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This study investigated the development of five secondary mathematics teachers’ 

conceptualizations of different forms of complex numbers through quantitative reasoning in a 

PD program. We report from the pre and post-written sessions with the post-interview data 

upon completion of a PD. Results showed that all the participants could relate the formal 

definition of complex numbers with the roots of quadratic equations both algebraically and 

geometrically. Participants could also explain the Cartesian and polar form relationship using 

vectors by mentioning the roots of quadratic equations. They further explained the Euler form 

by pointing out that the polar form of any complex number on a circle determines a function of 

Θ from R to C. These results suggest that quantitative reasoning might lay a foundation for 

connecting different forms of complex numbers.  
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Background 

From the early grades towards higher education, understanding numbers is essential in learning 

mathematics and science concepts. Specifically, researchers stated that a complete conception 

of complex numbers necessitates geometrically thinking of a complex number as a point on the 

complex plane and a vector (Fauconnier & Turner, 2002). Also, algebraically, “a complex 

number should be conceptualized as one number, i.e., the expression a+ib is a single entity 

combining a real number and an imaginary number” (Nordlander & Nordlander, 2012, p. 633) 

such that they are mathematical objects in a well-defined set consisting of elements of the same 

kind or a particular category (Sfard, 1991). Researchers also pointed out that a robust 

conception of complex numbers includes knowing the algebraic and geometric representations 

of the Cartesian, polar, and exponential forms, making sense of their connections, and the 

flexibility among them (Karakok et al., 2015). Similar to Turkish curricula, Hodgen et al. (2010) 

pointed that several OECD countries such as Singapore, Japan, and the USA cover complex 

numbers as a subject in the later years of high school to prepare learners for college-level 

mathematics courses. 

However, research studies indicated that secondary teachers (Conner et al., 2007; Karakok et 

al., 2015) have difficulty in understanding complex numbers. Specifically, working with three 

secondary school mathematics teachers on their connections of Cartesian, polar, and 

exponential forms of complex numbers, Karakok et al. (2015) showed that one teacher had 

difficulty visualizing complex numbers as points on the complex plane. Similarly, once she 

needed to represent ‘i’ as a point, “..she was hesitant whether it was located one unit up from 

the origin…” (p. 339). Also, two teachers “…both had difficulties relating ….vector 

representations of the Cartesian form” (p. 345). Furthermore, one teacher “did not recognize 

how and why 𝑟𝑒𝑖𝜃 represents a complex number or what the symbols represent” (p. 340). 
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Similarly, prospective teachers did not reconnect complex numbers to the roots of quadratic 

equations (Conner et al., 2007). Mathematics teachers are key in the preparation of students for 

their careers (NCTM, 2000). Therefore, they need to have an " awareness of how mathematical 

topics are related over the span of mathematics included in the curriculum" (Ball et al., 2008, 

p. 403). Specifically, it is important for teachers to have understanding of complex numbers 

(Karakok et.al., 2015). 

We propose that while developing teachers’ conceptions of complex numbers, quantitative 

reasoning might provide a robust thinking process for teachers. Johnson (2016) pointed the 

importance of quantitative reasoning in science and mathematics-related ideas. Thompson 

(1990) defined quantitative reasoning as a person’s “analysis of a situation into a quantitative 

structure” (p. 13). From Thompson’s (1994) perspective, “quantities are conceptual entities” 

such that “ a person is thinking of a quantity when he or she conceives a quality of an object in 

such a way that this conception entails the quality’s measurability” (p. 184). We regard complex 

numbers as a union of two quantities as directed distances obtained from the analysis of a 

situation (a mathematical object such as quadratic functions) into a network of quantities, which 

are the roots and the abscissa of the vertex as distances to the origin and quantitative 

relationships. By quantitative relationships, we mean how the roots and abscissa of the vertex 

position on the number line as a point and as a distance and relate to each other. Based on the 

aforementioned studies and the theory of quantitative reasoning, Saraç and Karagoz Akar 

(2017) studied a prospective teacher's development of the Cartesian form of complex numbers. 

Results showed that the prospective teacher could conceptualize complex numbers as a single 

entity, an element of a well-defined set. Notably, she conceptualized complex numbers as the 

set of the roots of any quadratic equation with real coefficients.  

Building on and extending previous research on complex numbers through quantitative 

reasoning, quadratic equations might be a starting to build up complex numbers. Further, this 

might help develop teachers' connections among different forms (Cartesian, polar and Euler 

forms) of complex numbers and also different representations (algebraic and geometric) of 

these forms (See Figure 1) by reasoning quantitatively.  

 

Figure 1: Different representations of the forms (Karakok et al., 2015, p.329) 

Thus, in this study, we investigated secondary school mathematics teachers’ conceptualization 

of complex numbers by focusing on the following research question: How do secondary school 

mathematics teachers conceptualize the connections among Cartesian, polar, and Euler forms 

of complex numbers through quantitative reasoning? 

Method 

This study was part of a design-based research, a Teacher Development Experiment study 

(TDE), which mainly focused on teachers' professional development (PD) for the progression 



of the content knowledge of complex numbers. TDEs consist of both classroom teaching 

experiments and (multi) case studies (Simon, 2000). In this paper, we reported from the multi-

case study focusing on teachers’ existing knowledge base upon completion of the PD. The PD 

involved four teaching sessions between 120 and 150 minutes. The first two sessions were about 

the Cartesian form of complex numbers in relation to quadratic equations through quantitative 

reasoning (Saraç & Karagoz Akar, 2017), the third one was on polar form, and the last session 

was on Euler form. Each form was introduced by linking it with the forms that were discussed 

in the previous sessions. As the nature of DBR studies, the PD dwelled on the theory of 

quantitative reasoning by considering complex numbers in a quantitative structure as a union 

of two quantities, which are directed distances and the roots of any quadratic equation with real 

coefficients.  

Participants were five mathematics teachers who were graduates of a secondary school 

mathematics education program with two to ten years of teaching experience. Before the PD, 

ten teachers completed a pre-written session on complex numbers. They were asked to 

algebraically and geometrically define quadratic functions and equations, different forms of 

complex numbers, and vectors. Based on the preliminary analysis of the pre-written session, 

eight participants were purposively selected based on the following criteria: They knew 

quadratic functions and defined and expressed vectors, which were considered background 

knowledge. However, they did or did not state complex numbers in the cartesian form, polar, 

and Euler forms and did not explain the relationship between different forms, which were 

considered as the pedagogical goals (Simon, 2000). Nonetheless, five participants declared their 

availability to attend the study. After the completion of PD, a post-written session was 

conducted. Then, video-recorded semi-structured interviews were carried out by the researcher 

who also implemented the PD to collect data about how the participants conceptualized the 

connections among different forms of complex numbers. Interviews lasted about 30 min. to 45 

min. The written artifacts from participants were also collected.  

The constant comparative method (Clement, 2000) was carried out for data analysis. To 

characterize how teachers conceptualize the links between different forms of complex numbers, 

the research team collectively read the participants’ written responses and transcripts of all the 

interviews, watching the video recordings when necessary. The unit of analysis was the 

participants' statements in the transcripts ranging from a sentence to a whole paragraph on each 

interview question. We did the analysis using the constructs of quantitative reasoning. The 

analysis focused on how the teachers were making sense of complex numbers quantitatively 

and explaining the connections between different forms. We analyzed the data first for each 

participant and then for each question from different participants. Comparing and extracting the 

commonalities and differences among the thinking processes of different participants, we wrote 

narratives about how they conceptualized different forms of complex numbers through 

quantitative reasoning.   

Results 

In this section, we report on teachers' definitions of complex numbers, their explanations of the 

relationships between Cartesian and polar forms, and the relationships between the polar and 

Euler forms. In Figure 2, we share the codes and corresponding sample data that emerged from 



participants' written artifacts. In the following sub-sections, we also depict particular 

participants’ reasoning from interview data to provide detailed explanations.  

 

Figure 2: Codes and corresponding sample data 

Defining complex numbers 

In this section, we report on teachers’ definitions of complex numbers. As Figure 2 showed, all 

the participants formally defined complex numbers in the form of x+iy where x, y ∈R. They 

also defined complex numbers as the roots of quadratic equations with real coefficients. More 

interestingly, they made the connections between the two definitions both algebraically and 

geometrically. Below, we provide a participant’s, T5, reasoning from the interview. When 

asked how she would define complex numbers, T5 stated, "We can define complex numbers as 

the roots of quadratic equations... But of course, we state the format of numbers as the 

following: the numbers that can be written as a+ib where a and b are real numbers." 

When asked about the relationship between these definitions, she clarified her statement about 

the coefficients and stated:  

T5: Let’s say x+iy to be more accurate because a and b we’re talking about, these 
are the coefficients in a+ib... They are not the real coefficients of the second-
degree equations (Referring to 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. Therefore, if I say x+iy it 
will not be confusing. So x is -b/2a, and y is √(−𝛥)/2a so the format of the 
root of quadratic equations can be written as -b/2a±√−1√(−𝛥)/2a.. 

She also sketched a 3D figure and placed the roots on the figure as follows: 



 

Figure 3: T5’s placing  (-b/2a,0 )and (0,±.√−𝜟/2a) on the Complex plane. 

These data showed that T5 comprehended the formal definition of complex numbers regarding 

the general form of the roots of quadratic equations. Specifically, she stated that "x" in the 

expression x+yi refers to “-b/2a” and “y” refers to “√(−𝛥)/2a” when compared to the roots of 

quadratic equations. T5 also mentioned geometric meanings of “x” as the abscissa of the vertex 

of the parabola and “y” as the distance between one root and the abscissa of the vertex of the 

parabola. She also showed the x and y components as points on the imaginary and real axis in 

the figure. 

Relationship between Cartesian Form and Polar Form 

As Figure 2 depicted, the codes and the corresponding sample data that emerged from 

participants' explanations showed that all participants except T3 could relate these two forms 

using vectors. Below, we provide T4's explanations from the interview as she provided detailed 

reasoning in her response. T4 drew and wrote down the following (See Figure 4a,b,c) about the 

polar form.  

 

a     b     c 

Figure 4: T4’s written work for polar form 

As shown in Figure 4, T4 stated the polar form of complex numbers relating the components 

“x” and “y” in the Cartesian form with |z|.cosΘ and |z|.sinΘ in the polar form, respectively, by 

pointing to the possible values of Θ and |z|. She also stated that depending on the changes in Θ, 

she could think of the maximum and minimum values of cosΘ and sinΘ as 1 and -1, 

respectively. Then, stating, "…but when we multiply with |z|, positive for instance, again we 

get a real number. Actually, that is why we say x and y are real numbers...”, she could obtain 

any value of "x" and "y" as real numbers. This showed that she could explain why "x" and "y" 

are real numbers using the polar form. When further probed, she explained:  

T4: If the angle is 0, the point is on the real axis. If I form an angle, if there exists 
an angle, I can always find the cosine and sine values in the right triangle. 
Actually, after writing the cosine and sine in the right triangle I write in this 
form (referring to |z|.cosΘ and i|z|.sinΘ) but when I separated the components 
as vectors actually there is a direction on real axis and there is a direction in 
the imaginary axis. If I think like a vector, as u and v being added end -to-end 
as many as that (pointing to |z|.cosΘ and |z|.sinΘ) I can write these two 
components. According to the angle, its adjacent part is cosine and the 
opposite part is sine therefore, let’s call |z| or r, r (cosΘ+isinΘ), we might 
think why “i”, but I transit from real to imaginary axis, so I first multiply with 
“i”. Therefore, I show i.sinΘ, and they become cis. If I calculate little by little, 



our vector is 1 in here, “i” in here (referring to unit vectors on the axes). As 
far as the distance of this point (z) over there, it becomes this one such as this 
point’s (referring to (|z|, Θ) projection on x axis is this (referring to |z|.cosΘ), 
on y axis is this (|z|.sinΘ )… I do vector addition. Okay, I will say 1 to this 
(referring 1 on the real axis). I add the vector “1” as much as |z|.cosΘ and I 
make the x component from here, when I express it in binomial form it 
becomes |z|.cosΘ. In here x and y parts (pointing to x+iy) so they correspond 
to -b/2a and (√(4𝑎𝑐 −  𝑏^2))/2𝑎 respectively… 

Importantly, data showed that T4 justified the polar form by considering vectors. Specifically, 

taking first the angle Θ as zero, she considered the x component as a point on the real axis 

having a magnitude and direction. Notably, she considered x made up of iterated additions of 

unit vector 1 until |z|. cosΘ. Similarly, she considered y as a point on the imaginary axis having 

a magnitude and direction where she considered y (i.e., |z|.sinΘ) as iterated additions of unit 

vector i, with magnitude 1. This allowed her to reason that z is a vector and further yielded her 

thinking that the “+” sign refers to the vector addition. Therefore, she thought of “x” and “y” 

components of complex number z both geometrically as points on the related axes having 

distances to the origin; and algebraically referring to “-b/2a” and  “(√(4𝑎𝑐 −  𝑏^2))/2𝑎”, and, 

|z|. cosΘ and |z|.sinΘ in a related way. This suggested she conceived a complex number z in a 

quantitative structure, referring to simultaneously algebraic and geometric (points and vectors) 

representations.  

Relationship between Polar Form and Euler Form 

As the codes and the corresponding sample data in Figure 2 showed, all the participants except 

T3 could relate polar and Euler forms using function ideas. Below, we again provide data from 

T4’s interview, where she explained her detailed reasoning about what she wrote in the post-

written session (see Figure 2). When asked, T4 first mentioned all the participants' discussions 

in PD. She stated that when asked whether the complex number in polar form (referring to 

Figure 4a) could determine a function, they first thought about x and y values in the Cartesian 

plane making up a circle. This led them to decide that the values would not determine a function. 

She further commented that they need to consider the relationship between the variables in the 

Complex plane. Specifically, she knew that the variables she was working with were Θ and the 

ordered pair (|z|.cosΘ, |z|.sinΘ). Her consideration of the correspondence of the points from a 

point to plane leveraged her reasoning that the relationship between variables represents a 

function. This is important because her thinking suggests that she conceived the ordered pair 

(|z|.cosΘ, |z|. sinΘ) as one and only one entity. She also knew that the values of Θ were real 

numbers. Then she continued commenting on her written work: as follows:  

R: …In here you have a statement like this “z∈R→ C1” can you explain this? 
T4: If I determine the region accordingly, and say the regions the complex number 

might be located on, I create a small set. When I think of the unit circles 
infinitely many points might be located on and extend these circles I can 
construct complex number set. When I say C1, I get the circle according to 
the complex number that I choose…I determined one point for instance 
according to z let’s say this point. The locations that the point might be is here 
according to radius and Θ…Therefore, if I define a small set I can call this 
one as C1. In this way, the values of |z| are from zero to infinity. Starting from 
the beginning, I can actually scan an infinite number of circles like this. We 
can say circles or interior circles. The union of these infinitely many C’s 
construct the complex number set... 



R: Okay, can you tell us again how this constructs a function?  
T4: According to the Θ value, Θ value in here it goes to |z|.cosΘ  or |z|.sinΘ. Right 

now, according to the value of Θ, I determine two values, “x” and “y”. 
Therefore, in here the variable for me is Θ. Then, I can define the function 
that sends Θ to (cosΘ, sinΘ). 

Here, she further thought about the range of the function in the Complex Plane such that she 

knew that the points in the range form a particular set, C1, depending on the radius of the circle. 

She also indicated that as the radius changes, increasing from 0 to infinity, the circles get bigger. 

This resulted in her thinking that these points on infinitely many circles form the Complex 

Plane. This suggested that the circles referred as C1 also changes, which further indicated that 

she thought of the Complex Plane as a union of circles. 

Conclusion and Discussion 

Results showed teachers conceptualized complex numbers as a quantitative structure, allowing 

them to make sense of each form both algebraically and geometrically and conceptualize 

relationships among them. Notably, teachers conceptualized the formal definition of complex 

numbers in terms of the roots of quadratic equations (Saraç & Karagoz Akar, 2017), both 

algebraically and geometrically, which allowed them to comprehend complex numbers as the 

elements of a well-defined set (Sfard, 1991). Also, teachers conceived a complex number z as 

a union of two directed distances. This enabled them to think of the Cartesian form of complex 

numbers as vectors, leveraging their thinking about the Cartesian and polar forms concurrently 

and relatedly. Previous research reported that teachers did not link quadratic equations with 

complex numbers (Conner et.al., 2007) and had difficulty thinking about the Cartesian form's 

vector representations (Karakok et.al., 2015). In this study, teachers’ reasoning quantitatively 

to relate quadratic equations and vectors, except T3, to make sense of different forms of 

complex numbers was important as teachers’ awareness of how mathematical ideas are related 

within the horizon of mathematics is necessary (Ball et al., 2008, p. 403). T3’s difficulty might 

stem from her lack of knowledge on vectors. Also, Karakok et al. (2015) proposed that function 

ideas are essential in learning complex numbers. Supporting their claim, results showed that 

teachers made sense of the Euler form of complex numbers by thinking about the polar form as 

a function of the angle a complex number makes with the positive real axis. We conclude that 

quantitative reasoning is propitious for further productive meanings on complex numbers. We 

propose to research to determine learning trajectories on each form of complex numbers and 

other concepts, such as constructing a complex plane through quantitative reasoning. 
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Saraç, M., & Karagoz Akar, G. (2017). A Prospective Secondary Mathematics Teacher’s 

Development of the Meaning of Complex Numbers Through Quantitative Reasoning. In E.  

Galindo, & J. Newton, (Eds.), Proceedings of the 39th annual meeting of the North American 

chapter of the international group for the psychology of mathematics education, (pp. 267–

271). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educator. 

Simon, M. (2000). Research on mathematics teacher development: The teacher development 

experiment. In A. Kelly, & R. Lesh (Eds.), Handbook of research design in mathematics 

and science education (pp. 335–359). Lawrence Erlbaum Associates Publishers. 

Thompson, P. W. (1990). A theoretical model of quantity-based reasoning in arithmetic and 

algebraic. Center for Research in Mathematics & Science Education: San Diego State 

University.  

Thompson, P. W. (1994). The development of the concept of speed and its relationship to 

concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative 

reasoning in the learning of mathematics (pp. 179–234). SUNY Press.  

http://sigmaa.maa.org/rume/crume2007/papers/conner-rasmussen-zandieh-smith.pdf
https://doi.org/10.1007/s10857-014-9288-1
https://doi.org/10.1080/0020739X.2011.633629

	Knowledge of different forms of complex numbers through quantitative reasoning: The case of teachers
	Method
	Results
	Defining complex numbers
	Relationship between Cartesian Form and Polar Form
	Relationship between Polar Form and Euler Form

	Conclusion and Discussion
	Acknowledgment
	References


