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Potential Theory: Particles Interactions

One considers the 4-vector electromagnetic potential A i in a flat Minkowski's spacetime x k . The theory deals with the properties of this vector and its associated gradient tensor whose components are the sixteen partial derivatives a i k = ∂A i /∂x k . Using the principle of time-symmetry it is shown that a proper time exists where the scalar potential obeys an Helmholtz equation. Its solutions describe local accumulations of potential. These are named "electromagnetic particles" and each of them is characterized by three discrete geometrical numbers and a time symmetry. As the potential is independent of scale these particles can be considered to be the fundamental bricks of the universe. The tensor a i k has invariants in operations of symmetry belonging to the Poincaré's group and its determinant is proportional to the Lagrangian density. After splitting the tensor between its symmetric and antisymmetric parts, application of the principle of least action allows the description of electrical and mechanical characteristics of the particles. Among them only two are electrically charged and describe the electron and the positron. Others are at the origin of black matter. Spinning particles are described by using the principle of relativity. In the second main part of the article an introduction to the study of long range coherent interaction between two spherically symmetric electromagnetic particles is provided: a particle test is submitted to the fields emitted by a source particle. Repulsion or attraction between particles is computed.

February 28, 2024 1 Introduction.

A large part of quantum mechanics is of a statistical nature that describes the probabilistic behavior of subatomic particles and allows the prediction of statistical experimental results with high accuracy. However, a statistical theory is not incompatible with an individual theory and the two types of theories are even complementary. Quantum theory should therefore be supplemented by a theory allowing the description of individual particles. The potential theory that we have begun to develop promises to attain this objective. It is classical, deterministic, and uncertainties are left to experiments as in our ordinary physics. Moreover it is very simple: Firstly, it is based on a single paradigm: a four vector electromagnetic potential A i is associated to each point M in a four dimensional flat spacetime x k . Every point M is thus characterized by a potential and its gradient which is a tensor of rank two. The theory deals with these vector and tensor fields. Secondly, it is developed by using three fundamental principles of physics only: that of symmetry, that of least action and that of relativity. The only hypothesis is that the potential is independent of scale: potential theory should apply to the yoctoscopic or to the terascopic scales. Several results have already been obtained: The connection with standard electromagnetism is achieved through the Faraday tensor and the deduction of Maxwell equations. The first fundamental results brought by this theory concern the explanation of the duality wave-matter as well as the theoretical discovery of electromagnetic (e.m.) particles. Those are described by the solutions of an Helmholtz equation for the scalar potential in the proper reference frame. Properties of these particles relate the microscopic and the human scales. Mathematical manipulations essentially concern changes between different reference frames of coordinates. Invariant quantities in these changes play an essential role. Promises of this theory concern the chemistry of observed elementary particles as well as that of the atomic nuclei. Understanding this chemistry will open the way to technological applications such as mastering the treatment of nuclear wastes. The present article presents a more mature version of the theory than the previous ones together with its application to the study of the interaction between two e.m. particles: the challenge was to see if potential theory is able to build a machinery able to describe attraction or repulsion of these particles. In the first main section of the article we give a survey of potential theory: first we describe the way to obtain the basic Helmholtz equation for the scalar potential and its solutions that describe the e.m. particles [START_REF] Stephan | Potential Theory 1: Gradient Tensors[END_REF] in their proper time. These particles are characterized by local accumulations of potentials, and their physical properties like energy or electric charge densities are contained in their gradient tensors at each event M . They are classified by three integer numbers and a time symmetry. A Lagrangian density is associated to a gradient tensor and induction tensors can be deduced and used to compute these properties. Among these e.m. particles, only two are electrically charged and tentatively describe the electron and the positron. The others should describe black matter. One finds that their fields contain a part in 1/x, where x is the distance between M and the center of the particle while the energy density vary in 1/x 6 which implies a strong localization of mass. The study is then extended to spinning particles: it is shown that e.m. particles do not behave like ordinary rotating systems. The relation between the quantities which describe the e.m. particles and those used in classical mechanics and electrostatic are clearly established which reinforce the validity of the potential theory. In this study the contravariant potential and its derivatives ∂A i /∂x k play the central role. We have shown elsewhere [START_REF] Stephan | Potential Theory 1: Gradient Tensors[END_REF] that it is the covariant potential and its derivatives ∂A i /∂x k which lead to the Maxwell equations. The second main section describes the system of two particles. We study the simplest particles, those that have the spherical symmetry. One of them is the source of fields, the other is the test-particle. These are far from each other and the long distance interaction only is under study. The potential at an event M is the sum of the potentials that describe each particle (potentials are extensive quantities). The Lagrangian density of the system is computed and the energy density displays the interaction part. The total energy is obtained after an integration over spacetime and electrostatic effects are recovered.

2 Survey of potential theory.

An image of an electromagnetic particle.

Before getting to the heart of the matter of this article, let us give in fig. [START_REF] Stephan | Potential Theory 1: Gradient Tensors[END_REF] the image of an electromagnetic particle we arrived at in our previous studies. This figure displays a particle which emits and receives fields. This view has been demonstrated by John A. Wheeler and Richard P. Feynman in 1945 [START_REF] Wheeler | Interaction with the Absorber as the Mechanism of Radiation[END_REF] in their study of the field emitted by an accelerated electron. They proved the necessity to have an absorber if one has an emitter. The basic argument is that an emitter looses energy and a stationary regime can exist only if it absorbs an equal amount of this energy. The absorber which surrounds the emitter should thus feed back the emitter. Their arguments are oriented toward the emission of a transverse electromagnetic field but they can be extended and are equally valid for a longitudinal electrostatic field. We will show in the following that the fields which make a particle are standing waves with an input and an output component, each with the same amplitude. The input component is the resonant component of the surrounding noise, filtered by the particle which acts as a resonator. A part of this noise originates from the multitude of the other particles of the universe.

2.2 Generalities.

Gradient tensors.

Potential theory [START_REF] Stephan | Potential Theory 1: Gradient Tensors[END_REF] describes the properties of the electromagnetic potential A i (scalar potential φ/c, vector potential (A x , A y , A z )) at each observation point (event) M in Minkowski spacetime x k = (ct, x, y, z). This potential contains two different parts: the first is coherent, the second is the noise. While both are intrinsically linked [START_REF] Stephan | Potential Theory 1: Gradient Tensors[END_REF], we will (almost) ignore the noise in this article. The main object of the theory is the study of the gradient of A i . The 16 partial derivatives a i k = ∂A i /∂x k of A i are the components of a second rank tensor which we note in matrix form [a i k ] with k as the line and i as the column index. Here the components A i and coordinates x k are defined in the direct space and [a i k ] is a mixed tensor (contravariant in i, covariant in k). This article will be based on this tensor. Associated to the contravariant representation A i of the potential is the covariant representation A i . Both are related by the metric tensor η. The convention η = diag(1, -1, -1, -1) is chosen here and we have the relation: A i = η A i or (φ/c, A x , A y , A z ) = (φ/c, -A x , -A y , -A z ). It is surprising to note that, while A i can be deduced from A i , the gradient tensor [a ki ] = ∂A i /∂x k leads to properties which are entirely different from those deduced from [a i k ]. In fact, [a ki ] is the basic object for the study of classical electromagnetism. Let us .

show it quickly before developing the subject of this article. When [a ki ] is split between its symmetric ([S ki ]) and antisymmetric ([F ki ]) parts, it appears that [F ki ] is the usual electromagnetic tensor whose elements are the electric and magnetic fields:

F ki = 1 2 ∂A i ∂x k - ∂A k ∂x i (1) 
This equation corresponds to eq.( 23.3) in Landau and Lifchitz classical book on field theory [START_REF] Landau | English translation: "The Classical Theory of Fields[END_REF]. It can be shown [START_REF] Stephan | Potential Theory 1: Gradient Tensors[END_REF] that Maxwell equations can be deduced from [a ki ] with an application of the principle of least action and the definition of a Lagrangian which is given below. Fixing our attention on the tensor [a i k ], we divide it into its symmetric ([s i k ]) and antisymmetric ([f i k ]) parts. Elements of these tensors are:

s i k = 1 2 (a i k + a k i ) = 1 2 ∂A i ∂x k + ∂A k ∂x i (2) 
f i k = 1 2 (a i k -a k i ) = 1 2 ∂A i ∂x k - ∂A k ∂x i (3) (4) 
and

[a i k ] = [s i k ] + [f i k ].

The Helmholtz equation.

The following step is to note that, being symmetric, [s i k ] can be diagonalized provided its determinant does not vanish. This means that a particular time coordinate t exists where terms in the first line and in the first column vanish:

s 2 1 = s 1 2 = s 3 1 = s 1 3 = s 4 1 = s 1 4 = 0. ( 5 
)
or:

∂(φ/c) ∂x + ∂A x c∂t = ∂(φ/c) ∂y + ∂A y c∂t = ∂(φ/c) ∂z + ∂A z c∂t = 0. ( 6 
)
These equations are written in the cartesian frame (x, y, z) and can be expressed with the gradient operator under the tensor form (independent of the geometrical coordinates system):

--→ grad(φ/c) + ∂ - → A c∂t = 0. ( 7 
)
t is the proper time of the tensor. The diagonalization can be performed using Lorentz transformations followed by transformations of the geometrical coordinates as shown in Appendix A.

A second equation is obtained from the invariance of the trace of [a i k ] in a time translation [4]. This trace writes:

T r[a i k ] = ∂(φ/c) c∂t + ∂A x ∂x + ∂A y ∂y + ∂A z ∂z (8)
The time invariance is expressed as : ∂/c∂t (T r[a i k ]) = 0 which gives:

∂ 2 (φ/c) c 2 ∂t 2 + div ∂ - → A c∂t = 0. ( 9 
)
This equation is again a tensor equation which is independent of the coordinates system. Associating [START_REF]The power series expansion for J 0 about the point x = 0 is: J 0 = 1 -x 2 /6 + x 4 /120 + O(x 6 ) and for J 0 it is: J 0 = -x/3 + x 3 /30 + O(x 5 ). for J 1 these series are: J 1 = x/3 -x 3 /30 + O(x 5 ) and J 1 it is: J 1 = 1/3 -x 2 /10 + x 4 /168 + O(x 6 )[END_REF] and (9) together gives the fundamental Helmholtz equation for the scalar potential:

∂ 2 (φ/c) c 2 ∂t 2 -∆(φ/c) = 0, (10) 
When eqs.( 7) and ( 8) are written in the reversed time domain (t =⇒ t r = -t) one obtains the same result: eq.( 10) is invariant upon time reversal.

One splits (φ/c) into its spatial and temporal parts (φ/c) = (φ/c) t (φ/c) spatial and permanent oscillatory potentials are of the form (φ/c) = ± cos ωt (φ/c) spatial (even solutions in time) or (φ/c) = ± sin ωt (φ/c) spatial (odd solutions in time). These two solutions are orthogonal to each other in the time domain ( period sin ωt cos ωt d(ωt) = 0) and never mix in calculations associated to a single particle. They are defined in the set of real numbers R.

One can also write the solutions under the complex form (φ/c) = ± e ±iωt (φ/c) spatial because equation ( 10) is invariant under time as well as space reversal. The factor e ±iωt naturally introduces the time reversal symmetry ("T symmetry") between conjugate solutions. This symmetry is a fundamental concept in understanding the interactions of subatomic particles. However the drawback here is the necessity to work with the set of complex numbers C which brings unnecessary complications in the developments of the theory. We will consider the even and odd solutions in cos ωt and sin ωt separately. Time reversal will not change the even solutions while the change (t =⇒ -t) will transform sin ωt into -sin ωt. The importance of this distinction will appear in the study of interactions (Section 3). Even and odd solutions are parts of the same particle: they differ by their phase only and the representation of a particle should not depend on the origin of time. Interaction energies between the different solutions are described in section 3 and show that a particle is described by the sum (even +odd) solutions in the normal time domain and by the difference (even -odd) solutions in the reversed time domain.

In section 2 we will describe the properties that are associated to these even and odd parts in normal or reversed time domains: these properties can be the same (as energy) or different (as electrical charge). Solutions of:

ω 2 c 2 (φ/c) spatial + ∆(φ/c) spatial = 0 , (11) 
give the scalar potential at each point M in the geometrical space (always in the proper time). M is defined by its coordinates x, y, z in the cartesian frame (see Fig. 2) with origin O s or by its spherical coordinates r, θ, ϕ in the spherical frame with: x = r sin θ cos ϕ , y = r sin θ sin ϕ , z = r cos θ. Solutions of (11) are well known and write:

(φ/c) spatial = φ n, ,m (x, θ, φ)/c = A J n (x) Y m (θ, ϕ) . ( 12 
)
Angular frequency ω and amplitude A are constants of integration which are not determined for the moment. The normalized distance x=OM = ωr/c has been introduced. J n (x) is the spherical Bessel function of order n and Y m (θ, ϕ) is the spherical harmonic , m. A solution is thus characterized by three discrete numbers n, and m and a time parity. This article is concerned with spherical particles with n = 0 or n = 1 only: they are characterized by = m = 0 and Y 0 0 = 1/ √ 4π. We name the particles g for n = 0 and e for n = 1. We will thus consider the even and odd solutions for normal and reversed time. They are noted g even , g odd , g -t even , g -t odd and e even , e odd , e -t even , e -t odd . For each scalar potential, the corresponding vector potential is obtained from equation [START_REF]The power series expansion for J 0 about the point x = 0 is: J 0 = 1 -x 2 /6 + x 4 /120 + O(x 6 ) and for J 0 it is: J 0 = -x/3 + x 3 /30 + O(x 5 ). for J 1 these series are: J 1 = x/3 -x 3 /30 + O(x 5 ) and J 1 it is: J 1 = 1/3 -x 2 /10 + x 4 /168 + O(x 6 )[END_REF] or from the time-reversed equation:

-

-→ grad(φ/c) + ∂ - → A c∂(-t) = 0. ( 13 
)
A solution is described by a 4-vector field A i and a tensor field [a i k ]. These quantities contain the local properties at each event M : we will see that these are the waves, the energy and the charge densities. is the center of the particle. The observation point M is the origin of the spherical frame and is located by its coordinates r, θ, ϕ. The particle is defined by its potential φ/c, A i and its tensors [a i k ] at each event M . These tensors are first computed in the frame where M is at rest with respect to O (the proper frame), then in a frame which is rotating around the z axis. A supplementary step should be a study in a frame where Os has a velocity V with respect to a fixed observer who stands in the laboratory frame.

.

Illustration in fig.

(1) can be deduced from the structure of the solutions: an expression like (J n (x) cos ωt) can be decomposed into a sum of two counter progressive waves, or incoming and outgoing waves of equal amplitudes. The best system of coordinates associated with spherical solutions is the spherical system. A r , A θ , A ϕ are the components of the vector potential and (φ/c) ,t , A r ,t , A θ ,t , A ϕ ,t , ... are their partial derivatives with respect to ct, r, θ, ϕ. The general expression of the gradient tensor in this system is:

[a i k ] =       (φ/c),t A r ,t A θ ,t A ϕ ,t (φ/c),r A r ,r A θ ,r A ϕ ,r (φ/c) ,θ /r 1 r A r ,θ -A θ 1 r A θ ,θ + A r 1 r A ϕ ,θ (φ/c),ϕ r sin θ A r ,ϕ r sin θ -A ϕ r 1 r sin θ A θ ,ϕ -cos θA ϕ 1 r sin θ A ϕ ,ϕ + 1 r A r + 1 r cos θ sin θ A θ       (14) 
Symbols A i ,k represent the partial derivatives and the other terms are the Christoffel symbols. This tensor does not include the noise and will characterize the particle only.

Spherical Particles.

In section 3 we will be interested in the long-range interaction between two particles chosen between the spherical particles in the normal (t) or reversed (t r = -t) time domains and characterized by n = 0 or 1 and = m = 0. The study of a particle alone includes that of the even solution in cos ωt and that of the odd solution in sin ωt of the Helmholtz equation.

Spherical tensors.

The first spherical Bessel functions are :

J 0 = J 0 (x) = sin x x (15a) J 1 = J 1 (x) = sin x x 2 - cos x x (15b)
They are expressed with the normalized distance x = ω r/c between the observation point M and the origin of the coordinates. In the following we will use J for J 0 or J 1 : for m = = 0, n = 0, J(x) = J 0 (x), for m = = 0, n = 1, J(x) = J 1 (x). The vector potential is deduced from eq.( 7) or eq.( 13). Scalar and radial components of the potential are:

           Normal time φ/c = A J cos ωt A r = -A J sin ωt even solutions. φ/c = A J sin ωt A r = A J cos ωt odd solutions.
Reversed time φ/c (-t) = A J cos ωt A r(-t) = A J sin ωt even solutions. φ/c (-t) = -A J sin ωt A r(-t) = A J cos ωt odd solutions.

(16)

Two solutions are conjugate of each other under T symmetry if the change (t =⇒ -t) in the expression of one solution gives the expression of the other. Potentials A i and A i(-t) have the T symmetry and describe conjugate solutions. The gradient of A i is written in the proper time and the geometrical spherical frame. Its expression for the even solutions is:

[a i k ] even = A ω c √ 4π     -J sin ωt -J cos ωt 0 0 J cos ωt -J" sin ωt 0 0 0 0 -J /x sin ωt 0 0 0 0 -J /x sin ωt     (17) 
The expression for the odd solutions is obtained by replacing ωt by (ωt + π/2) (or cos ωt by sin ωt and sin ωt by -cos ωt):

[a i k ] odd = A ω c √ 4π     J cos ωt -J sin ωt 0 0 J sin ωt J" cos ωt 0 0 0 0 J /x cos ωt 0 0 0 0 J /x cos ωt     (18) 
The corresponding gradients [a i k ]

(-t)
even and [a i k ]

(-t)
odd in the reversed time domain are obtained by changing (t) into (-t) in [a i k ] even and [a i k ] odd . Temporal derivatives in the reversed time are taken with respect to -t.

In the following we will be interested in the long-range interaction between two particles chosen between the spherical particles ( n = = m = 0) and (n = 1, = m = 0). These particles have been named (g) for n = 0 and (e) for n = 1. The different tensors that are associated to them are noted [g] even , [g] odd , [g] Tensors are divided into their symmetric [s i k ] and antisymmetric [f i k ] parts which are interpreted respectively as the mass part and the field part. For expression (17) these are:

(-t) even , [g]
[s i k ] = A ω c √ 4π     -J sin ωt 0 0 0 0 -J" sin ωt 0 0 0 0 -J /x sin ωt 0 0 0 0 -J /x sin ωt     (19) [f i k ] = A ω c √ 4π     0 -J cos ωt 0 0 J cos ωt 0 0 0 0 0 0 0 0 0 0 0     (20) 
The radial electrostatic field E r is defined as:

E r /c = ∂A r c∂t = - ∂(φ/c) ∂r = - A ω c √ 4π J cos ωt (21) 
In passing we note that each term a i k contains products like sin ωt sin x. These are stationary waves that can be decomposed into advanced and retarded progressive waves:

sin ωt sin x = 1 2 (cos(ωt -x) -cos(ωt + x))
sin ωt cos x = 1 2 (sin(ωt -x) + sin(ωt + x)) cos ωt sin x = 1 2 (-sin(ωt -x) + sin(ωt + x))

cos ωt cos x = 1 2 (cos(ωt -x) + cos(ωt + x))
This decomposition appears as input and output waves in fig.

(1) and will be used in the description of the long range interaction of two particles (Section 3). Note also that dimensions of A are those of a potential (M L T -1 Q -1 ) and those of an element a i k are (M T -1 Q -1 ).

Lagrangian.

A tensor [a i k ] for a given even or odd solution is characterized by four invariants in a coordinates change. Among them one chooses the Lagrangian density L 0 to be associated with the determinant a i k :

L 0 = C a i k (22)
One wants L 0 to be a density of energy in spacetime: it implies that C is a constant with dimensions

[C] = M -3 L -2 T 2 Q 4 (dimensions of L are (M L -2 T -2 )
). This choice is justified a posteriori by the fact that the integral of L 0 over spacetime must converge (the energy of a particle is finite). This convergence, which does not exist for the three other invariants will be verified for the electromagnetic particles. Note that L 0 is a scalar quantity. Its modulus should be associated with the local density of energy. The Lagrangian corresponding to the tensor (17) is:

L 0 = C A ω c √ 4π 4 J 2 x 2 (J J" sin 4 ωt + J 2 sin 2 ωt cos 2 ωt) (23) 
The local density of energy H around an event M is obtained from the Legendre transform of L:

H = ik a i k ∂L 0 ∂a i k -L 0 (24) 
The term ∂L 0 /∂a i k is the minor relative to a i k in the matrix [a i k ] and the determinant can be developed with respect to any line k :

a i k = i a i k ∂L ∂a i k ∀k (25) 
The simple relation follows:

H = 3 C a i k ( 26 
)
The tensor [∂L 0 /∂a i k ] = [L k 0 i ] is the canonical momentum density tensor. Let us define the vectors:

- → a i = k a i k -→ u k (27a) --→ L 0 i = k L k 0 i -→ u k (27b)
where the -→ u k and -→ u k are the contra and covariant basis vectors. Formula (26) can be written in alternative ways:

H = i - → a i --→ L 0 i -L = 3 4 i - → a i --→ L 0 i = 3 4 T race [a i k ] [L k 0 i ] T (28) 
Before proceeding we stress again that the usual electromagnetic tensor (or Faraday tensor [F ki ]) is the antisymmetric part of the covariant tensor [a ki ] and that it is different from

[f ki ] = [f n k ][η ni ] where [η ni ]
is the metric tensor. Components of [f i k ] represent the electrostatic field while those of [F ki ] represent the electromagnetic field. Maxwell equations can be deduced from the properties of [a ki ] and the Lagrangian [L k 0 i ] which is defined in eq.( 22). We note that, while [L k 0 i ] is invariant in a coordinates change, that is not the case for the determinant of the covariant tensor [a ki ].

Mass and field energies.

We consider the splitting of the generic tensor [a i k ] into its symmetric and antisymmetric parts and we associate the former to the description of mass and the second to that of fields. This splitting is the core of the understanding of the matter-wave duality. The Lagrangian density which is explicitly associated with the mass part [s i k ] is introduced now:

L s = C s i k (29)
A coordinates transformation leaves also the determinant of [s i k ] invariant. We will write:

L 0 = L s + L f (30)
with the definition of the field Lagrangian density:

L f = L 0 -L s = C ( a i k -s i k ).
Energy density in eq.( 26) is rewritten with its two parts:

H = C a i k = H s + H f with : (31a) 
H s = C s i k (31b) H f = C ( a i k -s i k ) (31c) 
The factor 3 in eq. ( 26) has been included in C. These quantities represent the local densities of energy around a point M : If we define H s to be the energy which is associated to the mass (it does not contain the field), then the field energy is the difference which is expressed in eq. (31c). One obtains the global energies which are associated to a solution from an integration over spacetime. One obtains:

W t = H t dv (total energy) and W s = H s dv (mass energy), (32) 
with the 4-volume element:

dv = d(ct) dr (r dθ) (r sin θ dϕ) = c 4 ω 4 d(ωt) dx (x dθ) (x sin θ dϕ) (33) 
The field energy is the difference

W f = W t -W s .
We will verify in the following, that W t = W s + W f = 0: the total mass energy is equal and opposite to the total field energy while the local densities are different. This property is independent of the reference frame of coordinates. It results directly from the structure of the gradient tensors [a i k ]. We note also that the duality wave-particle implies that corresponding quantities exist separately in the wave domain (electromagnetism) and in the mass domain (mechanics). However, conservation laws apply to the whole system: for instance it is known [START_REF] Griffiths | Introduction to Electrodynamics[END_REF] (p.371) that mechanical momentum and Poynting vector are corresponding quantities but the momentum conservation rule applies to the sum of both. We give below energies that are obtained for particles (g), and (e) .

Energy densities.

The total Lagrangian density associated to the even solution (17) is:

L 0 = C A ω c √ 4π 4 J 2 /x 2 sin 2 ωt (J J" sin 2 ωt + J 2 cos 2 ωt (34)
The mass Lagrangian density is the determinant of the symmetric tensor (eq.( 29)): The field Lagrangian density is the difference:

L s = C A ω c √ 4π 4 J J" J 2 /x 2 sin 4 ωt (35) 
L f = L -L s = C A ω c √ 4π 4 J 4 /x 2 sin 2 ωt cos 2 ωt (36) 
A first remark is that integrated quantities over a period of time are the same for even or odd solutions: energies do not depend upon time parity. Figures (3 and4) represent the mass, field and total energies that are stored between two spheres having a radius r and r +dr for non-spinning particles g(n = = m = 0) and e(n = = m = 0). The total energy density is obtained from the determinant of [a i k ], the mass (or potential) energy density from the determinant of [s i k ] which is the symmetric part of [a i k ] and the field energy density is the difference between both. These densities are integrated over a period of time and multiplied by the volume element 4π r 2 dr = (4π c 3 /ω 3 ) x 2 dx to draw the curves (x is the normalized distance from the observation point M to the origin of coordinates). These energies are localized around the center of the particle (essentially in the region x<10.) and quickly vanish elsewhere. This localization characterizes the extension of the mass of the particle, while the fields extend to infinity (they follow an 1/x law). Another way to show this localization is given in figures ( 5) and ( 6): they represent the (negative) mass energy that is stored inside a sphere of radius X as a function of X. These curves show that an asymptotic value is attained very rapidly and that a numerical integration of densities over the radial coordinate gives good results even if it is limited to the vicinity of the particle. It is of paramount importance to see that the tensor [f i k ] describes the static electromagnetic field while the determinant of the mixed tensor [s i k ] describes the density of potential energy (or the rest mass). The long range field (far from the center of the particle) varies like 1/x while the density of energy varies like 1/x 6 . In ordinary words the field of a particle can reach very large distances while its mass is strongly localized.

The energy of the particle results from an integration of the densities over the whole geometrical space and a time length ω/c corresponding to a period of oscillation. Let us compute the different energies corresponding to the densities L, L s and L f . The 4-volume element is given in eq.( 33). One obtains for the total energy:

W total = C A ω c √ 4π 4 c 4 ω 4 2π 0 d(ωt) ∞ 0 (J 2 /x 2 ) (J J" sin 4 ωt + J 2 sin 2 ωt cos 2 ωt) x 2 dx = C π 4 A √ 4π 4 ∞ 0 (3J J" J 2 + J 4 ) dx = C π 4 A √ 4π 4 ∞ 0 ∂ ∂x (J J 3 ) dx = C π 4 A √ 4π 4 JJ 3 ∞ 0 = 0 (37)
The integral vanishes because J J vanishes when x→ 0 (see [START_REF]The power series expansion for J 0 about the point x = 0 is: J 0 = 1 -x 2 /6 + x 4 /120 + O(x 6 ) and for J 0 it is: J 0 = -x/3 + x 3 /30 + O(x 5 ). for J 1 these series are: J 1 = x/3 -x 3 /30 + O(x 5 ) and J 1 it is: J 1 = 1/3 -x 2 /10 + x 4 /168 + O(x 6 )[END_REF]) and x→ ∞. This result is the same for the odd solutions.

It results that the total energy associated to an electromagnetic particle (t) or (-t) is identically zero.

We have found that the same result occurs for cylindrical particles with n = 1 and higher order particles (n > 1).

The mass energy W s of the spherical particles is:

W s = C π 4 A √ 4π 4 ∞ 0 J 2 J J" dx = C π 4 A √ 4π 4 -67π/5670 for J = J 0 (particles g) -898π/405405 for J = J 1 (particles e) (38) 
Particles (e) are about 10 times (9.43...) lighter than particles (g) for the same amplitude A.

The energy associated to the field is equal and opposite to W s . If we extend this result to the observable universe , with the hypothesis that its fundamental bricks are the electromagnetic particles e, we arrive at the conclusion that its total energy is null (!), with the negative part localized in masses (or potential energies) and the positive part delocalized in fields.

Canonical momenta.

The canonical momentum associated to a i k is the derivative of the Lagrangian with respect to a i k and one can define the tensor L k 0 i whose components are these partial derivatives:

L k 0 i = ∂L 0 ∂a i k = ∂L 0 ∂(∂A i /∂x k ) (39)
These derivatives appear in the formulation of Euler-Lagrange equations and in the Legendre transform of the Lagrangian. One can verify that L k 0 i obeys the transformation laws of a (1,1) tensor. Using expression of L 0 (eq.34) one gets the momentum tensor corresponding to the even solution (17):

L k 0 i = C 1 4π A ω c 3     -J" J 2 /x 2 sin 3 ωt -J 3 /x 2 cos ωt sin 2 ωt J 3 /x 2 cos ωt sin 2 ωt -J J 2 /x 2 sin 3 ωt 0 0 0 0 0 0 0 0 -J 3 /x 2 cos 2 ωt sin ωt -J J" J /x sin 3 ωt 0 0 -J 3 /x 2 cos 2 ωt sin ωt -J J" J /x sin 3 ωt     (40)
It is remarkable that none of the components L k 0 i contain terms in 1/x: These are strongly localized around the center of the particle and vanish in the long range. The momentum tensor for the odd solution is again obtained by changing ωt into ωt + π/2. Momentum tensors in the reversed time domain are obtained by changing (t) into (-t).

Electrical charge.

Charge density. In classical electromagnetism the density ρ of electrical charge is the divergence of the electric induction D in the geometrical domain:

ρ = div 3 D (41)
Components of D are the partial derivatives of the Lagrangian with respect to the components of the electric field. In the following we show that equation ( 41) makes the connection between potential theory (which gives the way to compute D from first principles) and classical electromagnetism (which gives the physical interpretation of div 3 D in terms of the charge density).

1-Let us consider first the particular case of the even solution (17). The derivative of the Lagrangian L 0 (eq.34) with respect to the field

E = c a 2 1 = -1 √ 4π A ω J cos ωt is the induction (term L 1 0 2 in the momentum tensor (40) divided by c). Its sole component is noted D r : D r = - 2C c A ω c √ 4π 3 J 3 x 2 sin 2 ωt cos ωt (42) 
Note that its dimensions are : Q L -3 = (QL)/L 4 , which is a density of dipoles in the four dimensional space.

Its divergence is:

div 3 D = ∂D r ∂r + 2 r D r = ω c ∂D r ∂x + 2 x D r = 2C ω c 2 A ω c √ 4π 3 sin 2 ωt cos ωt 3 J" J 2 x 2 = ρ even (43)
and this is the charge density in the particular case of the spherically symmetric even solutions n = 0 or n = 1 and m = = 0. 2-A general method to find div 3 D is to use the Euler-Lagrange equation applied to the scalar potential φ/c in a Cartesian frame:

∂L ∂(φ/c) + ∂ c∂t ∂L ∂(φ/c) ,t + ∂ ∂x ∂L ∂(φ/c) ,x + ∂ ∂y ∂L ∂(φ/c) ,y + ∂ ∂z ∂L ∂(φ/c) ,z = 0 (44)
L is not an explicit function of φ/c and the first term disappears. The spatial derivatives of the Lagrangian are the components of the induction(eq.( 21)) and one can write:

∂ c∂t ∂L ∂(φ/c) ,t + c ∂ D x ∂x + c ∂ D y ∂y + c ∂ D z ∂z = 0 (45)
which gives the tensor equation:

∂ c∂t ∂L ∂ ∂(φ/c) c∂t = -c div 3 D ( 46 
)
where D is the electrostatic induction vector in the geometrical space.

Here

L = L 0 = C a i k and (∂(φ/c)/c∂t) = a 1 1 . It follows that ∂L/(∂ (∂(φ/c)/c∂t) is the minor ∆ 1 1 relative to a 1
1 (multiplied by C) and one obtains the simple equation:

ρ = div 3 D = - C c 2 ∂∆ 1 1 ∂t . ( 47 
)
If we apply this general rule to the particular case (17), one has:

∆ 1 1 = - 1 4π A ω c 3 J" J 2 x 2 sin 3 ωt (48) 
and:

ρ even = ω c 2 C 1 4π
A ω c which is exactly the result (43). One obtains also for the odd solution:

ρ odd = ω c 2 C 1 4π A ω c 3 3 J" J 2 x 2 cos 2 ωt sin ωt (50)
Density of charges for the particles in the reversed time domain are obtained in the same way with time derivations done with respect to -t. One has:

ρ (-t) even = - ω c 2 C 1 4π A ω c 3 3 J" J 2 x 2 sin 2 ωt cos ωt (51) ρ (-t) odd = - ω c 2 C 1 4π
A ω c

3 3 J" J 2 x 2 cos 2 ωt sin ωt (52) 
This sign change between ρ even , ρ odd and ρ

(-t)
even , ρ

(-t)
odd will lead to associate the solutions in the reversed time domain to the antiparticles. We note that the time integral of ρ vanishes. The total electric charge is observed when it interacts with an electric field originating from another particle. We will see that this interaction contains terms like cos 4 ωt or cos 2 ω sin 2 ωt whose time integrals do not vanish.

Total charge. The temporal total charge density of a particle is the integral over the geometrical volume of the charge density:

Q t = V ρ dv = V div D dv (53) 
dv is the geometrical volume element and the subscript t in Q t reminds us that Q t is still a density in the time domain with dimensions (QL -1 ) (time integration is performed with respect to ct).

Let us take a spherical Gauss surface of radius R surrounding the particle. Gauss's theorem gives:

Q t = 4 π R 2 D r (54)
where D r is the radial component of D. Equation (47) gives the relation between ρ and the components of [a i k ] and we obtain:;

Q t = C c V ∂∆ 1 1 c ∂t dv (55) ∆ 1 1 is the determinant of the spatial part of [a i k ]. It follows that Q t is an invariant in a transformation of geometrical coordinates.
In the case of an even solution (17), one has:

∆ 1 1 = - A ω c √ 4π 3 J" J 2 /x 2 sin 3 ωt (56) 
and:

∂∆ 1 1 ∂t = - A ω c √ 4π 3 J" J 2 /x 2 3 sin 2 ωt cos ωt (57) 
Integrating eq.(55) gives:

Q t = - C c 2 A ω c √ 4π 3 sin 2 ωt cos ωt π 0 sin θ dθ 2π 0 dϕ ∞ 0 x 2 (3J" J 2 /x 2 ) dx (58) = -4π C c 2 A ω c √ 4π 3 sin 2 ωt cos ωt J 3 ∞ 0 ( 59 
)
For solutions n = 0 , J = sin x/x and J = cos x/x -sin x/x 2 . In this case J 3 ∞ 0 = 0 and Q t = 0 (see ref. [START_REF]The power series expansion for J 0 about the point x = 0 is: J 0 = 1 -x 2 /6 + x 4 /120 + O(x 6 ) and for J 0 it is: J 0 = -x/3 + x 3 /30 + O(x 5 ). for J 1 these series are: J 1 = x/3 -x 3 /30 + O(x 5 ) and J 1 it is: J 1 = 1/3 -x 2 /10 + x 4 /168 + O(x 6 )[END_REF]).

One concludes that particles (g) are not electrically charged. For solutions (n = 1), J = -cos x/x + sin x/x 2 and J = sin x/x + 2 cos x/x 2 -2 sin x/x 3 . In this case

J 3 ∞ 0 = 1/3 3 and Q t = 0: Q t = - 4π 27 C c 2
A ω c √ 4π

3 sin 2 ωt cos ωt for the even solution in(t).

(60)

Contrary to particles (g), particles (e) are electrically charged.

We have computed the charge Q t for the other solutions with n > 1 and found that Q t = 0 for all of them. Particles (e) are the only electrically charged electromagnetic particles.

2.4 Spinning Particles.

Lorentz transformation.

We consider now the case of particles rotating around the z axis. The event M becomes fixed in the laboratory frame. Coordinates r and θ are not affected by the rotation. Only the time element dt and the length element dl = r sin θ dϕ are modified with respect to the proper frame. This change is formalized by the Lorentz transformation:

L =     γ 0 0 γ β 0 1 0 0 0 0 1 0 γ β 0 0 γ     (61)
β is the ratio of the tangential speed and the velocity of light:

β = r sin θ dϕ/(dt) (62) 
and γ is the Lorentz factor γ = 1/ 1 -β 2 . The sign of β is changed in the reversed time domain.

L acts on time and angle ϕ coordinates. In the laboratory frame, coordinates elements become:

    c d t dr r d θ r sin θ d φ     = L     c dt dr r dθ r sin θ dϕ     =     γ c dt + γ β r sin θ dϕ dr r dθ γ β c dt + γ r sin θ dϕ     (63)
The temporal phase ωt = 2π t/T = ω t is a true scalar (the ratio of two times) and remains the same in both reference frames (it is a Lorentz invariant). One can write: ωt = ω t with:

dω dω = d t dt = γ + γ β c r sin θ dϕ dt (64) 

Basis vectors.

The basis vectors of the rotating system ūt , ūr , ūθ , ūϕ are obtained with a Lorentz transformation of the normalized basis vectors of the non-rotating system:

    ūt ūr ūθ ūϕ     = L -1     u 0 t u 0 r u 0 θ u 0 ϕ     =     γ u 0 t -γ β u 0 ϕ u 0 t u 0 θ -γ β u 0 t + γ u 0 ϕ    
These vectors are also ortho-normalized:

ūt 2 = γ u 0 t -γ β u 0 ϕ 2 = γ 2 (1 -β 2 ) = 1 (65) ūϕ 2 = -γ β u 0 t + γ u 0 ϕ 2 = γ 2 (β 2 -1) = -1 (66) ūt ūϕ = γ u 0 t + γ β u 0 ϕ γ β u 0 t + γ u 0 ϕ = 0 ( 67 
)
We have used the scalar products:

u 0 t u 0 t = 1 u 0 r u 0 r = -1 u 0 θ u 0 θ = -1 u 0 ϕ u 0 ϕ = -1 u 0 t u 0 r = u 0 t u 0 θ = u 0 t u 0 ϕ = u 0 r u 0 θ = u 0 r u 0 ϕ = u 0 θ u 0 ϕ = 0 ( 68 
)
It follows that the metric tensor remains diag(1, -1, -1, -1) in the lab. system. The justification of the use of the normalized basis vectors lies on the need of the same reference to compare lengths for different values of r or θ.

Potential.

Coordinates of M and potentials at M are 4-vectors which are changed in the laboratory system through the Lorentz transformation. Potential components become φ/c, Ār , Āθ , Āϕ such that :

    φ/c Ār Āθ Āϕ     = L     φ/c A r 0 0     =     γ (φ/c) A r 0 γ β (φ/c)     (69)
The important point is the appearance of the new component Āϕ = γ β (φ/c) of the vector potential. The new potential is still independent of angles and its (θ) and (ϕ) derivatives will vanish. Its time dependence rests upon the periodic functions sin ωt = sin ωt or cos ωt = cos ωt .

Gradient tensors.

The gradient tensor [ā i

k ] we are interested in is written in the laboratory frame with the barred quantities. This tensor is obtained from the transformation formula:

∂ Āi ∂ xk + Γ i m k Ām = ∂ xk ∂x p ∂x n ∂ xk ∂A p ∂x n + Γ p h n A h (70) 
The term in parenthesis is the tensor (14) and we obtain:

∂ Āi ∂ xk + Γ i m k Ām ≡ [ā i k ] = L [a i k ] L -1 (71) 
The even solution writes in the laboratory system:

[a i k ] = 1 4π A γ ω c     -γ 2 sin ωt (J -J /x β 2 ) -γ J cos ωt 0 β γ 2 (J -J /x) sin ωt γ J cos ωt -J" sin ωt 0 -β γ J cos ωt 0 0 -sin ωt J /x 0 -β γ 2 (J -J /x) sin ωt -β γ J cos ωt 0 γ 2 sin ωt (J β 2 -J /x)     (72) 
The tensor of the odd solutions is obtained as before by changing ωt into ωt + π/2 :

[a * i k ] = 1 4π A γ ω c     γ 2 cos ωt (J -J /x β 2 ) -γ J sin ωt 0 -β γ 2 (J -J /x) cos ωt γ J sin ωt J" cos ωt 0 -β γ J sin ωt 0 0 cos ωt J /x 0 β γ 2 (J -J /x) cos ωt -β γ J sin ωt 0 -γ 2 cos ωt (J β 2 -J /x)     (73) 
We have used the invariance of the temporal phase: ω t = ω t and we have introduced the new normalized distance x = ω r/c. J stands for the derivative of J with respect to x.

Tensors that represent particles in the long range (far field) are obtained by neglecting terms in 1/x 2 , 1/x 3 ... and keeping terms in 1/x only. This approximation leads to the neglect of J /x and the replacement of J, J and J by their asymptotic values sinx/x, cosx/x, and -sinx/x when J = J 0 (particles g and g * ). When J = J 1 , J 1 reduces to -cosx/x, J 1 to sinx/x and J" 1 to cosx/x (particles e and e * ). The long range tensor for even particles is:

[a i k ] f f = A γ ω c √ 4π     -γ 2 sin ωt J β 2 -γ J cos ωt 0 β γ 2 J sin ωt γ J cos ωt -J" sin ωt 0 -β γ J cos ωt 0 0 0 0 -β γ 2 J sin ωt -β γ J cos ωt 0 γ 2 sin ωt J β 2     (74)
We will need the long range tensors in the study of the interaction of two particles far away from one another. Tensors in the reversed time domain are obtained as before by changing t into -t and β into -β in the expressions for the even and odd solutions.

Potential and Kinetic Energies.

The determinants of the tensors are invariant in a Lorentz transformation: the potential energy is not modified by the rotation. However kinetic energy due to the rotation appears and modifies the Lagrangian. This is studied below.

Lagrangian.

In a very general manner, the Lagrangian is the function which appears in the action integral [START_REF] Landau | English translation: "The Classical Theory of Fields[END_REF]:

S = - b a L dt (75) 
Let us consider the preceding situations where tensors are written for M fixed with respect to the origin (proper particle frame) and for M in the laboratory frame. Equation (75) writes in the proper frame:

S = - b a L 0 dt p ( 76 
)
where t p is the proper time and L 0 = C a i k is the Lagrangian (eq.22). One uses now the interval element: δs = √ c 2 dt 2 -dl 2 which is an invariant in a coordinates change. One writes this invariance for the spinning particle:

δs =    d t c 2 -r 2 sin 2 θ d φ d t 2 in the lab. frame c dt p in the proper frame (77) 
Action can thus be written in the lab frame with the well-known formula:

S = - b a L 0 d t 1 -β 2 (78) 
where β = r sin θ d φ/(cd t) as before (eq. 62).

For the spinning particle we have:

L = L 0 1 -β 2 = L 0 /γ (79) 
While L 0 is invariant in a coordinates change (the determinant of tensor (72) is the same as that of tensor (17)), L contains the kinetic energy and varies with the relative velocity β.

Canonical momentum tensor.

The tensor of the canonical momentum for the even solution becomes in the laboratory frame:

L k i = ∂L ∂ā i k ( 80 
)
where L is the determinant in eq.( 72). The non-vanishing elements are:

L 1 1 = A γ ω c √ 4π 3 γ 2 β 2 J 3 /x sin ωt cos 2 ωt + J" sin 3 ωt (-J /x + J β 2 ) (81a) L 1 2 = - A γ ω c √ 4π 3 γ cos ωt J 3 /x 2 sin 2 ωt (81b) L 1 4 = A γ ω c √ 4π 
3 β γ 2 J 3 /x sin ωt cos 2 ωt + J" J /x sin 3 ωt (J -J /x) (81c)

L 2 1 = -L 1 2 (81d) L 2 2 = - A γ ω c √ 4π 3 JJ 2 /x 2 sin 3 ωt (81e) L 2 4 = -β L 1 2 (81f) L 3 3 = - A γ ω c √ 4π
3 sin ωt cos 2 ωt J 3 /x + JJ" J /x sin 3 ωt (81g)

L 4 1 = -L 1 4 (81h) L 4 2 = L 2 4 (81i) L 4 4 = - A γ ω c √ 4π 3 γ 2 J 3 /x sin ωt cos 2 ωt + J /x J" (J -J /x β 2 ) sin 3 ωt (81j)
Long range (or far field) tensors are obtained by keeping terms containing 1/x only in these formulas. One sees that the momentum tensor nullify in the long range (no such terms in 1/x). This remark led us to consider the real situation of a particle imbedded in noise. This is the subject of the next paragraph.

Long range momentum tensor.

In classical theory of electrostatics, the relation which links the field E and the induction D in vacuum writes:

D = 0 E (82) 
We will interpret the word "vacuum" as the region of space outside the extension of any particle, or, in other words, the region where all terms a i k for any particle are limited to expressions in 1/x. In this view, the vacuum is a sum of random waves originating from the multitude of particles of the universe that are superposed to something else ("black energy"?). We will thus use the term "noise" instead of vacuum. This noise is characterized by a potential whose characteristics are random. Elements of the gradient tensor [n i k ] of this potential are also random. The gradient tensor [ a i k ] of an even or odd solution corresponding to a particle embedded in noise is the sum:

[

a i k ] = [a i k ] + [n i k ] (83) 
and the Lagrangian associated to it is:

L = C a i k ( 84 
)
The derivatives of L with respect to the components of the electric (magnetic) field are those of the electric (magnetic) induction. One thus compute the determinant a i k + n i k , and its derivatives with respect to each component a i k . Moreover the induction L k i = ∂ L/∂a i k is the term which is proportional to a i k and independent of the other terms a j . It follows that an induction is different from zero only if a term appears twice in the tensor [a i k ] or, equivalently, if a squared term (a i k ) 2 appears in the determinant.

We write an antisymmetric tensor under the general form:

[a i k ] =     0 a 2 1 a 3 1 a 4 1 -a 2 1 0 a 3 2 a 4 2 0 -a 3 2 0 a 4 3 -a 4 1 -a 4 2 -a 4 3 0     (85) 
at the expense of (negative) potential energy. This decrease is expressed by the difference between the energy components (90b) and (91b): (γ -1) H s . We take it for granted that the most stable state is obtained for the maximum decrease H s which gives the equation:

(γ -1) H s = H s (92) from which: γ = 2 β = √ 3/2 (93)
One finds that the tangential velocity β is a constant, independent of the coordinates. But β = r sin θ d φ/(c d t) and thus the angular velocity d φ/(c d t) varies inversely to r sin θ. This result is in striking contrast with a rotating rigid solid like a top where the angular velocity is independent of r and the tangential velocity increases with r. It is different also to what happens in a whirlpool where a floating object moves faster when it is closer to the middle. This result is applied to the whole particle after the integration over the 4-volume. Figure [START_REF]The power series expansion for J 0 about the point x = 0 is: J 0 = 1 -x 2 /6 + x 4 /120 + O(x 6 ) and for J 0 it is: J 0 = -x/3 + x 3 /30 + O(x 5 ). for J 1 these series are: J 1 = x/3 -x 3 /30 + O(x 5 ) and J 1 it is: J 1 = 1/3 -x 2 /10 + x 4 /168 + O(x 6 )[END_REF] describes in a synthetic way the different levels of energies for an em particle. The zero line represents the global energy of the particle, i.e., the integrated value of the two parts of H t over the whole volume. The lower side of the figure is the mechanical part, and the upper side is the electromagnetic part. There are three different frames of coordinates: On the left side is the proper frame where there is no kinetic energy; here the mass (or the potential) negative energy is compensated by the positive electrostatic field energy.

In the middle is the fixed frame of the laboratory where M rotates around the z axis: in the lower part of the figure, a kinetic energy appears at the expense of potential energy (the figure is drawn for γ = 2). In the electromagnetic domain, the energy is modified also, resulting from the appearance of a magnetic field which is oriented along θ. These changes are expressed by the momentum vector in the mechanical domain and by an "electrostatic Poynting vector" in the electromagnetic domain.

On the right side is the laboratory frame where the center of the particle is moving with a velocity v which induces a kinetic energy and a change of the potential energy. In the electromagnetic domain, the electron will emit a transverse e.m. wave when the motion is periodic.

In each coordinates frame the total energy nullifies with an opposite sign for both the mass part and the field part which brings a symmetry with respect to the zero energy axis. Let us illustrate these results with the tensor (17) which gives:

H t = C 1 4π
A ω c 4 J 2 /x 2 sin 2 ωt (J J" sin 2 ωt + J 2 cos 2 ωt) (94)

H s = C 1 4π A ω c 4 J 2 x 2 J J" sin 4 ωt (95) 
H f = C 1 4π A ω c 4 J 4 x 2 sin 2 ωt cos 2 ωt (96) 
The term γ β H s /c in eq.(91b) corresponds to the appearance of a kinetic energy:

γ β H s = C 1 4π A ω c 4 γ β J 2
x 2 J J" sin 4 ωt (97) and to a momentum vector which has its component p ϕ = γ β H s /c oriented along the ϕ axis. The term γ β H f /c which appears in eq.(91c) corresponds to the modified field energy:

γ β H f = C 1 4π A ω c 4 γ β J 4 x 2 sin 2 ωt cos 2 ωt (98)
It corresponds also to the appearance of a kind of a Poynting vector P ϕ proportional to γ β H f /c which, here, has only one component, and is oriented along the ϕ axis. This component contains the product of the electric field E r (E r /c is given in tensor(72)) and the magnetic induction (L 2 4 ) given in tensor(81). where D is the induction in the coordinates frame of the laboratory. When Lagrange equations are applied to the scalar potential in the non-rotating frame the 4-divergence writes:

∂ c ∂t   ∂L ∂ ∂(φ/c) c ∂t   + ∂ ∂r   ∂L ∂ ∂(φ/c) ∂r   + 2 r   ∂L ∂ ∂(φ/c) ∂r   = 0 (99)
but the divergence is a scalar quantity that is invariant in a coordinates transformation. The same equation holds in the laboratory frame with the transformed coordinate elements (63) (t → t = γ c dt+γ β r sin θ dϕ) and the transformed potential (69) (φ → φ = γφ). However φ nor L do not depend on the angle φ. We get:

∂ c ∂ t   ∂L ∂ ∂( φ/c) c ∂ t   = -div 3 D = -ρ ( 100 
)
where D is the electrical induction vector in the lab system. We use ( φ/c) = γ(φ/c) and ∂/c∂ t = 1/γ ∂/c∂t + 1/(γβ r sin θ) ∂/∂ϕ to obtain:

ρ = 1 γ ρ (101) 
The charge density is modified by the rotation. The total charge is obtained from an integration of ρ over spacetime with the (Lorentz-invariant) volume element dv:

dv = r 2 dr sin θ d φ d(c t) = c 4 ω4 x2 dx sin θ d φ d(ω t) (102) 
The time-dependent part is given by an integration over the geometrical space.

Relation between the long range field and the total charge. We have seen (eq.( 89)) that the long range electric and magnetic inductions can be expressed as functions of the electric and magnetic fields:

D r = 0 E r D ϕ = 0 E ϕ H ϕ = 1/ µ 0 B ϕ
Equation (54) relies the total charge Q t and D r (Q t = 4 π R 2 D r ). It stands also for the spinning particle. It follows that the longitudinal field E r can be expressed as a function of the electrical charge:

E r = 1 0 D r = Q t 4 π 0 R 2 (103)
This is the standard expression, including the time dependence. The long range induction tensor (89) can be written under different forms:

[ D i k ] =     0 D r 0 D ϕ -D r 0 0 H ϕ 0 0 0 0 -D ϕ H ϕ 0 0     =     0 Qt 4πR 2 0 D ϕ -Qt 4πR 2 0 0 H ϕ 0 0 0 0 -D ϕ H ϕ 0 0     =     0 0 E r 0 0 E ϕ -0 E r 0 0 1/ µ 0 B ϕ 0 0 0 0 -0 E ϕ 1/ µ 0 B ϕ 0 0     (104) 
3 Two particles interaction.

This section deals with the coherent interaction of two spherical particles (a) and (b): these are even and odd particles (g), and (e) with their even and odd representations in the normal and reversed time domains. These particles are far from each other: only the interaction at long distance is under study. The initial objective was essentially to identify and compute the electromagnetic interaction and to recover the standard electrostatic interaction between charged particles.

Classical phenomenology.

The standard relation which appears in classical electrostatics:

W = QV (r) ( 105 
)
expresses the potential energy W of an electrical charge Q embedded in a potential V at point r.

Eq.( 105) is eq.( 39) in the Chapter "Electrostatics" in Griffiths book [START_REF] Griffiths | Introduction to Electrodynamics[END_REF]. W is the work which is necessary to bring the charge Q from infinity to the point r where the potential is V (potential V is taken to be zero at infinity). Standard electrostatics operates in the geometrical domain and deals with point-like particles.

Eq.( 105) can thus be recovered with e.m. particles only after the proper integrations over time and space. Potential V corresponds to φ in our notation. The difference between V and φ is that V is defined in the pure geometrical domain, it does not depend on time while φ depends on the four coordinates x k . One can say that Q and V are coarse-grain quantities as compared to the equivalent quantities in potential theory. The relation between V and φ can be:

V = 1 T v T 0 v φ 2 dt dv 1/2 (106) 
Time and volume integrations are done over a period T and a small volume v which corresponds to the mass extension of the particle.

In the same way the electrical charge density in eq.( 104) is time-dependent while Q in eq. ( 105) is a constant which is the elementary charge for an electron. The relation between Q and ρ could be: 

Q = 1 T T 0 v ρ dv 2 dt 1/2 (107)

Geometry and methodology.

Two interacting particles (a) and (b) are represented on fig. [START_REF] Einstein | On the Method of Theoretical Physics[END_REF]. Two configurations are considered in the geometrical space where the particles are located side by side on the y axis (config1) or one above the other (config2) on the z axis. Spins are taken to be parallel or antiparallel and directed along the z axis. Particles (a) and (b) are respectively named the source and the test particles. The distance between the centers O a and O b is extremely large as compared to the extension range of the particles. As an example the geometrical extension of an electron is around 10 -18 m and the size of an atom is around 10 -10 m. The long range approximation that was developed before will remain valid even in an hydrogen atom. Another example is the distance between the two electrons in a Cooper's pair which is of the order of 10 

    γ(φ a /c + φ b /c) A r + B r A θ + B θ A ϕ + B ϕ     (108) 
These potentials and their derivatives have to be expressed in the same coordinate frame. The system of these two particles looses the initial spherical symmetry of each. We will express the vectors and the tensors in the common cartesian frame which is basically defined from the axis joining both particles centers. The strategy to obtain the interaction energy, or the effect of the source particle (a) on the test particle (b), is to write the determinant of the sum of the gradient tensors of the two particles and obtain the total energy density at a point M in the extension range of the test particle. This determinant contains several terms in which the interaction term has to be chosen. As we limit ourselves to the long range interaction, this choice is limited to the linear source terms. Calculations will be applied to the effect of the even and odd solutions of (a) on the even and odd solutions of (b) in normal and reversed times. They will proceed as follows:

1-write the long range source terms of the even and odd solutions at M and transform them into the common cartesian frame defined from O a O b and O b as the origin.

2-compute the first order interaction energy density, i.e., terms which contain the linear source terms for each type of solutions.

3-integrate over spacetime and combine the results for each pair of solution to obtain the particles interaction. .

Interaction energy.

Let [a i k ] be a source and and [b i k ] a test solution tensor at M . Each of them is chosen between

[g i k ] even , [g i k ] odd , [g i k ] (-t) even , [g i k ] (-t) odd and [e i k ] even , [e i k ] odd , [e i k ] (-t) even , [e i k ] (-t)
odd . Source tensors are reduced to their expressions in the far field. Let us first compute the general expression for the energy of interaction. The Lagrangian density L at M is proportional to the determinant of the sum of [a i k ] and [b i k ]:

L = C a i k + b i k , (109) 
and the energy density of the system is three times L (eq.( 26)). The determinant can be developed:

L = C a i k + b i k = C mnop f hj f hj mnop (a m f + b m f ) (a n h + b n h ) (a o j + b o j ) (a p + b p ) (110) 
f hj and mnop are permutations of (1,2,3,4) and f hj and mnop are the signatures of a permutation (the Levi-Civita tensor can also be used instead of the signatures product). The interaction we are looking for is the linear effect of (a) on (b). It is described by the set of elements of L that contains an element a i k a single time and elements b i k three times. In order to find this set we develop the determinant with respect to the first line:

L = C i (a i 1 + b i 1 ) ∆ 1 i (111)
Here ∆ 1 i is the minor which is associated to the element

(a i 1 + b i 1 ) in the determinant a i k + b i k . ∆ 1
i is the determinant of the 3X3 submatrix obtained by deleting the first line and the

i th column of [a i k + b i k ] multiplied by (-1) 1+i . Determinant ∆ 1
i can be split into three parts:

∆ 1 i = ∆ 1 i(a) + ∆ 1 i(b) + ∆ 1 i(a,b) (112) 
∆ 1 i(a) contains terms a i k only, ∆ 1 i(b) contains terms b i k only and ∆ 1 i(a,b) contains both terms a i k and b i k . Products a i 1 ∆ 1 i(b)
are the only products in L that contain the elements of the first line a i 1 . We thus keep these products only.

In the same way one develops the determinant with respect to the second, third and fourth lines to find the terms containing a i 2 , a i 3 and a i 4 . One thus obtains the desired linear interaction energy density H ab :

H ab = C i,k a i k ∆ k i(b) (113) 
The factor 3 has again been included in C. We note that a term like ∆ k i(b) is the conjugate momentum of b i k . The first order interaction energy is the sum of the products of the elements of the source tensor and the corresponding conjugate momenta of the test tensor. The total interaction energy is the integral over spacetime of H ab :

W ab = C c 3 ω 3 i,k cT 0 d(ct) π 0 sin θ b dθ b 2π 0 dϕ b ∞ 0 x 2 dx a i k ∆ k i(b) (114) 
Integration over time shows that terms in a i k and ∆ k i(b) that have a different time parity vanish. In configuration 1 integration over geometrical coordinates x b , θ b , ϕ b can be performed on (∆ k i(b) ) independtenly because terms a i k are independent of these coordinates.

Symmetric and antisymmetric splitting. A further operation can be done on expression (113): we have seen in section 2 the fundamental importance of splitting tensors into their symmetric and antisymmetric parts. Let us perform this operation on [a i k ] and [∆ k i(b) ]:

[a i k ] = [a (s) i k ] + a (f ) i k ] with [a (s) i k ] = 1 2 [a i k ] + [a i k ] T and [a (f ) i k ] = 1 2 [a i k ] -[a i k ] T (115) 
∆ k i(b) = [∆ k i(bs) ] + [∆ k i(bf ) ] with [∆ k i(bs) ] = 1 2 ∆ k i(b) + ∆ k i(b) T and [∆ k i(bf ) ] = 1 2 ∆ k i(b) -∆ k i(b) T (116) 
The sum in H ab (eq.( 113)) can be written as the trace of the matrix product:

H ab = C T race [a i k ] [∆ k i(b) ] T (117) 
But the trace of the product of a symmetric and an antisymmetric matrices vanishes. It results that eq.( 113) can be split into a sum of two products:

H ab = C T race [a (s) i k ] [∆ k i(bs) ] T + C T race [a (f ) i k ] [∆ k i(bf ) ] T (118) 
This equation will allow a better interpretation of the different terms appearing in the interaction.

Scalar effect. The scalar interaction is represented by the term C a 1 1 ∆ 1 1(b) in eq.( 113):

H scalar = C a 1 1 ∆ 1 1(b) = C ∂( φa /c) c ∂ t ∆ 1 1(b) (119) 
( φa /c) is the scalar potential of particle (a) and ∆ 1 1(b) is the canonical momentum associated to ( φb /c) of particle (b). The scalar interaction energy is the integral over spacetime of this density.This integral is taken first over a length cT corresponding to a period of time T = 2π/ω which gives:

H scalar,(space) = c T 0 H scalar,(space,time) d(c t) = C c T 0 ∂( φa /c) c ∂ t ∆ 1 1 d(c t) (120) 
The formula of integration by parts gives:

H scalar,(space) = C (φ a /c) ∆ 1 1 c T 0 - c T 0 ( φa /c) ∂∆ 1 1 c ∂ t d(c t) = -C cT 0 (φ a /c) ρ d(c t) (121) 
The integrated term vanishes thanks to its periodicity. One recognizes in the integral the product of the potential and the charge density which will lead after an integration over spacetime to the classic formula for the electrostatic energy: W = Q V .

Source tensors.

The observation point M is located close to the center of particle (b). Its coordinates are ct 2 , x b , θ b , ϕ b in the reference frame of (b) and ct 1 , x a , θ a , ϕ a in the reference frame of (a). In order to find the different source tensors at M we will use expressions (72) and (73) written in the far field of particle (a) where we keep terms in 1/x a (with x a = D in the denominator) only. D is the normalized distance between O a and O b . In the far field Bessel functions J are replaced by sin x a /D for particles g or by -cos x a /D for particles e.

The far field tensor for the even solution g is:

[g i k ] f f = A γ ω c √ 4πD    
-γ 2 sin ωt sin x a -γ cos x a cos ωt 0 β s γ 2 sin x a sin ωt γ cos x a cos ωt sin x a sin ωt 0 -β s γ cos x a cos ωt 0 0 0 0 -β s γ 2 sin x a sin ωt -β s γ cos x a cos ωt 0 γ 2 sin ωt sin x a β 2 Only the advanced wave emitted by the source contributes to the interaction. We thus retain this wave only in the expression of the source to obtain:

[g i k ] f f = A γ ω 2c √ 4πD cos(ω t -x a )     -γ 2 -γ 0 β s γ 2 γ 1 0 -β s γ 0 0 0 0 -β s γ 2 -β s γ 0 γ 2 β 2 s     (123)
The next operation is to translate this tensor into the cartesian frame centered at O a . This is done with the Jacobian matrix J a which relates the spherical coordinates (r a , θ a , ϕ a ) to the cartesian coordinates (x a , y a , z a ) of M :

J a =     1 0 0 0 0 sin θ a cos ϕ a cos θ a cos ϕ a -sin ϕ a 0 sin θ a sin ϕ a cos θ a sin ϕ a cos ϕ a 0 cos θ a -sin θ a 0     (124) 
One has:

[g i k ] f f,(even,cartesian) = J a • [g i k ] f f,even • J a -1 (125) 
In the vicinity of O b (in the extension range of particle b), angles θ a and ϕ a do not vary very much and we will use: ⇒ In configuration 1: θ a ∼ π/2 and ϕ a ∼ π/2 (see fig.( 8)), One obtains:

[g] even = A γ ω 2c √ 4πD cos(ω t -x a )     -γ 2 -β s γ 2 -γ 0 β s γ 2 β 2 s γ 2 β s γ 0 γ β s γ 1 0 0 0 0 0     (126) 
and: ⇒ In configuration 2: θ a ∼ 0 and ϕ a = ϕ b . One finds: The symetric part is:

[g] even (2) = A γ ω 2c √ 4πD cos(ω t -x a ) ×     -γ 2 -β s γ 2 sin ϕ b β s γ 2 cos ϕ b -γ β s γ 2 sin ϕ b β 2 s γ 2 sin 2 ϕ b -β 2 s γ 2 sin ϕ b cos ϕ b β s γ sin ϕ b -β s γ 2 cos ϕ b -β 2 s γ 2 sin ϕ b cos ϕ b β 2 s γ 2 cos 2 ϕ b -β s γ cos ϕ b γ β s γ sin ϕ b -β s γ cos ϕ b 1     (127) 
[g] ev = A γ ω 2c √ 4πD cos(ω t -x a )     -γ 2 0 0 0 0 β 2 s γ 2 β s γ 0 0 β s γ 1 0 0 0 0 0     (128) 
We will see that the diagonal terms only contribute to the interaction. We have followed the same method to find the tensors representing the other sources. These are listed in Appendix (B) for solutions g and g (-t) , e and e (-t) in configuration 1, and for solutions e even , e odd in configuration 2.

Test tensors .

Determinants ∆ k i(b) that appear in the expression of the interaction energy density (113) characterize the test particles b. These determinants are the elements of the momentum tensors. They have been listed in eq.( 81) for the even solution (72) :

∆ k i(b) = L k i .
As before these determinants are adapted to the odd solution by changing sin ωt into -cos ωt and cos ωt into sin ωt. Expressions in the reversed time domain t r = -t are also obtained by changing t into -t and β into -β in these even and odd tensors. Bessel functions J are always J 0 for particles g and J 1 for particles e.

Before inserting these expressions in H ab (eq.( 113)) one should transform them into the cartesian frame x, y, z centered at O b . This is done with the same operation as before (eq.( 129)) with a Jacobian matrix J b analog to J a (eq.( 130)) expressed in terms of θ b and ϕ b .

[∆ k i(b) ] cartesian = J b • [∆ k i(b) ] spherical • J b -1 (129) 
with:

J b =     1 0 0 0 0 sin θ b cos ϕ b cos θ b cos ϕ b -sin ϕ b 0 sin θ b sin ϕ b cos θ b sin ϕ b cos ϕ b 0 cos θ b -sin θ b 0     (130) 
These operations are performed with the help of a mathematical software.

An interesting simplification happens in configuration 1 where the source term in eq.( 114) is independent of angles. The total interaction energy W ab is obtained after a space-time integration. The long-range source term is independent of the coordinates (x b , θ b , ϕ b ). One can thus replace the test tensor by its integrated expression over these coordinates. Appendix C gives the detailed expressions for these integrated tensors (always obtained with our mathematical software) for solutions g even , g odd , g

(-t)
even , g

(-t)
odd , e even , e odd , e

(-t)
even , e

(-t)
odd . It happens that the formulas are exactly integrated.

Interactions in Configuration 1.

We have obtained the expressions that are necessary to compute the long range, linear interaction of two electromagnetic particles. We can apply formula (131) for each couple of the source and test solutions:

W ab = C c 3 ω 3 cT 0 d(ct) i,k a i k < ∆ k i(b) > (131) 
where

< ∆ k i(b) >= π 0 sin θ b dθ b 2π 0 dϕ b ∞ 0 x 2 dx ∆ k i(b)
is the integrated value of the elements of the test tensor in configuration 1. After integration over θ b and ϕ b , the test matrices become diagonal, and symmetric. It follows that the symmetric part of the matrix source only contributes to the interaction. The consequence is that the sign of β s disappears in the results.

In each interaction term one finds a product of even or odd periodic time functions. We have seen that a real particle can be described by an odd as well as an even solution, or a mixture of both because the time origin is random. This is why we have chosen to fix ωt 1 -x a = ωt and to study the even and odd solutions separately. Particles g and e are characterized by their own amplitude A g or A e and their own frequency ω g or ω e . These quantities depend upon the noise sources that feed the particle and cannot be determined at this stage of the theory. We thus consider interactions between similar particles only.

Particles g. The long range source matrix for the even solution g is given in eq. ( 128). Interactions between solutions g are considered below and results are given in table [START_REF] Stephan | Potential Theory 1: Gradient Tensors[END_REF]. The common factor 1/2D A γ √ 4π 4 is discarded. We note that the diagonal term (or the scalar term) is always zero for interacting similar solutions. This is because particles g are not electrically charged. We know that identical particles (electrons or positrons) repulse each other while particles and antiparticles attract each other. Table 2 shows us that the tensor representing the electron can be e even or e odd and that of the positron is e -t even or -e -t odd . We have begun to test this result by forming elementary particles like the muon or the tau by combining (e) and (g) particles. This is the subject of current studies.

Source

Interactions in configuration 2.

We consider in this paragraph the interaction of two electrons (solutions e e ven or e o dd) in the second configurations (fig. 

W ab ∝ (1/15120) π 2 γ 4 (2360 + β 2 s (5076 -4941Log[3]) + β 2 (1476 + 560β 2 s -2241Log[3]) -1350Log[3] + 2β β s (-5636 + 4941Log[3]) -450β 4 (-4 + Log[27])) (132)
For β = β s (parallel spins), the fraction is 0.57... and the interaction is still repulsive. For β = -β s = -√ 3/2 (antiparallel spins), the fraction is 7.08.... The interaction is also repulsive but more than ten times (12.37) larger. Magnetic and electric effects are opposed to each other.

Conclusion.

History of science, especially in the nineteenth and twentieth centuries, shows that scientists used the fields as the fundamental paradigms of theoretical physics. This is because fields are directly observable. However, behind them, the potentials are the invisible but fundamental quantities. There are four of them, the scalar one and the vectorial ones with their three components. As they are living in the four dimensional Minkowski spacetime there are 16 potential differences. We remember that a potential can be observed only through its differences. These 16 differences appear in the partial derivatives that are the components of the gradient tensor. This gradient is a kind of a magic box which contains a lot of physical properties. Manipulating this box and discovering some of these properties have been the subject of this article. In the first main part, we have described the potential theory. We consider the mixed form tensor whose determinant is independent of the reference frame of coordinates and which is associated to a Lagrangian density. The splitting of this tensor into its symmetric and and antisymmetric parts has a first consequence of a mathematical nature: there exists a proper time where the scalar potential can obey an Helmholtz equation. Its solutions describe accumulations of potential which we interpret as "electromagnetic particles" and which are labelled with three discrete numbers and a time symmetry. Properties of these particles are contained in the preceding magic box that can be opened with the three keys given to us by nature: these are the principle of symmetry, the principle of least action and the principle of relativity. These principles are simple and universal: they apply to entities, like a particle, a field or a collection of them with no limitation of scale. The second consequence of the preceding splitting is of physical nature: the symmetric part is associated to the mass part and the second to the field part. Potential energy is associated to the Lagrangian: one finds that the mass part is localized in space while the field part varies in 1/x. Surprisingly enough is the fact that the total mass and field energies of a particle are equal and opposite in sign. Another fundamental property that is contained in the magic box is the electric charge of the particle: this is revealed by Euler-Lagrange's equations (principle of least action) which brings the conclusion that there are only two charged particles among all solutions. These are naturally named the electron and the positron. Other particles are good candidates to explain black matter. The second main part of the article describes a spinning particle. Here the study rests solely on a coordinates change which allows the description of the particles in the laboratory system where the observer is fixed with respect to the center of the particle. The rotation brings a kinetic energy in the particles and the most interesting result here is that the tangential velocity v is a constant that is independent of the distance from the considered point to the center of rotation: v/c = √ 3/2. The particle does not look like a usual rotating system like a top nor a whirlpool. The third part sets the scene to study real situations where several or many particles are involved. We have considered two particles that are located very far from one another: one is the source and the other the test particle. The study is limited to two particular geometries but the machinery is general. It is found that the long-range field of the source couples with the canonical momentum of the other to give the energy of interaction. As an application we have examined if two particles repel or attract each other. On finds that interaction between charged or non-charged particles is completely different. This study should be completed by taking into account an effect that has been neglected here: we have seen that an e.m. particle is characterized by an amplitude A which depends upon that of the noise. When two particles interact the amplitude of each other is slightly modified by the other. This effect should be studied together with noise models, white noise or flicker noise for instance. A large amount of developments and applications of the potential theory can be foreseen but the most promising development lies in the study of the combination of electromagnetic particles. We consider that they are the fundamental bricks that make elementary particles and nuclei. It results that the simplest particles like the muon, the tau, etc... as well as more complicated structures like the proton or the neutron are associations of these fundamental particles in the same way molecules are associations of atoms.

Potential theory obeys the criteria for a satisfying theory: few initial concepts, simplicity of mathematical developments and many results. Finally we cite Albert Einstein [START_REF] Einstein | On the Method of Theoretical Physics[END_REF] who wrote: (the physical) "constructions and the laws connecting them can be arrived at by the principle of looking for the mathematically simplest concepts and the link between them".

Appendix A.

The 16 partial derivatives ∂A i /∂x k of the 4-potential A i = (φ/c, A x , A y , A z ) in spacetime x i = (ct, x, y, z) are the components of the gradient of A i . This gradient is a rank 2 mixed tensor which writes in the cartesian frame:

a i k =      ∂(φ/c) c∂t ∂(φ/c) ∂x ∂(φ/c) ∂y ∂(φ/c) ∂z ∂A x c∂t ∂A x ∂x ∂A x ∂y ∂A x ∂z ∂A y c∂t ∂A y ∂x ∂A y ∂y ∂A y ∂z ∂A z c∂t ∂A z ∂x ∂A z ∂y ∂A z ∂z     
This tensor is divided into its symmetric ( s i k ) and antisymmetric ( f i k ) parts. Elements of the first line of the symmetric part are:

s 1 1 = ∂(φ/c) c∂t s 2 1 = 1 2 ∂(φ/c) ∂x + ∂A x c∂t = s 1 2 s 3 1 = 1 2 ∂(φ/c) ∂y + ∂A y c∂t = s 1 3 s 1 4 = 1 2 ∂(φ/c) ∂z + ∂A z c∂t = s 1 4 (133) 
Being symmetric s i k can be diagonalized which means that a proper time and an eigen-geometrical frame of coordinates exist where all elements but the diagonal ones cancel. Let us describe the series of transformations which will lead to a tensor where elements of the first line s 2 1 = s 3 1 = s 4 1 nullify. The first operation is a diagonalization of the lower bottom-right 3X3 block of s i k in the geometrical space. Only the spatial derivatives of the potential vector are concerned by this transformation which gives: 

[ s i k ] = M s i k M -1 = =     
L x =     γ x v x γ x 0 0 v x γ x γ x 0 0 0 0 1 0 0 0 0 1    
The relative speed of an element of the tensor with respect to the observer along the x axis is noted v x in units of c and γ x = 1/ 1 -v 2

x . The transformed tensor is:

[ ŝi j ] = L x .[ŝ i j ].L -1 x =        s 2 2 v 2 x -s 1 1 v 2 x -1 vx(s 1 1 -s 2 2 ) v 2
x -1

+ s 2 1 γ s 3 1 γs 4 1 vx(s 2 2 -s 1 1 ) v 2
x -1

+ s 2 1 s 1 1 v 2 x -s 2 2 v 2 x -1 γ s 3 1 v x γs 4 1 v x s 3 1 γ-γv 2 x s 3 1 vx γ(v 2
x -1)

s 3 3 0 s 4 1 γ-γv 2 x s 4 1 vx γ(v 2
x -1)

0 s 4 4        (136) 
Now we choose v x to be a solution of the equation:

s 1 2 v 2 x -1 -(s 1 1 + ŝ2 2 )v x = 0 (137) 
i.e. ,

v x = s 1 1 -ŝ2 2 2s 1 2 ± (s 1 1 + ŝ2 2 ) 2 + 4(s 1 2 ) 2 2s 1 2 (138)
Inserting one of these values of v x in [ ŝi j ], elements of the first line become:

ŝ11 = s 2 2 v 2 x -s 1 1 v 2 x -1 ŝ1 2 = 0 ŝ1 3 = s 1 3 γ x ŝ1 4 = s 1 4 γ x (139) 
One notes that this manipulation ( block diagonalization followed by a Lorentz transformation along x) result in the multiplication of the original s 1 3 and s 1 4 by γ x . It is clear now that the same manipulation done on the y and then on the z axis will allow to cancel terms s 1 3 and s 1 4 in the same way. After the last Lorentz transformation, the form of the tensor is such that its elements in the first line and the first column are null, with the exception of s 1 1 . Without any further developments we will accept the theorem following which the tensor and the observer share the same proper time if the terms s 1 2 = s 1 3 = s 1 4 = s 2 1 = s 3 1 = s 4 1 = 0.

6 Appendix B.

This appendix lists the far field source tensors (reduced to their advanced wave in normal time or to their retarded wave in reversed time) for even and odd solutions g (n = = m = 0) in the cartesian system for θ a ∼ π/2 and ϕ a ∼ π/2 (configuration 1) and for solutions e (n = 1, = m = 0) in configuration 2.

[g (-t) even ] = - This appendix lists the test tensors involved in the interaction energy. These are obtained from the momentum tensor (eq.( 81)) for the even solution where J = sin x/x or J = -cos x/x + sin x/x 2 . The tensor for the odd solution is obtained by changing ωt into ωt + π/2 in the different terms. We use these tensors in the calculations relative to configuration 2. Tensors in configuration 1 are obtained after an integration over the geometrical coordinates x b , θ b and ϕ b .

They are diagonal and their elements are listed below. Solutions g. Non-vanishing elements of the integrated even test tensor for solution g (even) are: 

< ∆ g,even > 11 = A γ ω c √ 4π 3 π 2 /
Here S ωt and C ωt stand for sin ωt and cos ωt to shorten the notation. Note that the different elements have an odd parity. The consequence is that these terms will never mix after a multiplication with the even parity terms of source in a time integration. The test terms for the odd solution g(odd) are obtained with the change ωt ⇒ ωt + π/2. Terms describing the test tensors in the reversed time are obtained from those of g(even) and g(odd) with the change t ⇒ -t and β ⇒ -β. The test terms for the other solutions e(odd), e(even)(-t) and e(odd)(-t) are obtained with the same changes that are described above.

We have computed the test tensor ∆ e,even (2) for configuration 2. This tensor is first integrated over θ b and x b and its elements are quite lengthy but elements 11 and 44 that are:

< ∆ e,even > 11 (2) = 2 sin ωt γ 2 (sin 
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 1 Figure 1: Schematics of an electromagnetic particle. The particle is characterized by a local accumulation of potential energy around its center. It acts as a resonator which is fed by the surrounding incoherent noise. It emits different types of waves. Equilibrium is obtained when input and output energies are equal. This view corresponds to the ideas developed by Wheeler and Feynman in their article "Interaction with the Absorber as the Mechanism of Radiation" .

Figure 2 :

 2 Figure 2: Cartesian and spherical frames used to describe electromagnetic particles in the geometrical space. The origin Os

(

  -t) odd and [e] even , [e] odd , [e]

Figure 3 :

 3 Figure 3: Radial distribution of energies for particle (g). (a): Ht (total). (b): Hs (potential). (c): Ht -Hs (field).

Figure 4 :

 4 Figure 4: Radial distribution of energies for particle (e). (a): Ht (total). (b): Hs (potential). (c): Ht -Hs (field).

Figure 5 :

 5 Figure 5: Potential energy inside a sphere of radius X for particle (g). (a) linear scale for X varying between 0 and 20. (b): same for X varying between10 and 50. The horizontal line at -π/280 = -0.01122... is the asymptotic value obtained when X → ∞.

Figure 6 :

 6 Figure 6: Potential energy inside a sphere of radius X for particle (e). (a) linear scale for X varying between 0 and 20. (b): same for X varying between10 and 50.The horizontal line at -17π/18480 = -0.00289... is the asymptotic value obtained when X → ∞.

Figure 7 :

 7 Figure 7: Mass (Wm) and fields (W f ) energies of an em particle. Wm and W f are the total energies integrated over the whole volume and Wm = -W f (they are equal and opposite in sign). The proper reference frame where M is at rest with respect to 0s is represented on the left part of the figure: here there is no kinetic energy. The middle part of the figure represents the levels of energies in the reference frame where M rotates around the z axis 0s: here a kinetic energy appears which modifies both Wm and W f in an equal and opposite way. This modification gives birth to the rotational energy which appears for the mass and for the fields. The right part of the figure represents the levels of energies in the reference frame where the center 0s of the particle 0s has a velocity v in the laboratory frame.

Figure 8 :

 8 Figure 8: Geometry used to study the long-range interactions of 2 particles a and b in the geometrical space. Two configurations are studied: In configuration 1 (2) the centers of the particles Oa and O b are on the y (z) axis. Particles rotate around the axis z. These rotations correspond to the internal degrees of freedom. The distance D = OaO b is extremely large as compared to the mass extension of each particle. The observation point M has coordinates t 1 , xa, ya, za or t 2 , x b , y b , z b in the cartesian frames and t 1 , ra = OaM, θa, ϕa (not represented here) or t 2 , r b = O b M, θ b , ϕ b (represented in configuration (1)) in the spherical frames of coordinates . The differential coordinate elements are evaluated at M close to O b . In config. (1), θa ∼ π/2, ϕa ∼ π/2. In config. (2), θa ∼ 0 and ϕa is defined with respect to ϕ b .

  -9 m. Observation point M is close to particle (b) because we are interested by the sum of the effects of the long range fields which are emitted by (a) on each elementary volume around the M points inside the extension range of (b). Configurations 1 and 2 are physically very different: The first is a preliminary step to compute the positronium which is the simplest atom. The second is also a first step to compute a Cooper's pair. Both configurations appear in multi-particles systems where the study below is also a first step to compute statistical effects. Interaction between particles depends on their geometrical distance as well as their distance in time: fig.(9) is a sketch where particles (a) and (b) are located respectively on time-lines ∆ a and ∆ b . These are separated by a distance D in space. Both particles (a) and (b) absorb progressive waves coming from their past and emit progressive waves going to their future. The waves which are emitted by (a) at time t 1 reach (b) at time t 2 = t 1 + D/c. Regions t < t a and t > t a are the past and the future for (a). The stationary waves that make particles (a) and (b) exist only in their proper time at their frontier (a period) between past and future.They should thus be split into their two progressive parts (see eqs.(22)) and only one of them will contribute to the interaction. Fig.(9) illustrates also the fact that a translation D in space ( from ∆ a to ∆ b ) is accompanied by a translation in time (from t 1 to t 2 ). It is important to remember (even if it is obvious) that the spatio-temporal phase ω((t 2 -t 1 ) -D/c) remains constant in these translations. Note that Fig.(9) is drawn in the normal time domain: the waves going from (a) to (b) are advanced progressive waves. Fig.(10) illustrates the waves for different sources: outside the extension range of the particles, the fields are simple progressive waves. In ordinary (reversed) time domain sources communicate with a test particle through advanced (retarded) waves. These are proportional to cos(ωt ∓ x a ) or sin(ωt ∓ x a ) following the case. The potential at M (t, x b , θ b , ϕ b ) is the sum of the potentials of (a) (noted (γ φ a /c, A r , A θ , A ϕ ) and (b) (noted (γ φ b /c, B r , B θ , B ϕ ) because these are extensive (additive) quantities:

Figure 9 :

 9 Figure 9: Interaction of two standing particles in spacetime. Space is reduced to a single dimension. ∆a and ∆ b are the spatial locations of particles (a) and (b) separated by a distance D and sharing the same proper time. At time t 1 particle(a) absorbs fields arriving from its past and emits waves going to its future. These waves are received by particle (b) at time t 2 = t 1 + D/c. The locus of constant spatio-temporal phase is the line between a(t 1 ) and b(t 2 ). The principle of causality is also illustrated in this picture: the effect is the interaction at point b(t 2 ). It is preceded by the cause which is the fields emission at a(t 1 ). The figure is drawn in the normal time domain.

Figure 10 :

 10 Figure 10: Waves around even and odd particles in time (t) and reversed time (tr = -t) domains. Space is reduced to a single dimension. Locations of the particles are at the crossing of the time and the space axis. Sketches (a) and (b) describe respectively the even and odd particles in the time domain (t) and (c) and (d) are the same in the reverse time domain (tr = -t). Each particle absorbs progressive waves coming from its past and emits progressive waves going to its future. Advanced waves have a phase ω(t -x/c) in (t) or ω(tr -x/c) = -ω(t + x/c) in (tr). These phases are constant along the lines labelled ∆ 1 . Their directions of propagation along ∆ 1 are indicated by simple arrows in (t) and double arrows in (tr). The domains of these wave are vertically hatched and are labelled APW. Retarded waves have a phase ω(t + x/c) in (t) or ω(tr + x/c) = ω(-t + x/c) in (tr). These phases are constant along the lines labelled ∆ 2 . Their directions of propagation along ∆ 2 are indicated by simple arrows in (t) and double arrows in (tr). The domains of these waves are horizontally hatched and are labelled RPW.

  s (for "source") labels the β factor. Stationary waves are decomposed into two progressive waves:sin ωt sin x = 1 2 (cos(ωt -x) -cos(ωt + x))cos ωt cos x = 1 2 (cos(ωt + x) + cos(ωt -x))

  The translation of these tensors into the cartesian coordinates centered at O b is operated in spacetime on the progressive waves emitted by the source particles a. The phase of these waves is a constant along the line a t1 b t2 (see fig.(9)). The progressive waves cos(ω t1 -x a ) or sin(ω t1 -x a ) are written cos ωt or sin ωt where t is the time associated to particle b.

  [START_REF] Einstein | On the Method of Theoretical Physics[END_REF]) where the spin axis are along z. One computes first the trace of the product of the source (eqs.(152) and the test tensors integrated on θ b and x b . Interaction energy is obtained after time and angle φ b integrations. One finds (the factor 1/2D A γ

  m 23 m 24 0 m 32 m 33 m 34 0 m 42 m 43 m 44 let us transform [ s i k ] with the Lorentz operator:

β s γ 2 -γ 0 -β s γ 2 β 2 s γ 2 β s γ 0 γ -β s γ 1 -γ 2 s γ 2 β 2 s γ 2 -β s γ 0 γ β s γ 1 -γ 2 -β s γ 2 -γ 0 β s γ 2 β 2 s γ 2 β s γ 0 γ β s γ 1 β s γ 2 β s γ 1 β s γ 2 sin ϕ b -β s γ 2 cos ϕ b γ -β s γ 2 sin ϕ b -β s γ 2 sin ϕ 2 b β 2 s γ 2 2 s γ 2 cos ϕ 2 b β s γ cos ϕ b -γ -β s γ sin ϕ b β s γ cos ϕ b - 1  2 -β s γ 2 sin ϕ b β s γ 2 cos ϕ b -γ β s γ 2 sin ϕ b β s γ 2 sin ϕ 2 b -β 2 s γ 2 s γ 2 sin ϕ b cos ϕ b β 2 s γ 2 cos ϕ 2 b-β s γ cos ϕ b γ β s γ sin ϕ b -β s γ cos ϕ b 1 

 12212121222122221 -β s γ 2 -γ 0 β s γ 2 β 2 s γ 2 β s γ 0 γ β -γ 0 -β s γ 2 β 2 s γ 2 -β s γ 0 γ -sin ϕ b cos ϕ b -β s γ sin ϕ b β s γ 2 cos ϕ b β 2 s γ 2 sin ϕ b cos ϕ b -β sin ϕ b cos ϕ b β s γ sin ϕ b -β s γ 2 cos ϕ b -β 2

γ ω c √ 4π 3 4π S ωt γ 2 γ ω c √ 4π 3 -√ 4π 3 5

 3233 Solutions e. Non-vanishing elements of the integrated even test tensor for solution e (even) are:< ∆ e,even > 11 = A ( S 2 ωt (1/81 + (β 2 (388 -333Log[3]))/1680) + 5/56Ct 2 β 2 (-4 + Log[27]))(154a)< ∆ e,even > 22 = A (2/3)π S ωt γ 2 (( S 2 ωt (2619 + 140β 2 ))/3780 + 3/560 S 2 ωt (-111Log[START_REF] Wheeler | Interaction with the Absorber as the Mechanism of Radiation[END_REF] +(4+ 11Log[3])/γ 2 ) + 5/56C 2 ωt (4 -β 2 )(-4 + Log[27])) < ∆ e,even > 33 = < ∆ e,even > 22 (154b) < ∆ e,even > 44 = -A γ ω c /42π S ωt (-2C 2 ωt + S 2 ωt )(1 -β 2 ) (154c)

Table 1 :

 1 Interactions g: numbers are obtained after the integrations over the geometrical and temporal coordinates with γ = 2 and β = √ 3/2. The common factor 3 C A 4 /16 is discarded. One observes that even and odd solutions repulse each other in normal and reversed time while solutions of different time and space parities attract each other.Particles e. Interactions between even solutions e even , e odd , e -t

	Test	∆g even ∆g even (-t)	(-t) odd ∆g odd ∆g
	g even	0	0	13	-13
	g even (-t)	0	0	-13	13
	g odd	13	-13	0	0
	g odd (-t)	-13	13	0	0

Table 2 :

 2 Interactions e

  24 β 2 γ 2 S ωt (-9 C 2 ωt + 2 S 2 ωt )(153a)< ∆ g,even > 22 = < ∆ g,even > 33 =

		A γ c √ 4π ω	3	π 2 /48 S ωt γ 2 (9 C 2 ωt -2 S 2 ωt + (3 C 2 ωt -4 S 2 ωt )
				(153b)
	< ∆ g,even > 44 =	A γ c √ 4π ω	

3 π 2 /8 S ωt (2 C 2 ωt -S 2 ωt )

  2 ωt (1/81 + (β 2 (388 -333Log[START_REF] Wheeler | Interaction with the Absorber as the Mechanism of Radiation[END_REF]))/1680) + 5/56 cos 2 ωt β 2 (-4 + Log[27]))< ∆ e,even > 44 (2) = 5/84 sin ωt (-2 cos 2 ωt + sin 2 ωt)(-4 + Log[27])

	(155a)
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3 J" J 2 x 2 sin 2 ωt cos ωt (49)

Operations described above are performed with a mathematical software and give the induction tensor elements: 2 1 /c (n 3 3 n 4 4 -n 4 3 n 3 4 ) (86a)

, a density of dipoles in 4-space while those of the usual D i k in the geometrical space are [(QL)/L 3 ]. Elements of the first line in eq.( 85) are the components of the electric field divided by c and one sees that the vacuum permittivity 0 is obtained from the mean values of the products n i k n j that appear in D i 1 :

Equalities result from the isotropy of noise. In the same way, the magnetic susceptibility is:

Finally the induction tensor of our spherical solutions embedded in noise writes:

Note: The dimensions of n i k are M T -1 Q -1 . The mean value is taken over the 4-volume and the dimensions of n 1 1 n 4 4 are M 2 T -2 Q -2 . Those of 0 are (M -1 Q 2 T 2 L -4 ) These dimensions have to be compared with those of the usual 0 in geometrical space which are (M -1 Q 2 T 2 L -3 ). This is because the electric induction is here a density of dipôles QL/(L 4 ) in spacetime while it is QL/(L 3 ) in geometrical space.

Energy-momentum 4-vector.

We can now compute the energy-momentum 4-vector M corresponding to a solution. An integration over time will give the 3-dimentional momentum vector p = (p k ) in the geometrical space. In the proper frame, the system is at rest: dx k /dt = 0 and the energy-momentum vector density at point M reduces to its time component which is the ratio of the energy and c:

for the whole density.

M s = (H s /c, 0, 0, 0) for the mass density.

(90b)

with:

Using the Lorentz transform (61) these vectors become in the lab frame:

The density of kinetic energy is the difference between the mass energy density in the lab and the proper frames (γ -1)H s . The corresponding quantity for the field is (γ -1)H f . The conservation of the moduli of the above 4-vectors in the Lorentz transformation implies that the gain of (positive) momentum is obtained