
HAL Id: hal-04407118
https://hal.science/hal-04407118v1

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A diagram editor to mechanise categorical proofs
Ambroise Lafont

To cite this version:
Ambroise Lafont. A diagram editor to mechanise categorical proofs. 35es Journées Francophones des
Langages Applicatifs (JFLA 2024), Jan 2024, Saint-Jacut-de-la-Mer, France. �hal-04407118�

https://hal.science/hal-04407118v1
https://hal.archives-ouvertes.fr


A diagram editor to mechanise
categorical proofs

Démonstration de logiciel

Ambroise Lafont1

1École Polytechnique, Palaiseau, France

Diagrammatic proofs are ubiquitous in certain areas of mathematics, especially
in category theory. Mechanising such proofs is a tedious task because proof
assistants (such as Coq) are text based. We present a prototypical diagram
editor to make this process easier, building upon the vscode extension coq-lsp for
the Coq proof assistant and a web application available on the author’s personal
website. It currently targets the UniMath mathematical library for the Coq
proof assistant, but could in principle easily be adapted to other targets.

1 Introduction
Showing that two morphisms between two objects are equal is a ubiquitous task in category
theory. Those morphisms are typically themselves compositions of other morphisms.

Example 1. Assuming d ◦ f1 = u and f2 ◦ d = v, we deduce that f2 ◦ u = v ◦ f1, by rewriting
u and v using the two assumed equalities.

Proofs by rewriting, as above, does not pose specific challenge when it comes to mech-
anisation in proof assistants. However, pen and paper proofs typically adopt a different
diagrammatic approach: the two composition chains of morphisms that we want to prove
equal are first drawn as chains of arrows sharing the same start and end points, thus
delineating a shape with two branches (the two chains of arrows). Thinking of equality as a
"filling", a diagrammatic proof consists in decomposing this shape into smaller juxtaposed
inner shapes whose fillings are justified.

Example 2. A diagrammatic proof of Example 1 consists in the below right diagram, obtained
by splitting the square below left into two juxtaposed "filled" triangles.

A1

B1

A2

B2

A1

B1

A2

B2

✓

✓
? ⇒f1

u

v

f2 f1

u

v

f2

d

Diagrammatic proofs include enough information to construct a mechanisable proof by
rewriting. This time-consuming translation is ubiquitous when mechanising categorical

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 318



A diagram editor to mechanise categorical proofs Lafont

results. We present a prototypical diagram editor that can automatically performs this task:
from the right diagram of Example 2, the editor generates a Coq proof script that shows
the desired equality using the assumed equalities.

Plan of the paper We quickly describe the technology behind the software in Section 2,
before presenting the main features in Section 3. In Section 4, we finally mention some
related work.

2 Technology
The software consists of three main components: a diagram editor (about 7000 lines of
code), and a vscode extension (about 300 lines of code), and a small Coq library (about 100
lines of code).

2.1 The diagram editor
The diagram editor is mainly implemented in Elm, a functional programming language that
compiles to JavaScript. LATEX labels are rendered using the KaTeX JavaScript library. It
is available as a web application that runs in the browser [Laf], as a standalone desktop
application (with some additional features) that embeds the web application in an electron
runtime.

The diagram editor generates proof scripts relying on the mechanised UniMath mathe-
matical library [VAG+].

2.2 The vscode extension
The vscode extension builds upon coq-lsp [CJGAI], which provides the vscode editor with
support for the Coq proof assistant. Our extension interacts with the standalone version of
the diagram editor in mainly two ways: to render the Coq goal at the cursor as a diagram
(if the Coq goal is indeed an equality between morphisms), and to insert the Coq proof
generated from the diagram at the cursor location.

2.3 The Coq library
The Coq library introduces some notations and tactics to convert a Coq goal context into
the input format of the editor, where the objects are explicitly mentioned. For example, the
top right branch of the left diagram in Example 2 is denoted by u · f2 in UniMath. The
vscode extension would call our pretty-printing tactic norm_graph to convert it into the
string A1 -- u -> A2 -- f2 -> B2, which is then sent to the editor for display.

3 Features
In this section, we present the editing capabilities of our software in Section 3.1, then the
features related to mechanisation of diagrammatic proof in 3.2, and finally, in Section 3.3, we
explain how our diagram editor can be used when writing a LATEX document with diagrams.

3.1 Diagram editor
Beyond basic editing features, our software offers (among other things) tab management, an
optional grid, automatic guessing of labels when completing a (naturality) square, find &
replace, z-indices (to handle edge overlaps), quicksaving. A diagram can be exported1 to
LATEX, json, or svg. A diagram saved in the json format can be reloaded.
1We thank Tom Hirschowitz for implementing the LATEX export feature.

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 319



A diagram editor to mechanise categorical proofs Lafont

3.2 Mechanisation
Mechanising a diagrammatic proof with our software involves two steps that we detail in
this section: construction of the diagrammatic proof, and the generation of the mechanised
proof2.

Construction of a diagrammatic proof Exploiting the basic editing features of the
software, the user splits a shape by creating a mediating chain of arrows, as in Example 2,
and selects one of the newly created inner shapes. The mediating arrows can be unnamed,
leaving their definitions to be inferred later. Then, the editor generates a Coq script that
states the equality corresponding to the shape. The unnamed arrows become "holes" that
will be guessed later by Coq using unification, for example when applying some known
equality between known morphisms. Once the proof is complete, the resulting statement is
loaded back into the editor to replace the unnamed arrow with its inferred definition, and
the proof script is also saved as a distinguished node sitting inside the shape.

Generation of a mechanised proof The algorithm that generates a mechanised proof
assumes that the diagram is planar3. The resulting proof script consists of a list of tactics
that states the intermediary lemmas corresponding to the inner shapes of the diagram and
assemble them to justify equality for the outer shape, introducing associativity steps when
required. Each intermediary lemma is provided with a formal proof that was given in the
original diagram, as a distinguished node sitting somewhere inside the shape corresponding
to the lemma.

3.3 Integration with LATEX
The standalone version of the diagram editor provides some support to help editing LATEX
files that include diagrams: it periodically scans the LATEX file to detect embedded diagrams
(either inlined as json data, or saved in an external file) in a LATEX comment. If that
comment is not followed by the corresponding generated LATEX code, then the editor loads
the diagram. When the user saves it, the diagram is stored back into the file, as well as
the generated LATEX code corresponding to the diagram. If the user later wants to edit it
again, they can simply delete the generated LATEX code, and the editor will load it again as
explained above. The same editing process is implemented for LyX, a WYSIWYG LATEX
editor for LATEX.

4 Related work
Chabassier’s graphical interface [CB] This software consists of a Coq plugin that
interacts with a graphical interface implemented in Rust. The latter can render Coq goals as
diagrams, with limited editing features. It provides a basic tactic language to make progress
on the proof. It can also suggest a list of relevant lemmas that can be applied to the goal,
by querying the Coq runtime.

quiver This diagram editor [Ark23] is implemented in JavaScript and runs in the browser.
Compared to our software, the styling possibilities are richer, but it misses some helpful
features4 that our software supports, such as find & replace, copy & paste, or selection
extension to connected components. Contrary to our editor, the grid is not optional: vertices
cannot be created out of it. Finally, it does not offer any feature to help mechanisation.

2See https://github.com/amblafont/vscode-yade-example for an example.
3This constraint induces a canonical choice of the primitive "inner" shapes.
4The following examples are mentioned as feature requests on the github repository.

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 320



A diagram editor to mechanise categorical proofs Lafont

References
[Ark23] Nathanael Arkor : quiver. https://q.uiver.app/, novembre 2023.

[CB] Luc Chabassier et Bruno Barras : A graphical interface for diagrammatic
proofs in proof assistants. Contributed talks in the 29th International Conference
on Types for Proofs and Programs (TYPES 2023).

[CJGAI] Ali Caglayan, Emilio J. Gallego Arias et Shachar Itzhaky : Coq LSP.
https://github.com/ejgallego/coq-lsp.

[Laf] Ambroise Lafont : A commutative diagram editor. https://amblafont.github.
io/graph-editor/index.html.

[VAG+] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson et al. : Unimath — a
computer-checked library of univalent mathematics. available at http://unimath.
org.

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 321


