
HAL Id: hal-04407491
https://hal.science/hal-04407491

Submitted on 20 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Duality of Privacy and Fairness
Mário S. Alvim, Natasha Fernandes, Bruno D Nogueira, Catuscia

Palamidessi, Thiago V A Silva

To cite this version:
Mário S. Alvim, Natasha Fernandes, Bruno D Nogueira, Catuscia Palamidessi, Thiago V A Silva. On
the Duality of Privacy and Fairness. CADE 2023 - International Conference on AI and the Digital
Economy, Jun 2023, Venice, Italy. p. 46 - 48. �hal-04407491�

https://hal.science/hal-04407491
https://hal.archives-ouvertes.fr


On the Duality of Privacy and Fairness

(Extended Abstract)

Mário S. Alvim1, Natasha Fernandes2, Bruno D. Nogueira1, Catuscia Palamidessi3, and Thiago V.A. Silva1

1UFMG, Brazil
2Macquarie University, Australia
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Abstract

When a machine learning model operates over data about individuals, there are two common concerns. On one hand, if
the model’s output (i.e., its prediction) allows for information inferences about an individual’s sensitive attributes, we have
a privacy issue. On the other hand, if the individual’s sensitive attributes can unduly influence the model’s output, we have
a fairness issue. Recently, the interplay between these two concerns has gathered growing attention both in the scientific
community and in society as a whole. In this work, we extend the framework of quantitative information flow to formally
capture fairness and privacy as duals of each other, and give first steps toward a novel characterization of their relationship.

1 Introduction

The increasing ubiquity of machine learning (ML) has brought
not only significant benefits to modern society, but also some
pressing concerns. One such concern is that ML models can
be unfair, in the sense that they may unduly use individuals’
sensitive attributes (such as race or gender) to make decisions,
thereby creating or reinforcing biases against certain groups.
A second concern is that ML models may not be private, i.e.,
they may improperly leak individuals’ sensitive attributes in
the course of their execution. These issues, and their interre-
lationship, have gained increased attention [1,2,8,9,12,19,22].

In this work, we employ the framework of quantitative in-
formation flow (QIF) [4] to investigate the interplay between
fairness and privacy in ML. QIF has been successfully applied
to a wide range of privacy-related problems [5, 10, 11, 15–17],
but, to the best of our knowledge, not yet to fairness. Here we
report first steps in modeling fairness in QIF as a dual concept
to privacy, and conjecture a formal trade-off between them.

2 Preliminaries

In this section, we briefly review some key concepts from QIF,
ML, privacy, and fairness needed for this work.

Quantitative information flow (QIF) and privacy.
QIF is concerned with measuring the amount of information
that a system leaks about its (secret) inputs through its (ob-
servable) execution behaviour to an adversary, which is an
entity trying to infer sensitive information.

Before the system is run, the adversary has some a priori
knowledge about the secret values, represented by a prior dis-
tribution (or simply a prior) π:DX on the set X of possible
values for the secret. (Given a set S, we denote by DS the set
of all probability distributions over S.) We let πx denote the
prior probability of secret value x∈X . We can measure the
prior vulnerability of prior π as the adversary’s probability

of guessing the secret value correctly in one try. This is for-
malised as Bayes vulnerability, defined as V (π)=maxx∈X πx.

A system is modeled as an (information-theoretic) channel
C:X→DY mapping (in a possibly probabilistically way) secret
inputs from X to observable behaviours from a set Y. We let
Cx,y denote the probability of channel C outputting y∈Y when
its input is x∈X . We assume that the adversary knows how
the system works (i.e., the channel C) and, from that and the
prior π, can derive a joint distribution πŻC:D(X×Y) on inputs
and outputs of a system. More precisely, (πŻC)x,y=πxCx,y for
all x∈X , y∈Y. This joint represents the adversary’s a posteri-
ori knowledge about the secret (i.e., after the system is run),
and from it we can compute the posterior Bayes vulnerability
of the secret as V [πŻC]=

∑
y∈Y maxx∈X (πŻC)x,y. This value

represents the adversary’s expected probability of guessing the
secret correctly in one try after the system is run.

The Bayes (information) leakage caused by system C un-
der prior π can be quantified as the ratio by which the system’s
execution increases the secret’s Bayes vulnerability, and it is
given by L(π,C)=V [πŻC]/V (π). This leakage from secret inputs
to observable outputs is a measure of the system’s privacy.

Machine learning and fairness. In a classification prob-
lem, a ML model receives as input a vector of features for an
individual and outputs a prediction for another feature of this
individual. As usual in the fairness literature, we consider bi-
nary classification problems, in which the model’s input is a
single, binary sensitive attribute, and its output is a single,
binary predicted class. More precisely, the input is a sensi-
tive attribute x taking values s0/s1 indicating, resp., whether
or not the individual belongs to a protected group (e.g., an
ethnic minority/majority), and the output y is a class predic-
tion taking values +/− indicating, resp., a desirable or non-
desirable outcome (e.g., acceptance/rejection to a university
application). The unfairness of a model is often measured as
statistical disparity [7,14,20,21,23], i.e., the dependence level
of the classification outcome on the sensitive attribute.
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3 Fairness as reverse leakage in QIF

The crucial idea of our modeling of fairness in QIF as a dual
of privacy is the novel concept of “reverse leakage”.

Recall from the previous section that, given a prior π and
a channel C, the corresponding leakage L(π,C) is a measure
of how much information the adversary gains about the chan-
nel’s sensitive input after observing the channel’s output. For
instance, consider an ML scenario in which the sensitive at-
tribute x represents an individual’s health status (e.g., the
presence or absence of a certain disability), and the output of
the classifier indicates whether or not that individual should
be admitted to a particular university. If by observing the
output of the classifier (e.g., rejection of the individual’s ap-
plication) the adversary can gain information about the indi-
vidual’s health status (e.g., infer that the individual is likely
disabled), then intuitively we have a breach of the individual’s
privacy. This notion of leakage, which we call direct, has been
extensively used in the literature as a measure of privacy as
resistance to inferences about sensitive values [3, 5, 6, 15].

Here we introduce the novel notion of “reverse leakage” in
QIF, which is the dual of direct leakage. Reverse leakage mea-
sures the amount of information about the channel’s output
that an adversary can infer (or predict) if she knows the chan-
nel’s sensitive input. As an example, consider again the sce-
nario of the ML classifier for university admissions introduced
above. In this case, a suitable notion of “reverse leakage”
would quantify how well an adversary can predict the clas-
sifier’s outcome (admission/rejection) given knowledge of the
sensitive attribute (disability/non-disability) given as input.
Intuitively, the greater the reverse leakage, the more the sensi-
tive attribute influences the classification outcome and, conse-
quently, the less fair the ML model would be. This is the same
principle statistical disparity and its variants [7,14,20,21,23].
It is natural, then, to propose “reverse leakage” as a measure
of “unfairness” of a classifier given a prior.

Definition 1 (Reverse-prior, –vulnerabilities, and –leakage).
Let π:DX be a prior and C:X→DY be a channel. Then:

(a) The corresponding reverse prior ρπ,C :DY is a distribu-
tion on the channel’s outputs obtained by marginalizing
the joint πŻC on Y: ρπ,Cy =

∑
x∈X (πŻC)x,y for all y∈Y.

(b) The corresponding reverse prior Bayes vulnerability is
given by V (ρπ,C)=maxy∈Y ρπ,Cy , and it represents the ad-
versary’s probability of guessing the system’s output cor-
rectly without access to the system’s input.

(c) The corresponding reverse posterior Bayes vulnerability is
given by V rev[πŻC]=

∑
x∈X maxy∈Y(πŻC)x,y, and it rep-

resents the adversary’s probability of guessing the system’s
output correctly after having access to the system’s input.

(d) The corresponding reverse Bayes leakage is given by
Lrev(π,C)=V rev[πŻC]/V (ρπ,C), and it represents the adver-
sary’s gain of prediction power about the channel’s output.

Now we are ready to define unfairness in QIF.

Definition 2 (Quantification of unfairness). Let C:X→DY
be a ML model (probabilistically) mapping sensitive attributes
in X to a classification value in Y. Let π:DX be a prior on
the model’s inputs. Then the quantification of the unfairness
of C under prior π is given by the reverse leakage Lrev(π,C).

4 On the fairness-privacy relation

The formalization of fairness as the dual of privacy in QIF
allows for the investigation of the relationship between these
concepts given a classifier and a prior.

Indeed, we applied our model to compute the fairness and
privacy levels for all possible joints [πŻC] on sensitive input
attributes and observable outputs of binary classifiers, up to a
resolution of 2−9 units of probability mass. Figure 1 shows the
results, where each blue point represents a joint, and its posi-
tion in the graph represents its level of unprivacy (horizontal
axis) and unfairness (vertical axis), measured as, respectively,
direct L(π,C) and reverse Lrev(π,C) Bayes leakage. Higher
values of leakage (closer to 2) represent more unfair/unprivate
joints, and lower values (closer to 1) represent the opposite.

Figure 1. Direct and reverse
leakages in binary classifiers.

Note that, given the
duality of our formula-
tion of fairness and pri-
vacy, the graph is sym-
metric around the line
y=x. The blue region
is the feasible region
for direct– and reverse
Bayes-leakage. Note
also that not all combi-
nations are possible, so
it is interesting to iden-
tify the graph’s Pareto

curves, i.e., the maximum level of fairness that can be achieved
for a given level of privacy (the yellow “ ”-curve), and vice-
versa (the red “×”-curve). Indeed, we have the following con-
jecture for the exact characterization of these Pareto curves.

Conjecture 3 (Characterization of the Pareto curves of
fairness-privacy). Let X and Y be binary sets. Then, for
every prior π:DX and channel C:X→DY, the relationship
Lrev(πŻC)/(3−Lrev(πŻC)) ≤ L(πŻC) ≤ (3·Lrev(πŻC))/(Lrev(πŻC)+1)

holds, and equality can be achieved on both ends.

5 Conclusion

In this work we introduced a formulation of fairness as the
dual of privacy in the QIF framework. This notion measures
the dependence of the classification outcome on the sensitive
attribute, and it is akin to statistical disparity and its vari-
ants. From that, we conjectured the Pareto curves describing
the optimal trade-off between privacy and fairness for joints
arising from binary classifiers. As future work we want to gen-
eralise our analysis from Bayes vulnerability to the full frame-
work of g-vulnerabilities provided by QIF, and also extend the
notion to capture scenarios in which the disparity is justified
by legitimate controlling factors, following the principle that
motivates the notion of conditional statistical parity [13, 18].
The long-term plan is to use our formalisation to investigate
the behaviour of common ML algorithms on real-life datasets
and devise methods to enhance fairness in the predictions.
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