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Comparing EventB, {log} and Why3
Models of Sparse Sets

Maximiliano Cristid! and Catherine Dubois?

!Universidad Nacional de Rosario and CIFASIS, Rosario, Argentina
2ENSIIE, Inria, Université Paris-Saclay, LMF, France

Many representations for sets are available in programming languages libraries.
This paper focuses on sparse sets and two of their operations used in some
constraint solvers for representing integer variable domains, which are finite
sets of values, as an alternative to range sequences. We formalize this data
structure and two of its operations and prove their correctness, in three deductive
formal verification tools, EventB, {log} and Why3. Furthermore, we draw some
comparisons regarding specifications and proofs.

1 Introduction

Sets are widely used in programs. They are sometimes first-class objects of programming
languages, e.g. SETL [23] or {log} [13], but more frequently they are data structures
provided in libraries. Many different representations are available, depending on the targeted
set operations. In this paper, we deal with sparse sets, introduced by Briggs and Torczon [6],
used in different contexts and freely available for different programming languages (Rust,
C++ and many others). We focus on their use in constraint solvers as an alternative to
range sequences or bit vectors for implementing domains of integer variables [19] which
are nothing else than mathematical finite sets of integers. With such an implementation,
searching and removing an element are constant-time operations. Furthermore sparse sets
are cheap to trail and restore, which is a key point when backtracking for finding solutions.

Confidence in constraint solvers using sparse sets can be improved if the algorithms
implementing the main operations are formally verified, as it has been done by Ledein and
Dubois [20] for the traditional implementation of domains as range sequences. Hence, the
main contribution of this paper is a verified implementation of integer variable domains
as sparse sets and the main operations used in constraint solvers (i.e. remove and bind)
in EventB, {log} and WhyML and their associated verification tools. We prove that the
implemented operations preserve the invariant properties and we also express and prove
properties that can be seen as formal foundations of trailing and restoring. As far as we
know, this is the first formally verified implementation of some operations on sparse sets.
All specifications and proofs can be found here: https://gitlab.com/cdubois/SparseSets.

We have chosen to use EventB and {log} as representatives of set-based formalisms, both
providing native high level operators on sets, relations and functions. However, in this
family they are quite different: the former has an imperative flavor and offers refinement
as a development method where models are specified gradually; the latter is based on the
constraint logic programming (CLP) paradigm. Why3 is representative of deductive program
verification tools manipulating contracts.
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Figure 1. Example of a sparse set when N=9 and the current domain is {1,2,3,5,6,7}

A second contribution of this paper is a comparison of these three formalizations with
respect to aspects such as expressiveness, specification analysis and automated proof.

2 Sparse sets

We deal here with sets as subsets of natural numbers up to N — 1, where N is any non-zero
natural number. A sparse set S is represented by two arrays of length N called mapD
and domD, and a natural number sizeD. The array mapD maps any value v € [0, N — 1]
to its index ind, in domD, the value indexed by ind, in domD is v. The main idea that
brings efficiency when removing an element or testing membership is to split domD into
two sub-arrays, domD|0, sizeD — 1] and domD][sizeD, N — 1], containing resp. the elements
of S and the elements of [0, N — 1] not in S. Then, if S is empty (resp. the full set), sizeD
is equal to 0 (resp. N). Fig. 1, inspired from a figure in [19], illustrates this representation.

Checking if an element ¢ belongs to the sparse set S simply consists in the evaluation of
the expression mapD|i] < sizeD. Removing an element from the set consists in moving this
element to domD[sizeD, N — 1] (with 2 swaps in mapD and domD and decreasing sizeD).
Binding S to a single element of the set S follows the same idea: moving this element at the
first place in domD and assigning the value 1 to sizeD.

In our formalization, we only deal with two operations consisting in removing an element
in a sparse set and binding a sparse set to a singleton set since these two operations are
fundamental when solving constraints. Removing is necessary when domains are pruned.
Binding a sparse set to a singleton set is done when the solver assigns variables. The solver
never inserts values in a domain. Solvers may also need to walk through all the elements of
a variable domain, exploring domD]0..sizeD — 1]. This is outside the scope of this work but
it presents no particular difficulty.

Many constraint solvers use a data structure called trail to store undo information (such
as domains) when backtracking on possible solutions. When sparse sets are used, only sizeD
needs to be kept in the trail. Domains can, then, be restored in constant time by setting
the sizeD variable back to its previous value [19].

Quoting Le Clément de Saint-Marcq et al. [19], there are three key predicates that should
be invariants of any sparse set implementation:

o D ={dompli] | 0 <1< sizep} (Py)
e mapplv] = i < dompli] = v, for all i and v (Ps)
e domp|sizep .. N — 1] remains unchanged. (P3)

These properties have been proved to hold in the three formalizations analyzed in this paper.

3 EventB formal development

In this section we succinctly introduce the EventB formal specification language and in more
details the EventB models for sparse sets.
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MACHINE Domain
VARIABLES D
INVARIANTS invl: DCO0..N -1

Initialisation begin actl: D:=0.. N — 1 end
Event remove = g 2
Event bind =

any v where grdl: v € D

h dl: ve D
then actl: D:= D\ {v} end any v waere grd’: v

then actl: D :={v} end

Figure 2. EventB abstract specification, the Domain machine

3.1 EventB and Rodin

EventB [4] is a deductive formal method based on set theory and first order logic allowing
users to design correct-by-construction systems. It relies on a state-based modeling language
in which a model, called a machine, is made of a state characterized by variables and a
collection of events describing state changes. The state consists of variables constrained by
invariants. Proof obligations are generated to verify the preservation of invariants by events.
A machine may use a context which introduces abstract sets, constants, axioms or theorems.
A formal design in EventB starts with an abstract machine which is usually refined several
times. Proof obligations are generated to verify the correctness of a refinement step.

An event may have parameters. When its guards are satisfied, its actions, if any, are
executed, updating state variables. Actions may be -multiple- deterministic assignments,
z,y := e, f, or -multiple- nondeterministic ones, z, y :| BAP(z,z’,y,y’) where BAP is called
a Before-After Predicate relating current (z, y) and next (z’, y’) values of state variables z
and y. In the latter case, z and y are assigned arbitrary values satisfying the BAP predicate.
When using such a non-deterministic form of assignment, a feasibility proof obligation (FIS)
is generated in order to check that there exist values for 2’ and y’ such that BAP(z,z',y,y’)
holds when the invariants and guards hold. Furthermore when this kind of action is used
and refined, the corresponding action in the refinement updating =z and y is required to
assign them values which satisfy the BAP predicate. A dedicated proof obligation called
simulation (SIM) is automatically generated

In the following, we use Rodin, an Eclipse based IDE for EventB project management,
model edition, refinement and proof, automatic proof obligations generation, model animation
and code generation. Rodin supports automatic and interactive provers [16]. In this work we
used the standard provers (AtelierB provers) and also the SMT solvers VeriT [3], CVC3 [1]
and CVC4 [2]. More details about EventB and Rodin can be found in [4] and [5].

3.2 EventB formalization

The formalization is made of six components, i.e. two contexts, a machine and three
refinements. Context Ctx introduces the bound N as a non-zero natural number and context
Ctz1 extends the latter with helper theorems. The high level machine gives the abstract
specification. This model contains a state composed of a finite set D, constrained to be a
subset of the (integer) range 0..N — 1, and two events, to remove an element from D or set
D as a singleton set (see Fig. 2).

The first refinement (see Fig. 3) introduces the representation of the domain as a sparse
set, i.e. two arrays mapD and domD modeled as total functions (invl and inv2) and also
the variable sizeD which is a natural number in the range 0..N (inv3). Invariants inv4 and
inv5 constrain mapD and domD to be inverse functions of each other (property P of Sect.
2). The gluing invariant inv6 relates the states between the concrete and former abstract
machines'. So the set domD[0..sizeD — 1] containing the elements of the subarray from 0 to

n a refinement relationship, the machine which is refined is called the abstract machine whereas the
refinement is called the concrete machine.
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MACHINE SparseSets_refl
REFINES Domain
SEES Ctx1
VARIABLES domD mapD sizeD
INVARIANTS
invl: domDe€0..N—-1—-0..N—-1 inv2: mapD €0..N—-1—-0..N—-1
inv3: sizeD € 0.. N invd: domD ; mapD = ido. . n—1
inv5: mapD ; domD =ido. ny-1 inv6: domDJ0 .. sizeD — 1] = D
inv7: ( theorem ) Vz,v-2€0..N—1Av€0..N —1= (mapD(v) =z & domD(z) = v)
inv8: ( theorem ) domD €0..N—-1—0..N -1
Initialisation begin actl: mapD, domD :=ido..n—1,ido..n—1 act2: sizeD := N end
Event remove = refines remove
any v where v € 0.. N —1 A 0 < sizeD A mapD(v) < sizeD
then
mapD, domD, sizeD :| (domD" €0..N —-1—-0..N—1AmapD’'€0..N-1—0..N -1
A domD' ; mapD’ = ido. x—1 A mapD’ ; domD’ = ido. n_1
A domD'[0 .. sizeD" — 1] = domD|0 .. sizeD — 1]\ {v} A sizeD’ < sizeD
A (sizeD ..N — 1) <domD’ = (sizeD .. N — 1) <t DomD)
end

Figure 3. EventB first refinement (excerpt)

Event remove = refines remove
any v where v € 0.. N — 1 A 0 < sizeD A mapD(v) < sizeD
then actl: domD := domD <{mapD(v) — domD(sizeD — 1), sizeD — 1 — v}
act2: mapD := mapD <4{v > sizeD — 1, domD(sizeD — 1) — mapD (v)}
act3: sizeD := sizeD — 1
end

Figure 4. EventB Event remove in the second refinement

sizeD — 1 is exactly the set D. This is exactly property P; of Sect. 2.

Theorems inv7 and inv8 are introduced to ease interactive proofs, they are proved as
consequences of the previous formulas (inv1 to inv6). inv7 follows directly from a theorem of
Ctx1 whose statement is inv7 where domD and mapD are universally quantified. Theorem
inv8 states that domD is an injective function.

Variables mapD and domD are both initialized to the identity function on 0..N —1 (denoted
idp..ny—1) and sizeD to N. Events of the initial machine are refined by non deterministic
events. Thus remove assigns the three state variables with any values that satisfy invariants
and also such that sizeD strictly decreases and removed elements in domD are kept at the
same place (properties in bold font). The <1 operator computes the domain restriction of
a function or relation. Event bind, omitted in Fig. 3 for lack of space, follows the same
pattern. The only reason to have introduced this intermediate model SparseSets_ref! is to
express the properties written in bold font, one of them being the property Ps3 of Sect. 2. In
fact, because they relate two states, they cannot be expressed as invariants.

The second refinement has the same state than the previous one (see Fig. 4). Its events
implement the operations and are a straightforward translation of the algorithms in [19].

To discharge the FIS proof obligations of SparseSets_refl, we can use the values of domD,
mapD and sizeD specified in SparseSets_ref2 as witnesses. The SIM proof obligations of
SparseSets_ref2 require to prove that the latter values again satisfy the BAP predicate used
in SparseSets_refl. In order not to do these -interactive- proofs twice, we generalize them
and prove them as theorems of the context. In this way, to provide a proof of the FIS and

JFLA 2024 — 35% Journées Francophones des Langages Applicatifs 43



Formal Models of Sparse Sets Maximiliano Cristid and Catherine Dubois

SIM proof obligations, we only have to instantiate these theorems.

4 {log} formal development

In this section we briefly present the {log} tool and how we used it to encode sparse sets.

4.1 {log}

{log} is at the same time a CLP language and satisfiability solver where sets and binary
relations are first-class citizens [21, 17, 8]. The tool implements several decision procedures for
expressive fragments of set theory and set relation algebra including cardinality constraints
[15], restricted universal quantifiers [14], set-builder notation [10] and integer intervals [12].
Case studies developed with {log} can be consulted in [9, 11, 7].

{log} code enjoys the formula-program duality meaning that {log} code can behave as
both a formula and a program. When seen as a formula, it can be used as a specification
on which verification conditions can be (sometimes automatically) proved. When seen as a
program, it can be executed. Thus {log} code is sometimes called forgram—a portmanteau
word resulting from combining formula with program.

In the following formalization, we use the (still under development) state machine speci-
fication language (SMSL) defined on top of {log}. SMSL provides declarations very close
to those of EventB to declare state variables (variables), operations (operation) and
invariants (invariant). The latter is used to automatically generate verification conditions
(VC) (proof obligations) on state machines. Users can use {log} itself to automatically prove
or disprove these VCs [22]. Unlike EventB, SMSL does not support the notion of refinement.

4.2 {log} formalization

The {log} formalization presented in this paper uses a combination of CLP and set-based,
state-based specifications. While CLP is at the core of {log}, set-based, state-based specifi-
cations can be easily written by means of SMSL. Fig. 5 and 6 list representative parts of
the {log} forgram in which we use the same identifiers as for the EventB models as much as
possible, within the syntactic constraints of {log}.

The {log} forgram is mainly a state machine described with SMSL modifying 4 state
variables (DomD, MapD, SizeD, D) by 2 operations, remove and bind (see Fig. 5). The
two arrays are modelled by total functions and their typing constraints become invariant
properties as in EventB (split here in small predicates to increase the chances of automated
proofs). Property P2 of Sect. 2 is also an invariant of this state machine (inv4 and inv5,
the latter, omitted in the figure, is the symmetric of the former). Parameter I is used to
compute the identity relation on the integer interval [0, N — 1] as shown in axiom axm2, which
in turn is used in invariant inv4. {log} inherits many of Prolog’s features. In particular,
integer expressions are evaluated by means of the is predicate. Along the same lines, all
set operators are implemented in {log} as constraints. For example, id(A,R) is true when
R is the identity relation on set A. The term int (0,M) corresponds to the integer interval
[0, M]. Assertion inv7 is introduced to help the solver?, it can be deduced from previous
invariants (as in Fig. 3). Therefore, we introduce it as a simple predicate but then we
declare a theorem (inv7_th) whose conclusion is inv7 but in a negated form because {log}
is a satisfiability solver. Later, {log} will include inv7_th as a proof obligation and will
attempt to discharge it. In inv7, the foreach constraint implements the notion of restricted
universal quantifier (RUQ). That is, for some {log} formula ¢ and set A, foreach(X in
A, &(X)) corresponds to VX.(X € A = ¢(X)) where A can be a set or a binary relation.
In the latter case, the quantified expression can be an ordered pair, as is the case of inv7
and invé (in Fig. 6). {log} also offers the exists constraint implementing the notion of

2Without it, some proofs are not automatic.
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restricted existential quantifier (REQ) used in inv6 to state a double set inclusion. The
important point about REQ and RUQ is not only their expressiveness but the fact that
there is a decision procedure involving them [14].

The remove operation is encoded as a {log} predicate. State variables are included as
explicit arguments since in {log} there is no global state. Next-state variables are denoted by
adding an underscore character to the base name (SizeD_). Set unification is used to imple-
ment function application. For instance, DomD = {[S,Y2],[Y1,Y5] / DomD1} is equivalent
to: e, ys, DomDy.(DomD = {(SizeD — 1, y2), (y1,y5)} U DomDy), where y; = MapD(v)
(due to the previous set unification). Non-membership constraints following the equality
constraint prevent {log} from generating repeated solutions. Hence, when remove is called
with a set term in its fourth argument, this term is unified with {[S,Y¥2], [Y1,Y5] / DomD1}.
If the unification succeeds, then the images of S and Y1 are available.

parameters([N,I]).
variables([D,DomD,MapD,SizeD]).

axiom(axml) . axml1(N) :- 1 =< N.
axiom(axm2) . axm2(N,I) :- M is N - 1 & id(int(0,M),I).
invariant(inv1i1l). inv11(DomD) :- pfun(DomD).

invariant(inv12). inv12(N,DomD) :- N1 is N - 1 & dom(DomD,int(0,N1)).
invariant(invi13). inv13(N,DomD) :- N1 is N - 1 & ran(DomD,R) & subset(R,int(0,N1)).
invariant (inv4). inv4(N,I,DomD,MapD) :- axm2(N,I) & comppf (DomD,MapD,I).

inv7 (MapD,DomD) :- foreach([[V,Y1] in MapD, [X,Y2] in DomD],
(Y1 = X implies Y2 = V) & (Y2 = V implies Y1 = X) ).
theorem(inv7_th).
inv7_th(N,MapD,DomD) :-
neg(inv4(N,I,DomD,MapD) & inv5(N,I,DomD,MapD) implies inv7(MapD,DomD)) .

operation(remove) .
remove (N, SizeD,MapD,DomD,V,SizeD_,MapD_,DomD_) :-
Mis N-1&V in int(0,M) & O < SizeD & S is SizeD - 1 &
MapD = {[V,Y1],[¥2,Y4] / MapD1} & disj({[V,Y1],[Y2,Y4]},MapD1) & Y1 < SizeD &
DomD = {[S,Y2],[Y1,Y5] / DomD1} & disj({[S,Y2],[Y1,Y5]},DomD1) &
DomD_ = {[S,V],[Y1,Y2] / DomD1} & MapD_ = {[V,S]1,[Y2,Y1] / MapD1} & SizeD_ = S.

Figure 5. Some representative axioms, invariants and operations of the {log} forgram

The state machine is complemented with some user-defined proof obligations (see Fig. 6)
which are introduced as theorems to ensure that the {log} forgram verifies properties P;
(invé in the forgram) and Ps. Precisely theorem remove_pi_invé states that if inv6 holds
and remove and its abstract version® (not shown in the paper) are executed, then invé
holds in the next state. Likewise, theorem remove_b2 ensures that if remove is executed and
the functional image‘/1 of the interval int (SizeD,N-1) through DomD_ is FI, then it must
coincide with the functional image of the same interval but through DomD.

The VCs generated by {log} include satisfiability of the conjunction of all axioms, satisfi-
ability of each operation and invariance lemmas for each and every operation and invariant.
For invariance lemmas, {log} includes a minimum set of hypotheses in order to have to
solve a simpler goal, reducing the possibilities of a complexity explosion. Hypotheses can be
manually added and the proof run again. This process can be iterated until all proofs are
done—or the complexity explosion cannot be avoided. The command findh helps the user
to find missing hypotheses. {log} discharges all the VCs for the complete forgram.

3remove and its abstract version can be distinguished by their arities.

4fimg is a user-defined {log} predicate computing the relational image through a function.
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inv6(D,DomD,SizeD) :-
S is SizeD - 1 & foreach([X,Y] in DomD, X in int(0,S) implies Y in D) &
foreach(X in D, exists([A,B] in DomD, A in int(0,S) & B = X)).

theorem(remove_pi_inv6).
remove_pi_invr6(N,SizeD,MapD,DomD,V,SizeD_,MapD_,DomD_) :- inv7 (MapD,DomD) &
neg(inv6(D,DomD,SizeD) & remove(V,D,D_) &
remove (N,SizeD,MapD,DomD,V,SizeD_,MapD_,DomD_) implies inv6(D_,DomD_,SizeD_)).

theorem(remove_b2) .
remove_b2(N,SizeD,MapD,DomD,V,SizeD_,MapD_,DomD_) :-
neg(N1 is N - 1 & remove(N,SizeD,MapD,DomD,V,SizeD_,MapD_,DomD_) &
fimg(int (SizeD,N1) ,DomD_,FI) implies fimg(int(SizeD,N1),DomD,FI)).

Figure 6. User-defined proof obligations

5 Why3 formal development

In this section we briefly introduce the Why3 platform and describe with some details our
specification of sparse sets.

5.1 WhyML and Why3

Why3 [18] is a platform for deductive program verification providing a language for specifi-
cation and programming, called WhyML. It relies on external automated and interactive
theorem provers, to discharge VCs. Here we used the SMT provers CVC4 and Z3. Proof
tactics are also provided, making Why3 a proof environment close to the one of Rodin for
interactive proofs. Why3 supports modular verification.

WhyML allows the user to write functional or imperative programs featuring polymorphism,
algebraic data types, pattern-matching, exceptions, references, arrays, etc. These programs
can be annotated by contracts and assertions and thus verified. User-defined types with
invariants can be introduced, the invariants are verified at the function call boundaries.
Furthermore to prevent logical inconsistencies, Why3 generates a verification condition to
show the existence of at least one value satisfying the invariant. To help the verification, a
witness is explicitly given by the user (by clause in Fig. 7). The old operator can be used
inside post-conditions to refer to the value of a term at the call program point. Programs
may also contain ghost variables and ghost code to facilitate specification and verification.
From verified WhyML programs, correct-by-construction OCaml programs (and recently C
programs) can be automatically extracted.

5.2 Why3 formalization

We first define a record type, sparse, whose mutable fields are a record of type sp_data
containing the computational elements of a sparse set representation and a ghost finite set
of integer numbers which is the abstract model of the data structure. The type invariant of
sparse relates the abstract model with the concrete representation as in Property P; of
Sect. 2. It is used to enforce consistency between them. Invariants enforcing consistency
between the two arrays mapD and domD and the bound sizeD are attached to the sp_data
type: length of the arrays is n, contents are belonging to the integer range 0..n — 1 and the
two arrays are inverse of each other (Property Ps), sized is in 0..n. These type definitions
and related predicates are shown in Fig. 7.

Our formalization contains three functions, swap_sp_data, remove_sparse (see Fig. 8)
and bind_sparse (omitted here), which update their arguments. They are the straightfor-
ward translation of the algorithms in [19], except for the supplementary ghost code (last
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predicate ran (a: array int) (n: int) =
0 <= n && a.length = n && forall i. 0<=i<n -> O0<=al[il< n

type sp_data = {n: int; mutable domD, mapD : array int; mutable sizeD: int; }
invariant {ran domD n && ran mapD n && O <= sizeD <= n &&
forall v,i. (0<=i<n && O0<=v<n) -> (domD[il=v <-> mapD[v]=i)} by ...

type sparse = {mutable data: sp_data; mutable ghost setD: fset int;}
invariant {subset setD (interval O data.n) &&

forall x: int.(exists i:int. O <= i < data.sizeD &% x = data.domD[i]) <-> mem x setD} by ...

Figure 7. WhyML types for sparse sets

predicate same_end (a : array int) (b : array int) (s : int) (n : int) =
forall i. s <= i < n -> a[i] = b[i]

let swap_sp_data (a : sp_data) (i : int) (j : int)
requires {0<=i<a.n && 0<=j<a.n}
ensures {exchange (old a.domD) a.domD i j}
ensures {exchange (old a.mapD) a.mapD a.domD[i] a.domD[j]l} =
swap a.domD i j; a.mapD[a.domD[i]] <- i; a.mapD[a.domD[jl] <- j;

let remove_sparse (v : int) (a : sparse)
requires {0<=v<a.data.n && a.data.mapD[v] < a.data.sizeD &% a.data.sizeD > 0}
ensures {old a.data.sizeD > a.data.sizeD}
ensures {same_end a.data.domD (old a.data.domD) (old a.data.sizeD) a.data.n} =
swap_sp_data a.data a.data.mapD[v] (a.data.sizeD - 1);
a.data.sizeD <- a.data.sizeD - 1;
a.setD <- remove v a.setD

Figure 8. WhyML functions for sparse sets

statement in remove_sparse) which updates the abstract model contained in a.setD. Func-
tion swap_sparse_data is a helper function. The contract of swap_sparse_data makes
explicit the modifications of both arrays a.mapD and a.domD, using the exchange predicate
defined in the library. VCs for this function concern the conformance of the code to the two
post-conditions (trivial as it is ensured by swap) and also the preservation of the invariant
attached to the sparse_data type—i.e. mainly that a.mapD and a.domD after swapping
elements remain inverse from each other. Both remove_sparse and bind_sparse act not
only on the two arrays and the bound but also on the ghost part, i.e. the corresponding
mathematical set a.setD. Thus VCs here not only concern the structural invariants related
to mapD, domD and sizeD but also the ones deriving from the use of the sparse type, proving
the link between the abstract logical view (using finite sets) and the computational one
implemented through arrays. The property Ps is expressed here as a post-condition.

All proofs are discovered by the automatic provers except for some proof obligations
related to the remove function. Nevertheless these interactive proofs remain simple thanks
to some Why3 tactics that inject some hints to help external provers to finish the proofs.

6 Comparison and discussion
Clearly, all three formalisms and tools are expressive enough for the problem at hand. They

all allow axioms, invariants and operations to be expressed. The EventB specification is
probably the most readable. Properties Py and Ps of Sect. 2 emphasised in [19] are expressed
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TooL vC AuTo MANUAL
Rodin 46 34 12
{log} 38 (6) 38 0
Why3 53 51 2

Table 1. Summary of the verification efforts

as invariants in the three formalisms. Property Ps about the removed part of the domain,
which must relate two states, is expressed as a post-condition of the operations.

Writing P3 in EventB proved to be complex. In fact, it was necessary to add a somewhat
artificial level of refinement for Rodin to be able to generate the desired VCs link. This
property can be more easily defined in {log} and Why3.

In general, all three tools automatically generate similar VCs. However, in Why3 and
EventB, abstract and concrete models can be naturally linked through refinement or ghost
code and the tools automatically generate the corresponding VCs. {log} still needs work to
express how two models are linked in terms of abstraction/refinement relations. All VCs in
EventB and Why3 are automatically generated, which is not the case in {log}, making the
{log} version of our verification effort less trustworthy than Why3 and Rodin.

Table 1 summarizes the results of the three verification efforts (for the two operations).
The first column gives the number of VCs —numbers in brackets correspond to manually
written VCs. The second (resp. third) column contains the number of automatically (resp.
interactively) proved VCs.

In EventB, 46 proof obligations were generated (about half of them from the first re-
finement) of which 34 were automatically proved by the (AtelierB) standard provers and
VeriT. For the 12 that were proved interactively, VeriT was very helpful when additional,
back-up hypotheses were added. Only two proofs required real human intervention. Using
the process described in Sect. 4, {log} unloads all 38 VCs in about 7 minutes. Likely the
existence of dedicated set-theoretic decision procedures proved crucial, since {log} is the only
tool that automatically discharges all VCs after a simple hypothesis discovery procedure.

Why3 makes it possible to apply transformations (e.g. split conjunctions) to a proof goal
before calling an automatic prover on it. Some of these transformations are very simple,
e.g. split conjunctions, and can then be applied systematically and automatically. Most
of the VCs generated in our formalization have been proven automatically thanks to the
split transformation. Only two of them, both dealing with type invariants, required human
interaction to insert some more complex transformations, e.g., a case analysis on indices in
mapD (case (i=a_data.mapD[v]). In the end, 53 VCs were proved—47 by CVC4 and 6
by Z3—in 9 seconds.

7 Conclusion

We formally verified the implementation of two operations on sparse sets using three formal
languages and associated tools, focusing on the operations and correctness properties required
by a constraint solver when domains of integer variables are implemented with sparse sets.
In particular we compared the different statements of the required properties —namely P,
P5 and Pj3 given in Sect. 2— and their proofs.

As future work, the formal developments can be completed with other operations. A
performance evaluation of the extracted code could then be performed. A second line of work
is to implement and verify, in Why3 or EventB, a labelling procedure that assigns values to
variables, such as those used in constraint solvers, it would be necessary to backtrack on
the values of some domains and thus make use of the theorems proved in this paper. Since
labelling is native in {log} when CLP(FD) [24] is enabled, assignment of values to variables
is trivial although less trustworthy than a formally verified algorithm.
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