sc_spawnmay be used
to implement a dynamic child process with the required
functionality. No details are given concerning the compo-
nents reusability and interoperability, especially as the dy-
namic reconfiguration possibilities for ASIC are significantly
limited compared to FPGA.

For an effective multilevel simulation, a SystemC-based
refinement flow of A-HetSC Adaptive Processes (HAPs) into
OSSS +R description is presented in [33]. *e core of a HAP
pattern is a SystemC process which computes adaptive
functionality received as a function pointer from its envi-
ronment which will be substituted by the selection among a
finite set of adaptive functionalities statically fixed from an
OSSS +R description. Next, the resulting untimed mode-
based HAP is refined to a clocked synchronous mode-based
HAP, and the adaptive functionality is still included within a
SC_THREAD process. *e reconfigurable object wrapping
consists in converting the mode functions within the context
of the adaptive module into implementation classes. In the
last refinement step, the asynchronous threads are replaced
by SC_CTHREADs to work with bounded loops and to
replace dynamic memory handling by code based on static

data structures. As in OSSS +R library, the adaptive com-
putations are assigned to HAP modules in a static way,
making it impossible to update the set of adaptive func-
tionalities in runtime.

*e authors in [34] propose a Y-chart based method-
ology to model dynamically reconfigurable architectures at
high level of abstraction by using SystemC/TLM. On the one
hand, they attempt to provide an easy way to develop
scheduling strategies for hardware task management, and,
on the other hand, they introduce design space exploration
in their methodology to provide the developer with a design
flow completely integrated in Xilinx partial reconfiguration
flow. In the described model, a reconfigurable module is
composed of two SystemC dynamic threads: User Algorithm
thread spawned during the execution and representing the
functionality of the reconfigurable module and Reconfig
Control thread which is responsible for the creation and the
destruction of the User Algorithm. In addition, a recon-
figurable module contains target and initiator sockets used
for communication betweenmodules in accordance with the
TLM2.0 base protocol. Each component communication
interface is associated with a pool of functions called socket
control used to connect the sockets to the module. *e
presented methodology was later used to build the RecoSim
reconfigurable simulator integrated into FoRTReSS design
flow [35].

ReChannel library [36] extends SystemC with advanced
language constructs for high-level reconfigurationmodeling.
Portals are introduced to connect a channel of the static
design part to ports of reconfigurable modules. Portals for all
SystemC channel interfaces are provided by the ReChannel
library. *e dynamic reconfiguration is assimilated to circuit
switch allowing the activation of only one module at a time if
all its portals can be switched. While reconfigurable modules
are created from static ones via a special macro, rc_control
object provides registration and reconfiguration control
functions for modules. ReChannel also provides a set of
language extensions used for explicit description of recon-
figuration allowing modules resetting without SystemC
kernel altering. However, the tasks are statically assigned to
the reconfigurable zones at the beginning of simulation,
thereby prohibiting task mobility. A top-down modeling
methodology built on top of ReChannel to perform simu-
lation-based functional verification of dynamic reconfig-
urable systems is proposed in [37]. Related to dynamic
reconfiguration challenges, potential bugs have been iden-
tified and categorized according to their occurrence before,
during, or after reconfiguration while covering the behav-
ioral level, TLM, and RTL.

In the works presented above, the approaches have
neither a sufficiently high abstraction level nor the appro-
priate automation mechanisms necessary to make them
more productive from the early stages of development.

In [18], a specific communication adapter is used to
provide transparency between components and avoid un-
necessary coupling between functionality and low-level
integration details by implementing a basic middleware
services and using TLM as the physical transport layer for
messages. Dynamic libraries combined with a component
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adaptor called reconfigurable unit embedding different
behaviors are used for modeling DPR relying on C++
plugins and dynamic threads. A reconfiguration controller is
used to load dynamically the behaviors associated with each
reconfigurable unit and configure the adapter to be acces-
sible from other components in system. A location service is
used to map physical and logical addresses responding to the
adapter translation requests. Although the separation of
logical and physical addressing spaces increases application
flexibility, the choice of a particular component always
depends on its implementation, which is the major draw-
back of component-based approaches. *ese same concepts
were taken over by [7] in a full Eclipse integrated design flow
of dynamic reconfigurable systems enabling the automatic
generation of executable models and FPGA programming
files from UML/MARTE high-level models.

*e authors in [38] present a MDE-based Gaspard2
framework for implementation of DRSoCs, in which au-
tomatic VHDL/C code at RTL is generated from high-level
MARTE models. *e proposed design flow generates both
the code for a dynamically reconfigurable region related to a
high-level application model, and control semantics used for
the generation of the reconfiguration controller source code.
Works [7, 38] use MARTE standard concepts without any
specific DPR semantics support, which limits models ex-
pressiveness and affects the quality of the generated code.

In [39], a codesign MARTE-based approach is used to
model DRS targeting Multiprocessor System on Program-
mable Chip (MPSoPC). For platform modeling, a recon-
figurable zone is specified by the HwPLD stereotype from
MARTE HRM profile. At the application level, strategy and
state software design patterns are used to model, respec-
tively, the dynamically swap algorithms and the behavior
depending state of an object in the application. *e adaptive
stereotype extending RtUnit is used to model the dynamic
component. *e reconfiguration method can be strategy-
based or state-based which is modeled by reconf_op and
reconf_state tagged values, respectively. After allocating the
client component into a HwProcessor and the dynamic
component into HwPLD, a code targeting Xilinx FPGAs is
generated. *e limited extension of MARTE described in
this work is still insufficient to model the DPR basic
concepts.

A MDE-based methodology for DRS codesign is pre-
sented in [40]. To model DPR concepts, a MARTE extension
called RecoMARTE has been proposed. At the application
level, the RtUnit stereotype is extended to Reconfigura-
bleRtUnit to describe reconfigurable tasks. For component
interconnection, the ExtendedFlowPort stereotype is used to
specify the port kind. At the deployed allocation level,
Deployed, IP and CodeFile stereotypes extending, respec-
tively, NamedElement, Class, and Artifact metaclasses are
introduced. For modeling physical architecture, the
HwRegion stereotype extending HRM HwResource is de-
fined, and from it HwStaticRegion and HwReconfigura-
bleRegion stereotypes are derived. Physical ports are
modeled with HwPort stereotype extending HwComponent.
*e final MARTE model is transformed into IP-XACT in-
termediate description before generating Xilinx XPS

specification files. A RecoMARTE-based framework for fast
prototyping of DRSoCs is presented in [41]. While the
authors focused on both application and architecture
modeling before their mapping, the underlying case study
only highlights the use of the Deployed stereotype to de-
scribe the allocation model. In another work [42], a Reco-
MARTE extension is provided to specify a reconfiguration
controller for DRSoCs. For constraint verification using
NFPs values, an extension of the NFP concepts is proposed.
An NfpType has been extended by NfpMeasure stereotype
enabling the combination and comparison of values of
NfpMeasure types. Additionally, the Controller stereotype
extending the RtUnit has been proposed for control defi-
nition. From the RecoMARTE models, different transfor-
mations are carried out to obtain a controller specification in
BZR language ready for discrete controller synthesis.

Despite covering several features of DPR, RecoMARTE
defines semantics for Xilinx coding style with advanced
design skills, which may alter the high level of abstraction
sought.

Table 2 summarizes a comparison between the related
works and our proposed framework. For this, we define
some useful criteria to determine the expressiveness of high-
level DPR models and the effectiveness of the associated
approaches. Unlike the very limited extensions proposed in
some works, our adaptation is intended to be more com-
plete. Indeed, the proposed extension involves more pack-
ages and offers more stereotypes covering the fundamental
concepts of DPR. In addition, the adopted service orien-
tation enables a higher level of dynamicity and self-adapt-
ability compared to the component-based paradigm.

4. The Proposed Modeling Framework

In the context of SCA, to explicitly provide dynamic
availability support in component models, service-oriented
component models (SOCMs) have been introduced. A
SOCM merges modularity and separation of concerns of
traditional component models with loose coupling, late
binding, and runtime services discovery of the service ori-
entation. Loose coupling aims to minimize dependencies
between modules and mitigate the impact of modifications
to the system design. Late binding permits taking the right
deployment decision as late as possible to generate com-
municating infrastructure at runtime. For addressing new
requirements, functionality can be dynamically discovered,
substituted, or integrated into the system in much the same
way as swapping a reconfigurable module with another. *e
service orientation inherent dynamism is intrinsically
compatible with the ability to dynamically reconfigure
hardware modules exhibited by DRSoCs. Following these
principles, we propose a SOCM-based framework for partial
and dynamic reconfiguration modeling at transaction level.
Indeed, a configuration will be dynamically composed of
reusable modules providing services through dynamic
bindings. *erefore, dynamic reconfiguration will be per-
ceived as the result of the arrival or departure of services at
runtime according to the publish-find-bind cycle. To de-
velop Dynamically Reconfigurable Systems by minimizing
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costs, the hardware resources should be allocated only when
required, and services are thus lazily loaded. *e SOCM-
based reconfigurable component is composed of a factory
unit and a controller, thus separating the business logic from
cross-cutting concerns. Business logic or domain logic is the
part of the code that implements the real-word business
rules in terms of data manipulation. While the factory unit
embeds the component functionality, the controller man-
ages instance life cycle, service interactions, adaptation,
bindings, persistence, migration, and security.

As depicted in Figure 1, after IP integration, the provider
advertises service arrival by publishing its description at the
service registry through which it is made dynamically dis-
coverable. A service consumer can look up services by
querying the service registry; it is also responsible for the
selection and sorting of the available services to extract the
best. *e binding between service consumer and provider at
TLM level can be performed by using initiator and target
sockets through an interconnect component. A service
consumer is notified about the arrival and removal of new
and existing services, respectively.

By using the UML/MARTE and SystemC languages to
raise the abstraction level of DPR modeling within a SOCM-
based framework, we are inevitably faced with various
challenges. *e main challenge is how to model DPR in
MARTE especially since the profile does not present any
complete support. Another dilemma is that SOCM is not
natively supported by MARTE besides the fact that it re-
mains difficult to bridge the gap between UML/MARTE and
SystemC/TLM domain-specific concepts. To address these
challenges, we propose a framework layered architecture in
which abstraction levels are built upon each other until
reaching technical levels as shown in Figure 2. *e SOCM
principle implementation enabling support for dynamic
availability of services is layered on the top of the archi-
tecture. MARTE is extended with DPR and SOCM concepts
on the one hand and with SystemC/TLM concepts on the
other hand giving rise to MARTE4DPR and MAR-
TE4SCTLM profiles, respectively. TLM interoperability
layer is composed of core interfaces, sockets, generic pay-
load, and base protocol. *e lower layer includes the Sys-
temC library providing the core language, SystemC data
types, predefined channels, and utilities.

4.1. High-Level Design Flow. *e combined use of MDE
model transformation techniques and MARTE foundations
for model-based development helps to support a common
design flow for real-time embedded systems with the inte-
gration of modeling and analysis tools. As depicted in
Figure 3, we adopt the Y-chart-based codesign methodology
to structure the design of DRSoCs and to handle their in-
creased heterogeneity. *e Y-chart flow is based on the
separation of concerns principle; application and architec-
ture models are built separately and subsequently associated
in an allocation model. A set of front-end and back-end
Eclipse-based tools are used to support MDE fundamental
concepts. *e dynamic reconfiguration issues are captured
earlier by applying the MARTE4DPR profile at the top level.

Application modeling is based on composition of
interacting component blocks enabling dynamic availability
of services, whereas an architecture model is represented as a
hierarchical structure of reconfigurable resources providing
services to support the execution of the application. *e
functional elements are mapped onto architecture resources
within an allocation model, which encompasses both spatial
distribution and temporal scheduling features. From this
allocation model which must be sufficiently detailed and
precise, a SystemC/TLM simulation model can be obtained
in two ways: either automatically through a model trans-
formation following a rule-based approach or manually by
the application of the MARTE4SCTLM profile. In turn, the
resulting model is used for automatic SystemC/TLM code
generation, which transforms a specification into an
implementation according to a template-based approach.
Finally, the execution of the generated code encompasses
two major phases: elaboration followed by simulation.
*e simulation results can lead to a refinement of the
specification models for performance improvement. To
concretely perform the different model transformations,
we have built a model-based toolchain from Eclipse IDE
plugins [43]. Papyrus is used for creating and editing
models, and it also provides support for UML profiles.
We have chosen ATL and Acceleo tools to carry out M2M
and M2T transformations, respectively. Source and target
models are expressed in the XMI serialization format
enabling the exchange of models between tools, while the
metamodels conform to the ecore format, which repre-
sents a common ground ensuring reusability and
interoperability.

4.2. ExtendingMARTEProfile. *e intention of profiles is to
give a straightforward mechanism for adapting an existing
metamodel with constructs that are specific to a particular
domain, platform, or method [8]. It is possible to extend
profiles to create new adapted elements suitable for the
modeling purpose.

To tailor the MARTE profile for covering DPR, SOCM,
and SystemC/TLM domain concepts, we propose to extend
it with specific constructs, stereotypes, and tagged values
referenced in two profiles:MARTE for DPR (MARTE4DPR)
and MARTE for SystemC/TLM (MARTE4SCTLM).

As illustrated by Figure 4, the MARTE4DPR package
(stereotyped as profile) depends on HLAM, GCM, SRM,
HRM, and GRM packages. It enables using adapted ter-
minology, giving syntax and semantics to new types, and
adding information used in model transformation. On the
other hand, the MARTE4SCTLM package (stereotyped as
profile) depends on HLAM, GCM, SRM, and GQAM
packages; the intent is to provide specific stereotypes with
iconic representation to map SystemC/TLM domain con-
cepts. *e proposed profiles enable the use of DPR domain-
specific semantics and SystemC/TLM platform terminology
while sharing all of MARTE’s basic objectives. *us,
MARTE stereotypes can be reused by being referenced or
specialized in MARTE4DPR and MARTE4SCTLM profiles.
Users could apply the increment integrated or not with the
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MARTE profile to address different concerns without
conflicting constraints.

4.2.1. MARTE4DPR Profile. From the relevant starting
points, MARTE stereotypes are refined to incorporate the
missing DPR concepts. In what follows, we present the
different extensions involving the MARTE subprofiles.

(1) Extending MARTE::HLAM. *e concern of the HLAM
package is to provide high-level modeling concepts to deal
with real-time and embedded features modeling [17]. *e
related extensions are outlined in Figure 5.

*e ReconfigurableUnit stereotype specializes the RtUnit
(real-time unit) by adding several properties related to DPR
and SOCM domains. An RtUnit is a high-level construct; it
owns one or more schedulable resources which can be
created dynamically and a specific state-based behavior in
which states represent configurations and transitions
characterize reconfigurations of the unit. A real-time unit
can provide real-time services and invoke services of other
real-time units. A ReconfigurableUnit maps a container el-
ement; it is composed of a FactoryUnit including the
business logic and a ReconfigControllerUnit managing the

component reconfiguration process and the port binding
protocol. If a reconfigurable unit is dynamically and partially
reconfigurable, its isDynamicallyReconfigurable and isPar-
tiallyReconfigurable attributes must be true. *e mode at-
tribute determines the role of a component according to the
TLM interoperability principle. Its literal values may be
initiator, target, or interconnect. *e FactoryUnit illustrates
abstract factory pattern concepts describing a factory of
factories. *e abstract factory pattern provides an interface
for creating families of related or dependent objects
(products) without specifying their concrete classes allowing
more decoupled and flexible design. Within a FactoryUnit, it
is possible to substitute multiple factories to get multiple
behaviors by creating specific products. *e ReconfigCon-
trollerUnit manages the FactoryUnit instance life cycle,
dependencies, transactions, and port binding. As depicted in
Figure 6, a component instance enters the created state when
it is launched for the first time without being ready for use.
*e configured composite state encompasses various service
instance life cycle substates; as soon as the dependencies
become available, the service will be resolved. After regis-
tration, the service component can be bound, and therefore
the service is considered to be connected. Once the service
function is spawned, the component enters the active state.
When reconfiguration request or departure notification is
triggered, the communication channels are locked and the
component becomes passive. *e stopped state is reached
after a disconnecting request, and consequently the service
instance would be unregistered.

*e shared ServiceRegistry stereotype specializes the
concept of protected passive unit (PpUnit). It provides
permanent data storage for service metainformation in-
cluding service description, IP configurations, and resource
utilization parameters. *e IPCoreService is an abstract
concept that denotes the real-time behavioral features
owned by a component. It could be specialized into
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SoftCoreService and HardCoreService stereotypes according
to the type of core.

(2) Extending MARTE::GCM. *e GCM package provides
additional modeling concepts for real-time and embedded
system component-based strategies. We mainly focus on
particular refinements related to communication aspects to
better catch dynamic reconfiguration domain concepts.
Additional semantics on communication aspects require a
specialization of the GCM semantics as depicted in Figure 7.

*e main purpose of the ReconfigurablePort/Export
stereotype is to support the interconnection evolution fea-
tures of reconfigurable systems; it specializes the interface-
based ClientServerPort stereotype. If its isDynamic attribute
is set to true, then the interconnectivity may change at
runtime. As shown in Figure 8, when a component
reconfiguration (structural evolution) is triggered, all
reconfigurable ports/exports have to be passivated and

communication channels have to be blocked. Once the
required connect/reconnect event is intercepted, the
reconfigurable ports/exports will be reactivated. To manage
correctly the component dependencies, the reconfiguration
controller uses a local dependency table. A dependency is
identified by the remote service component (provider)
name, its port identifier, and the connection (binding) state.

(3) Extending MARTE::SRM. *e SRM package is a spe-
cialization of resources and services defined in the GRM
package; it focuses on the modeling of application pro-
gramming interfaces of software multitasking platform. We
are mainly interested here in modeling concurrent execution
contexts described in the SW_Concurrency package.

As shown in Figure 9, the FactoryProcess stereotype
defines a business processing context owned by a factory
unit; it specializes the SwSchedulableResource stereotype in
order to support the modeling of static/dynamic spawned
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processes. *e spawnedFunction attribute represents the
function associated with the spawned process instance. *e
ReconfigurationControllerProcess stereotype provides spe-
cific services to dynamically manage and supervise the
reconfiguration process; it specializes the SwSchedulableR-
esource stereotype to support services dependencies

resolution, reconfiguration triggering, and service publica-
tion and discovery.

(4) Extending MARTE::GRM. *e GRM package provides
the concepts that are necessary to model a general platform
for executing real-time embedded applications. For the

Figure 5: Extended HLAM subprofile.
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purpose of software and hardware modeling, the GRM is
specialized to SRM and HRM, respectively. To support
reconfiguration features, the GRM may be further
specialized.

A Resource represents a physically or logically persistent
entity that offers one or more resource services. Resources
are used to model the execution platform from a structural
point of view, while the resource services supply the be-
havioral point of view [17]. Since the notion of Resource is a
central concept of the GRM, it is redefined within MAR-
TE4DPR by adding a Boolean attribute isReconfigurable
which expands the semantics of resource and propagates it
through its types as depicted in Figure 10.

(5) Extending MARTE::HRM. *e HRM package is grouping
most hardware concepts under a hierarchical taxonomy with
several categories depending on their nature, functionality,
technology, and form [17]. Separation of concerns and
abstraction are the main qualities of this profile. *e HRM is
composed of two complementary and converging views: a
logical view that provides a functional classification of
hardware entities based on services that each resource offers
and a physical view that concentrates on their physical
properties such as shape, size, and position within platform,
power consumption, and heat dissipation. To support partial
and dynamic reconfiguration features, it would be inter-
esting to extend semantics of stereotypes from logical model
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Figure 6: Component instance life cycle.

Figure 7: Extended GCM subprofile.
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having their physical correspondents such as HwLogical::
HwComputing::HwPLD and HwPhysical::HwLayout::
HwComponent as described in Figure 10.

*e HW_Layout package provides hardware component
classification depending on their forms and offers ar-
rangement constructs using rectilinear grids [17]. *e
HwComponent stereotype maps the HW_Component do-
main element which is the main physical entity of the
HW_Layout package. It is specialized by the ReconfigHw-
Component stereotype owning additional attributes related
to reconfiguration features. If an HwComponent is dy-
namically and partially reconfigurable, the attributes isDy-
namicallyReconfig and isPartiallyReconfig must be set to
true. Both isActive and isReconfigurable attributes are
inherited from Resource and declared read only. isActive

means that it has its own course of action which allows it to
perform its services autonomously.

*e HwPLD is a programmable computing resource; it
has a special organization and it may own several IPs,
hardwired or not, such as processors, memories, and ana-
logic devices [17]. *e FPGA stereotype is a specialized
HwPLD which contains other specific attributes. *e gran-
ularity attribute takes its values in the enumeration Gran-
ularityType; the dynamic relocation capability is indicated by
the Boolean attribute isRuntimeReloc. *e FPGA regions at-
tribute denotes the features of the regions in terms of di-
mensions and kind (reconfigurable or static). While the
designFlow attribute specifies the dynamic and partial
reconfiguration design flow style, the configInterface attribute
indicates the FPGA configuration access interface modes.

PortConnection {Protocol}

disconnect ()

disconnect ()

connect ()

Active
Passive/do ProtocolStateMachine

ClientServer /do Activity
BlockChannels

connect ()

reconfigure()

reconnect()
H*

Figure 8: ReconfigurablePort/Export connection protocol.

Figure 9: Extended SRM subprofile.
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4.2.2. MARTE4SCTLM Profile. A SystemC module is the
smallest container of functionality with state, behavior and
structure for hierarchical connectivity [44]. *e Sc_Module
stereotype maps the SC_Module domain element. It spe-
cializes the HLAM::RtUnit stereotype with additional at-
tributes; the component role within TLM interoperability
layer is specified by the role attribute that takes its values in
the enumeration {initiator, target, interconnect, top}. *e
variables and helpers attributes define local member vari-
ables and helper functions declared in the Sc_Module. *e
image associated with that stereotype is . *e whole
profile is presented in Figure 11.

SC_PrimChannel is a SystemC construct used for
implementing processes communication and modules in-
terconnection. *e Sc_Prim_Channel stereotype specializes
the MessageComResource stereotype of SRM::SW_Inter-
action package with specific semantics appropriate to the
transaction-level modeling. Indeed, the MessageComRe-
source defines communication resource to exchange mes-
sages (structure of data) which is compliant with TLM
payload event queue semantics. *e sensitivityList and
triggerList attributes enable specifying passed arguments of
the member functions wait and next_trigger, respectively.

In SystemC, a process instance can be created by in-
voking sc_method, sc_thread, or sc_cthread macros or by
calling the sc_spawn function. It is possible to recognize
spawned, unspawned, static, and dynamic processes
according to the execution phase callback and function/
macro from which the process instance is created. Dynamic
spawned processes are the most appropriate to model and
simulate dynamic reconfigurable systems. Indeed, in such
systems, elements are generated or eliminated while the
system is running which can be naturally specified by dy-
namic spawned processes that are created from the
end_of_elaboration callback or during simulation. *e
SwSchedulableResource stereotype from SW_Concurrency

subprofile is specialized by the Sc_Process and Sc_Spawn
stereotypes. *e Sc_Process concept is abstract; it is extended
by Sc_Method, Sc_8read, and Sc_Cthread stereotypes; when
it is dynamically spawned, its attributes isDynamic and
isSpawned must be set to true. *e static sensitivity of the
process instance is specified by the sensitivityList attribute,
while dynamic sensitivity is denoted within the extended
stereotypes by waitArgs and nextTriggerArgs attributes. *e
function attribute defines the member function associated
with the process instance. *e Sc_Spawn stereotype is ap-
plied to the functions to be spawned as processes. If its
isDynamic attribute is set to true, the process instance is
dynamically spawned. *e process or module from which
the sc_spawn function is called is specified by the parent
attribute, whereas the options attribute denotes possible
process instance properties. *e image is associated with
the Sc_Spawn stereotype.

TLM involves communication between processes using
interface method calls through ports and exports. A port
(respectively, export) defines a set of services that are re-
quired (respectively, provided) by the module containing the
port (respectively, export). Sockets are used to pass trans-
actions between initiators and targets. Technically, an ini-
tiator socket is derived from class sc_port and has a
sc_export, and vice versa for a target socket. On the other
hand, the MARTE ClientServerPorts support a request/reply
communication paradigm and specify a set of provided/
required services, as well as the type of produced/consumed
signals represented by messages. For these reasons, in
MARTE4SCTLM, the GCM::ClientServerPort stereotype is
specialized to Sc_Port and Sc_Export stereotypes which in
turn are, respectively, extended by TLM_Initiator_Socket
and TLM_Target_Socket stereotypes. *ese latter are also
specialized by Simple_Initiator_Socket and Simple_-
Target_Socket stereotypes to map particular sockets which
enable dynamic processes spawning. *e module attribute

Figure 10: Extended HRM GRM subprofiles.
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specifies the socket owner component, whereas the types
attribute allows initiator/target socket to be parameterized
with the default protocol type including the generic payload
and base protocol phases.

*e TLM-2.0 core interfaces consist of the blocking and
nonblocking transport interfaces, the direct memory in-
terface (DMI), and the debug transport interface. While the
blocking transport interface only uses the forward path from
initiator to target and supports the loosely timed coding
style, the nonblocking transport interface uses both the
forward path from initiator to target and the backward path
from target to initiator and supports the approximately
timed coding style. *e Sc_Interface concept matches the
MARTE concept of ClientServerSpecification. *e

Sc_Interface abstract stereotype is specialized to multiple
stereotypes corresponding to the core interfaces. *e
TLM_Fw_NonBlocking_Transport_If and TLM_Bw_Non-
Blocking_Transport_If stereotypes specialize two distinct
nonblocking interfaces for use on opposite paths; they have
four additional attributes to specify the transaction type,
phase type, timing annotation, and synchronization return
value.

*e generic payload can be used as a general-purpose
transaction type for abstract memory-mapped bus modeling
or as the basis for modeling a wide range of specific protocols
at a more detailed level. To maximize interoperability be-
tween models, the TLM_Generic_Payload default transac-
tion type should be used with the base protocol. Within
MARTE4SCTLM profile, the TLM_Generic_Payload ste-
reotype specializes the GQAM::GaStep stereotype with a
standard set of attributes (see TLM2 LRM [45] for more
details).

*e Sc_Event stereotype specializes the GCM::DataEvent
stereotype; if the event is a hierarchically named event, the
Boolean attribute isInHierarchy must be set to true. Each
process instance can have its own static sensitivity estab-
lished immediately after its registration. *e Sc_Sensitivity
stereotype maps the semantics of static sensitivity by spe-
cializing GCM::GCMTrigger stereotype; the event attribute
denotes the set of events that would cause a process to be
resumed or triggered.

*e Container stereotype maps C++ container; it spe-
cializes the HLAM::PpUnit stereotype for model
transformation.

5. Evaluation and Results

*is section presents an experimental validation of our
approach through a case study. We discuss how the pro-
posed framework has been applied for a stepwise refinement
of specification models at different abstraction levels.
Metrics are then used for assessing the quality of model
transformations.

5.1. Case Study. We chose to illustrate our proposal with a
very practical case study relating to a reconfigurable active 3-
way crossover. As shown in Figure 12, a crossover is a
network that filters input audio sound signals by frequency,
diverting the low-frequency sounds to a woofer, mid-fre-
quency sounds to a midrange speaker, and high-frequency
sounds to a tweeter. Incorporating the three speakers makes
it possible to have the best sound from the full audio
spectrum.

A 3-way crossover can be performed by means of three
types of pass filters: a high-pass filter (HPF) allows higher
frequencies to pass through the filter, a band-pass filter
(BPF) passes all frequencies between upper and lower fre-
quencies, and a low-pass filter (LPF) allows lower fre-
quencies to pass through the filter. *e finite impulse
response (FIR) filter is used to implement high-pass, band-
pass, and low-pass filters. It is characterized by the number
of taps, the transition frequencies, and the sampling

Figure 11: MARTE4SCTLM profile.
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frequency of the audio signal to be filtered.*e input-output
signal relationship of an N-tap FIR filter is described by the
following equation:

y[n] � 
N−1

k�0
h[k]x[n − k], (1)

where h[k] are the filter coefficients, x[n − k] represent the
input samples, and y[n] is the output signal. Each input
sample is multiplied by a coefficient, and then the resulting
products are added together to give one output sample.
According to the convolution sum formula (1), Figure 12
shows typical FIR filter logical structure. *e set of possible
IP configurations with resource utilization information is
given in Table 3.

Regarding the reconfigurability of the FIR filter, the
dynamism and substitutability of services can be perceived at
two different levels:

(1) Behavioral reconfiguration: Since the different filter
types have the same structure with different be-
haviors, it is possible to implement them by one
reconfigurable component (service provider) able to
substitute functionality dynamically when it is
required.

(2) Architectural reconfiguration: To meet performance
and energy consumption requirements, it is possible
to update the number of filter taps. An N-tap filter
can be substituted by anM-tap filter of the same filter
type. *is is reflected in the hardware by a partial
reconfiguration of the original filter.

5.1.1. Application Model. For reasons of flexibility, the
MARTE4DPR and the MARTE4SCTLM profiles can be
applied to all structural UML diagrams. However, we used
the composite structure diagram to depict the internal
structure of classifiers and their interactions with the en-
vironment, which is suitable for both hardware modeling
and SCA developing. As shown in Figure 13, from a
functional point of view, the simulated active 3-way
crossover is made up of several parts. Two instances of
dynamic and partial reconfigurable FIR filter called Filter#1
and Filter#2 are stereotyped as ReconfigurableUnit. Filter#1
is composed of Controller#1 and Factory#1 components

stereotyped as ReconfigControllerUnit and FactoryUnit, re-
spectively. Factory#1 provides a FIR filter service and its
concrete implementation, namely, 32TapHPF and
64TapHPF products. To handle the execution of its spawned
64TapHPFservice, Factory#1 includes FactProc#1, a dy-
namically schedulable resource stereotyped by Factor-
yProcess. Controller#1 is responsible for managing the
reconfiguration process according to specific protocols re-
lated to the FIR filter reconfiguration modes and the
reconfigurable port connection states. It encompasses a
dynamically schedulable resource stereotyped as Reconfig-
ControllerProcess, enabling the initiation of a reconfigura-
tion process once the rcfgRqst event has been triggered and
service dependencies have been satisfied. Furthermore,
CtrlPro#1 provides specific services to manage publication,
discovery, activation, resumption, and passivation of ser-
vices. Processes embedded within Filter#1 communicate
through stereotyped reconfigurable ports and exports using
interface method calls. Services can be published and dis-
covered by means of a centralized protected passive unit
called Catalog and stereotyped ServiceRegistry. *e Dum-
myAudioDriver and DACStub real-time units emulate be-
haviors of audio driver and digital-to-analog converter unit,
respectively. To avoid cluttering the model, it is worth
mentioning that Filter#2 is structurally identical to Filter#1
but behaves differently by providing other services.*e basic
transport service is provided by the interconnect component
which represents a logical bus abstraction and is stereotyped
asCommunicationMedia. Components can thenmake use of
the transport service via communication ports. When model
elements are refined by applying stereotypes, it becomes
necessary to assign values to their properties. Figure 14
shows Papyrus dialog boxes which enable setting the ser-
vice feature values published in the Catalog.

*e modal behavior of a reconfigurable component
can be modeled by a state diagram where a mode rep-
resents a particular configuration. A mode transition can
be produced in response to a trigger related to an event
verifying the reconfiguration conditions. Figure 15 shows
that a filter has three possible modes: HighPass, LowPass,
and BandPass for which a reconfiguration is triggered
when the corresponding condition is verified. A filter can
be implemented as N-tap or M-tap depending on the
required performance level. It can be dynamically
switched from one mode to another.
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5.1.2. Execution Platform and Mapping Model. Within
MARTE, hardware platform can be modeled through two
complementary views: a logical view that distinguishes
hardware resources according to their functional role
and their provided/required services; a physical view that

is interested in their physical properties including
shape, size, position, power consumption, and heat
dissipation. Since logical and physical views converge
on many concepts, they could be merged into a unified
view.

Table 3: FIR filter configurations set.

Config Taps Multipliers Channels Coef_Width LUTs SysMem_EBRs Registers Dsp_Slice
#1 24 6 1 32 241 4 272 1
#2 32 8 1 32 201 4 303 9
#3 32 32 1 32 202 2 199 6
#4 48 12 1 32 246 4 281 1
#5 64 1 4 32 242 3 306 6

Figure 13: High-level abstract view.

Figure 14: Assigning values to service attributes.
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As depicted in Figure 16, the Active3WayCrossover
component is refined into more specialized one by applying
the HwComponent and the FPGA stereotypes. *e com-
ponent is a card with physical properties such as the Car-
tesian dimensions, the associated rectilinear grid, and the
environmental requirements. *e FPGA stereotype specifies
a fine-grained reconfigurable architecture with runtime
relocation ability. *e DPR is carried out using partition-
based design flow through ICAP interface. *e spatial
distribution of reconfigurable regions is defined by the re-
gions multivalued attribute. *e component is annotated by
the number of LUTs, inputs of a LUT, and flip-flops. *e
owned computing blocks and the range of supported fre-
quencies are also specified. Filter#1 is stereotyped as
ReconfigHwComponent; it is a dynamically and partially
reconfigurable chip characterized by layout and power
properties including its position, static consumption, and
static dissipation. Factory#1 subcomponent is stereotyped
with HwComputingResource and ReconfigHwComponent
denoting an active execution resource dynamically recon-
figurable. However, the HwComputingResource and
HwComponent stereotypes are applied to Controller#1 to
capture the resource processing capabilities within a con-
tainer.*e Catalog component is stereotyped as HwMemory
and HwComponent to describe a data storage resource
offering read/write services. *e interconnect component is
stereotyped as HwBus and HwComponent; it defines par-
ticular hardware media (channel) characterized by its ad-
dress and word widths, its temporal properties, and
transmission mode.

5.1.3. SystemC/TLM Simulation Model. A SystemC/TLM
simulationmodel is obtained by applying theMARTE4SCTLM
profile to the allocation model as depicted in Figure 17. *e
top-level component Active3WayCrossover is stereotyped as
Sc_Module; its isMain attribute is set to true meaning that the
module will be instantiated within sc_main function.

To construct the module hierarchy, the Sc_Module
stereotype is applied to Filter#1 component to create a
submodule within the parent module. Its role attribute is set

to target specifying that the module will act as a target in
TLM modeling. *e variables and helpers attributes are part
of data members and member functions to be declared
within the Sc_Module. Factory#1 and Controller#1 nested
components are also stereotyped as Sc_Module. *e former
contains a special member function called 64TapHPF ste-
reotyped as Sc_Spawned and Sc_8read to handle the cre-
ation of a spawned process instance called from a thread
process, and the latter holds a member function stereotyped
as Sc_*read to map the control service. *e 64TapHPF
function is dynamically spawned from FactProc#1 thread
andmay be substituted by the 32TapHPF function according
to the sensitivity list. Ports and exports are, respectively,
stereotyped as Simple_Initiator_Socket and Simple_-
Target_Socket to support both forward and backward paths
corresponding to a sequence of method calls. Once the
TLM_Fw_Transport_If stereotype is applied, its attributes
must be explicitly initialized, which enables capturing rel-
evant information for automatic code generation later, as
described in Figure 18. *e DACStub is stereotyped as
Sc_Module and plays the role of initiator. Finally, the
Catalog is stereotyped as Container to specify a data
structure providing management and access functions.

5.1.4. Automatic Code Generation. *e concept of trans-
formation is fundamental toMDE; it consists of a refinement
process decreasing the abstraction level of models by adding
enough details to mapped models for automatic code
generation. Depending on the nature of the target model, it
is possible to distinguish between model-to-model (M2M)
transformations and model-to-text (M2T) transformations.
To implement our toolchain, we combined a M2M trans-
formation to produce a SystemC/TLM target model from a
MARTE4DPR source model with a M2T transformation to
translate the previously produced model into a SystemC/
TLM source code.

In our framework, M2M transformation is expressed by
means of the Atlas Transformation Language (ATL): a
domain-specific language and toolkit developed on the top
of Eclipse platform. *e input model precisely specified in

Figure 15: Filter structural/behavioral reconfiguration.
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Figure 16: Merged logical physical view.

Figure 17: SystemC/TLM simulation model.
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the MARTE4DPR metamodel is transformed into a target
model that conforms to SystemC/TLM metamodel by fol-
lowing a common model transformation pattern. Eclipse
Modeling Framework (EMF) provides support to create and
instantiate ecore metamodels. In Figure 19, we used the EMF
tree-based editor to show a part of the hierarchy of the
MARTE4DPR metamodel with a conforming model
instance.

Since ATL is a textual rule-based language, the gen-
eration of SystemC/TLM model elements is performed by
applying declarative rules written at the metamodel level.
In order to specify these matched rules, it is necessary to
find similarities between source and target model con-
cepts to relate the metamodels. Despite semantics vari-
ations between UML and SystemC, it is still possible to
reduce the gap by building a mapping relationship of
similar elements between UML/MARTE, MARTE4DPR,
and SystemC/TLM.

*e mapped concepts have been chosen so that they are
semantically close to one another. In the context of DPR, the
convergence between UML/MARTE and SystemC/TLM can
be achieved through MARTE4DPR profile because of its
conformance with UML/MARTE on the one hand and to the
common domain of interest with SystemC, i.e., the real-time
and embedded domain, on the other hand. Table 4 shows the
mapping from UML, MARTE, and MARTE4DPR concepts

into SystemC/TLM ones, taking into account DPR structural
and behavioral semantics.

Once the declarative rules are triggered, the MAR-
TE4DPR model elements should be matched and navigated
in order to create and initialize the elements of the target
model. As depicted in Figure 20, the ATL transformation
module is composed of helpers, model elements, and standard
matched rules (written in declarative style). Both isSpawned
and isDynamic helpers are defined in the context of the
FactoryProcess element and used to calculate Boolean values
stating whether a factory process is dynamically spawned.*e
ReconfigurableUnit2SCModule rule is intended to generate
SystemCmodule from a reconfigurable unit. *e attributes of
the generated Sc_Module are initialized using bindings. Other
transformation rules as well as the generated SystemC/TLM
model are presented in Appendix A.1.

Now that the semantics is precise enough, the applica-
tion code can be generated by transforming models into
textual artifacts. A template-based M2T transformation is
specified and built with the Acceleo language. *is trans-
formation specification is structured into two modules that
generate SystemC/TLM source code and C++ abstract
factory pattern implementation.

*e first generation engine takes as input the previously
produced SystemC/TLMmodel which is in compliance with
the metamodel shown in Figure 21. An Acceleo module

Figure 18: Assigning values to the TLM_Fw_Transport_If stereotype attributes.
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contains templates made up of static and dynamic parts
specifying text files with placeholders to be filled with data
extracted from the input model. Figure 22 depicts a part of a
related template used for generating the object hierarchy
within a SystemC module.

*e second engine is dedicated to the code generation of
business logic according to the abstract factory design
pattern. *e generated code contains template classes and
services declaration to be paired with code files (refer to
Appendix A.2).

5.2. Experimental Results. Benefiting from the advantages of
Eclipse-based tools, our framework offers facilities for
graphical expressiveness with highly customization, exten-
sibility, reusability, and maintainability capabilities.
*rough more than 50 new stereotypes to cover missing

DPR concepts and SystemC/TLM constructs inMARTE, the
proposed extensions should ensure the profile completeness
with almost no modeling overhead. Furthermore, Papyrus
tool provides extensive support facility for defining and
applying increments conforming to the UML/MARTE
standard. Existing tools and knowledge can be reused, thus
reducing learnability effort and tooling cost. In order to
demonstrate the effectiveness of the proposed framework
with regard to produced artifacts, a comparative analysis
between the automatic code generation and hand-coded
implementation of the system is proposed. *e performance
was measured on a Intel(R) Core (TM) i5-8265U running at
1.6GHz with 4GB RAM under Windows 10. Table 5
summarizes the quantitative evaluation of the hand-coded
implementation of the system calculated with LocMetrics
tool [46]. *e system implementation has a total of 1256
lines of code spread over 6 source files requiring 6.041

Figure 19: *e MARTE4DPR metamodel (left) and the application model (right).
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person-months of development effort. With a measured
value of 117 for the cyclomatic complexity, the code appears
to be very difficult to maintain and test. In addition, hand
coding is well known to be a very tedious, error prone, and
time-consuming process.

For assessing the internal quality of ATL model trans-
formation, we used a set of specific metrics based on quality
attributes introduced in [47, 48]. *ese latter include inter
alia understandability, modifiability, reusability, modularity,
completeness, consistency, and complexity. We observe in

Table 6 that only 286 lines of code are required to perform
the transformation, making it more understandable,
more modifiable, and less complex. *ere are 26 matched
rules each linked to an input element and 2 helpers with a
low complexity code. *e input/output metamodels
coverage rate is high (96.29% and 100%, respectively),
which is a good indicator of the model transformation
completeness. *e transformation is specified in a de-
clarative style hiding details of encoding relations be-
tween source and target patterns. *is should increase the

Table 4: Concept mapping.

UML concepts MARTE concepts MARTE4DPR concepts SystemC/TLM concepts
Active class HLAM::RtUnit {isDynamic�true} ReconfigurableUnit SC_Module
Active class HLAM::RtUnit {isDynamic�true} FactoryUnit SC_Module
Active class HLAM::RtUnit {isDynamic�true} ReconfigControllerUnit SC_Module
Operation, StateMachine SRM::. . .::SwSchedulableResource FactoryProcess SC_*read, SC_Method
Operation, StateMachine SRM::. . .::SwSchedulableResource ReconfigControllerProcess SC_*read, SC_Method
Port GCM::ClientServerPort ReconfigurablePort TLM_Initiator_Socket

TLM_Target_Socket
Interface GCM::ClientServerSpecification ClientServerSpecification SC_Interface
Class HLAM::PpUnit ServiceRegistry C++ Container
BehavioralFeature HLAM::RtService IPCoreService C++ Function
DataType VSL::DataTypes::TupleType ServiceDescriptor C++ Tuple
Message GQAM::. . .::GaStep Payload TLM_Generic_Payload
Class, connector SRM::. . .::MessageComResource MessageComResource SC_Prim_Channel
Event GCM::DataEvent DataEvent SC_Event
Trigger GCM::GCMTrigger GCMTrigger SC_Sensitive
Class HRM::HwLogical::. . .::HwPLD FPGA SC_Module
Class GRM::Resource {isActive�true} Resource SC_Module
Class HRM::. . .:: HwComponent ReconfigHwComponent SC_Module
BehavioralFeature GRM::GrService GrService C++ function

Figure 20: Fragment of the ATL transformation module.
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understandability and modifiability of transformation
algorithms.

As depicted in Figure 23, the results suggest that our
approach requires fewer LOC and therefore less development
effort than hand coding. Moreover the increase of total LOC
according to the number of components in the system is

much lower in our approach than in hand coding. Similar
results are provided when analyzing the relationship between
LOC and the number of reconfigurations (see Figure 24).

*e Acceleo built-in profiler gives the ability to keep
track of evaluations and identify bottlenecks in generation
process. As shown by the profiling data in Figure 25, the time

Figure 21: SystemC/TLM metamodel.
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spent on generating source code for two reconfigurable
components is 336ms, while less than 90 s is required to
customize and adjust it to meet the final application
requirements.

Aligning MDE practices with the fundamental concepts
of SW/HW codesign leads to a shorter and less expensive
development life cycle, compared to traditional approaches
(see Figure 26). *e semantic enrichment of models by
additional annotations and constructs to perform trans-
formations results in an elongated application/execution
platform modeling phase. On the other hand, by starting the
automation process, the entire life cycle will be impacted and
the following phases will be logically shortened. *us, the
accurate models obtained previously help to save develop-
ment time and reduce the effort of the implementation

Figure 22: Part of the template for SystemC/TLM code generation.

Table 5: *e measurement results of the hand-coded
implementation.

Metric Value
Source files 6
Directories 2
LOC, lines of code 1256
BLOC, blank lines 91
SLOC-P, physical executable lines of code 1024
SLOC-L, logical executable lines of code 759
McCabe VG complexity 117
C&SLOC, code and comment lines of code 79
CLOC, comment only lines of code 141
CWORD, commentary words 1272
HCLOC, header comment lines of code 12
HCWORD, header commentary words 27

International Journal of Reconfigurable Computing 23



compared to manual coding. Transparent design-runtime
traceability information provides a sound support for ar-
tifacts tracking and verification. Indeed, a SystemC class can
be traced back to its UML/MARTE stereotyped class
allowing easier verification and test automation with faster

feedback on performance analysis. A code customization
phase may be required to adjust and update the generated
code according to different design requirements. As we
expected, despite requiring a little more modeling effort, our

Table 6: Evaluation of the ATL transformations.

Metric Value
Quality attributes

A1 A2 A3 A4 A5 A6 A7
# lines of code 286 + + −

# lines of comments 8 +
Balance of a unit 1 + + +
# matched rules 26 + + −

# lazy matched rules 0
# called rules 0
Average number of bindings per rule 3.42 + + − +
# rules with a filter condition on an input pattern 1 + +
Rule complexity increase 0.69 + −

# helpers 2 + + −

# calls to OCL functions 1 + +
Average helper cyclomatic complexity 1 +
# input models 1 + + −

# output models 1 + +
Input metamodel coverage 96.29 + +
Output metamodel coverage 100 + +
Transformation approach Declarative + + −

A1: understandability; A2: modifiability; A3: reusability; A4: modularity; A5: completeness; A6: consistency; A7: complexity; +: positive effect; −: negative
effect.
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Figure 23: Relationship between LOC and the number of
components.
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Figure 24: Relationship between LOC and the number of
reconfigurations.
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approach results in average time savings of 33% with sig-
nificant design productivity gain.

6. Conclusion

In this paper, we have presented a high-level modeling
framework for Dynamically Reconfigurable Systems-on-
Chip targeting SystemC at transaction level. To better le-
verage software engineering solutions in terms of dynamic
availability and service adaptation support, a service-ori-
ented component-based approach was applied to DRSoC
modeling. For this purpose, we have proposed an MDE-
based design flow using extended MARTE models as initial
specification. *e latter are progressively refined to reach a
SystemC/TLM executable code.

One of the main contributions of this work is the ex-
tension of MARTE profile with missing modeling capabil-
ities. Indeed, although dedicated to model-driven
development of embedded systems, MARTE needs to be
specialized with both DPR and service orientation seman-
tics, which has been realized in the MARTE4DPR profile.
Several packages modeling both hardware platforms and
software applications are involved in the extension.

Corresponding MARTE stereotypes are then sufficiently
refined for precise and complete DPR and SCA domain-
specific concept modeling. In addition, MARTE stereotypes
have been further specialized to bridge the gap between
higher-level specifications and lower-level SystemC/TLM
implementation giving rise to the MARTE4SCTLM profile
while ensuring consistency from design to runtime.

Concretely, to provide automation for modeling
reconfigurable SoCs and speed up simulation model gen-
eration, a completely integrated Eclipse toolchain was built
to ensure support for creating and editing models, applying
profiles, and executing transformations for code generation.
Moreover, to perform the required model transformations, a
set of rules expressed in ATL and specified in declarative
style was provided. *e final output is produced instantly
through an Acceleo template-based code generation.

In order to assess the proposed framework, our choice
fell on the specification of a reconfigurable active 3-way
crossover. Particular emphasis was given to the modeling of
FIR filter reconfiguration features through different views
and detail levels as well as code generation. Profile exten-
sions supply the standard with a complete set of stereotypes
and tagged values, undeniably bringing more expressiveness
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Figure 25: *e generation process profiling results.
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and completeness to the models. Successive model trans-
formations maintaining traceability between artifacts result
in decreasing significantly design complexity and develop-
ment effort.

In future work, we aim to improve our framework by IP-
XACT modeling capabilities for component description
which is very useful for dynamic service discovery and
service reuse modeling. *e conflict between predictability
and dynamism in service component architecture will be
considered to ensure system correctness. Further, we intend
to integrate our framework into vendor tools to implement
DPR features on specific FPGAs and benefit from inter-
operability, scalability, substitutability, low maintenance,
and rapid prototyping of SCA in DRSoCs, thus extending
our transformation chain to reach an accurate RTL model
for reconfigurable component implementation through
MDE principles. Some challenges related to DPR can be
addressed at high abstraction level by enriching the
framework back end with the necessary profile extensions,
metamodels, and transformation rules for intelligent DPR
control, resource partitioning, task scheduling, and context
saving/restoring. *e integration of our framework with
vendor tools should allow us to better address low-level

device dependent operations such as decoupling logic,
placement and routing, and bitstream relocation. Naturally,
having more detailed models at lower levels of abstraction
will come at the cost of faster simulation speed and earlier
availability.

We also plan to explore the potential of an emerging
approach called big service to address the challenges of
adaptive services in the context of Dynamically Reconfig-
urable Systems. Indeed, big service is a complex and evolving
service ecosystem that deals with the Big Data [49]; it allows
dynamically creating composite services based on customer
requirements specification across various domains, net-
works, and cyber-physical worlds.

Appendix

A. Code Generation Process

A.1. ATL Transformation Rules and Model Generation.
Figures 27 and 28, respectively, show some transformation
rules and a part of the generated SystemC/TLM model in
XMI format whose semantics is sufficiently specified to have
a better code quality later.

Figure 27: Some ATL transformation rules.
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A.2. Business Logic Code Generation. At elaboration time,
modules, ports, primitive channels, and simulation pro-
cesses are created and connectivity is established. *us,
SystemC does not support the dynamic creation or modi-
fication of the module hierarchy once the elaboration phase
has been completed.

When called from the callback end_of_elaboration or
during simulation, the sc_spawn function allows the crea-
tion of dynamic process instances; these can also be dy-
namically destroyed during simulation. With dynamic
process facility, it would no longer be necessary to

preallocate a number of statically defined processes to
support the maximum number of possible configurations
[44].

It is perfectly appropriate to associate the abstract factory
creational pattern with the spawned processes to generate
the factory unit of a reconfigurable component. Indeed,
abstract factory allows dynamically loading a set of related
IPs without explicitly specifying their implementation.
Technically, abstract factory is paired with any desired
concrete factory to create particular instances at runtime.
Different behaviors are then generated by delaying the

Figure 28: A part of the generated SCTLM XMI Model (a part).
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production choice until the instantiation time. By fo-
cusing on product interfaces instead of their imple-
mentations, applications remain loosely coupled and
platform independent.

In order to accurately simulate the FIR filter dynamic
reconfiguration, the authors should be able to use the rel-
evant filter factory (32TapFirFactory, 64TapFirFactory, etc.)
without knowing which filter implementation (32TapHPF,

Figure 29: Abstract factory metamodel (left) and instantiated FIR filter model (right).
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64TapHPF, etc.) will be used in the factory unit. *e met-
amodel and a conformed model instance presented in
Figure 29 are used as inputs for the transformation engine.
Figure 30 depicts the template used for this purpose.

Data Availability

*e MARTE4DPR and MARTE4SCTLM profiles, meta-
models, and templates used to support the findings of this
study are available from the corresponding author upon
request.
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