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A B S T R A C T

Virtual manufacturing is one of the key components of Industry 4.0, the fourth industrial revolution, in improving
manufacturing processes. Virtual manufacturing enables manufacturers to optimize their production processes
using real-time data from sensors and other connected devices in Industry 4.0. Web-based virtual manufacturing
platforms are a critical component of Industry 4.0, enabling manufacturers to design, test, and optimize their
processes collaboratively and efficiently. In Industry 4.0, radio frequency identification (RFID) technology is used
to provide real-time visibility and control of the supply chain as well as to enable the automation of various
manufacturing processes. Big data analytics can be used in conjunction with virtual manufacturing to provide
valuable insights and optimize production processes in Industry 4.0. Artificial intelligence (AI) and virtual
manufacturing have the potential to enhance the effectiveness, consistency, and adaptability of manufacturing
processes, resulting in faster production cycles, better-quality products, and lower prices. Recent developments in
the application of virtual manufacturing systems to digital manufacturing platforms from different perspectives,
such as the Internet of things, big data analytics, additive manufacturing, autonomous robots, cybersecurity, and
RFID technology in Industry 4.0, are discussed in this study to analyze and develop the part manufacturing
process in Industry 4.0. The limitations and advantages of virtual manufacturing systems in Industry 4.0 are
discussed, and future research projects are also proposed. Thus, productivity in the part manufacturing process
can be enhanced by reviewing and analyzing the applications of virtual manufacturing in Industry 4.0.
1. Introduction

The Fourth Industrial Revolution, or “Industry 4.0”, is the term used
to describe the present trend of automation and data sharing in
manufacturing and other sectors of the economy. It involves the use of
advanced technologies such as artificial intelligence (AI), the Internet of
things (IoT), big data analytics, and robotics to create a more inter-
connected and efficient system of production. The concept of Industry 4.0
is based on the idea of interconnectedness, in which machines and de-
vices can communicate with each other and with humans, creating a
seamless and efficient manufacturing process (Xu et al., 2021). Industry
4.0 also includes the use of advanced analytics and predictive mainte-
nance to optimize production processes and reduce downtime. The
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manufacturing process is anticipated to undergo substantial changes
because of Industry 4.0, including improved product quality, enhanced
productivity, and expanded production flexibility. It also has the poten-
tial to transform supply chains, logistics, and customer engagement to
enhance the productivity of part manufacturing processes.

Cloud computing, the industrial Internet of things (IIoT), cyber-
physical systems, and big data analysis are some of the key compo-
nents of Industry 4.0, which aims to develop a completely automated and
interconnected manufacturing system (Bai et al., 2020). This leads to
increased efficiency, productivity, and quality as well as reduced costs
and waste during the parts production process (Castelo-Branco et al.,
2019). Industry 4.0 also allows for the real-time monitoring, analysis,
and optimization of production processes, leading to increased
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productivity, lower costs, and improved quality (Zheng et al., 2021).
Manufacturing and other areas such as healthcare, transportation, and
energy are anticipated to be significantly impacted by Industry 4.0
(Benitez et al., 2020). Additionally, it is expected to create new oppor-
tunities for growth and creativity as businesses can produce new goods
and services that utilize the capabilities of these technologies. However,
this also raises concerns regarding job displacement and the need for new
skills and worker training. In Industry 4.0, virtual manufacturing is often
facilitated by technologies such as computer-aided design (CAD), simu-
lation software, and digital twins (Ghobakhloo and Fathi, 2019).

Virtual manufacturing uses computer simulations and modeling to
design and test products and manufacturing processes before they are
physically created (Alexopoulos et al., 2020). Virtual manufacturing is a
key component of Industry 4.0 that aims to create highly integrated and
efficient manufacturing systems by leveraging advanced technologies
such as big data analytics, AI, and the IoT (Rold�an et al., 2019). As a
result, producers can identify possible problems early and make adjust-
ments without having to pay the high expenses involved with physical
prototypes (Mourtzis, 2020). Virtual manufacturing also enables manu-
facturers to optimize production processes, reducing waste and
improving efficiency (Jihong et al., 2021). Virtual manufacturing is a key
concept in Industry 4.0 and refers to the use of digital technologies and
data-driven processes to optimize and streamline manufacturing opera-
tions (Mantravadi and Møller, 2019). Virtual manufacturing can be
defined as the creation of a virtual model of a production system that
allows the analysis and optimization of various manufacturing processes
before actual production occurs. Advanced digital technologies are used
to create a virtual environment in which manufacturers can design,
simulate, and optimize production processes before physically imple-
menting the actual manufacturing process (Ullah, 2019). The following
are some specific examples and case studies that highlight the application
of virtual manufacturing in Industry 4.0.

(1) Digital twins for predictive maintenance in Siemens’ gas turbine
manufacturing: Siemens employs digital twin technology to create
virtual replicas of its gas turbines. Real-time data from sensors on
actual turbines are fed into the digital twin, which enables pre-
dictive maintenance. Engineers can monitor the health of tur-
bines, identify potential issues, optimize maintenance schedules,
reducing downtime and improving efficiency (van Dinter et al.,
2022).

(2) Augmented reality (AR)-assisted assembly in Boeing aircraft as-
sembly: Boeing utilizes AR glasses for assembly tasks. Technicians
wear AR glasses that overlay digital instructions, diagrams, and
annotations onto their view of the physical aircraft. This enhances
accuracy, accelerates assembly, and reduces errors (Mei and
Maropoulos, 2014).

(3) Simulation-driven design at Ford Motor Company: Ford uses
simulation software to test and optimize new vehicle designs
virtually before physical production begins. This approach helps
identify potential design flaws, improves safety, and reduces the
need for expensive physical prototypes (Park et al., 2022).

(4) Virtual reality (VR) training in Airbus A380 cabin crew training:
Airbus employs virtual reality simulations to train cabin crews.
Trainees wear VR headsets to experience various in-flight sce-
narios, emergencies, and procedures. Immersive training en-
hances crew preparedness and reduces training costs (Buttussi and
Chittaro, 2020).

(5) Remote equipment monitoring and control in General Electric
wind turbine maintenance: General Electric employs IoT sensors
and data analytics to remotely monitor and control wind turbines.
By analyzing real-time data from turbine sensors, they can predict
maintenance needs, optimize turbine performance, and reduce the
frequency of physical inspections (Yang et al., 2014).

(6) Quality control and defect detection in BMW’s quality assurance:
BMW uses computer vision and AI-powered systems for quality
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control. Cameras and sensors are used to inspect defective com-
ponents during the manufacturing process. Any deviation from
the standard was immediately flagged to ensure high-quality
production (Azamfirei et al., 2023).

These examples demonstrate how virtual manufacturing technologies
transform various aspects of the manufacturing process in the context of
Industry 4.0. The integration of simulation, digital twins, AR, VR, and
data analytics has led to improved efficiency, reduced costs, enhanced
training, and improved decision-making in manufacturing operations.

One of the key benefits of virtual manufacturing is that it can help
manufacturers identify potential problems or bottlenecks in the pro-
duction process before they occur in the real world. This can lead to
significant cost savings and improved efficiency, as manufacturers can
adjust their processes and equipment to maximize productivity and
minimize waste (Sj€odin et al., 2018). CAD software allows manufacturers
to design digital models of products and production systems, whereas
simulation software enables them to test and optimize these designs in a
virtual environment (Kuhn, 2006). Digital twins are virtual representa-
tions of real-world systems or products that can be used to track and
improve part manufacturing performance in real time (Marmolejo-Sau-
cedo, 2020). By leveraging these technologies, manufacturers can reduce
the cost and time required to develop new products and production
processes (Mohamed et al., 2019). They can also improve the efficiency
and quality of their manufacturing operations by identifying and
addressing potential issues before they occur in the physical world
(Gunasegaram et al., 2021). In addition, virtual manufacturing can
enable greater flexibility and customization in production, as manufac-
turers can rapidly reconfigure their production systems in response to
changing market demands. Virtual manufacturing also enables manu-
facturers to perform what-if analysis to test different scenarios, evaluate
the impact of changes in the production process, and identify opportu-
nities for improvement. Manufacturers can develop a digital twin of their
production system and use it to model various scenarios such as changes
in product design, process parameters, or equipment configuration by
employing sophisticated simulation and visualization tools. In addition
to simulation and optimization, virtual manufacturing can promote
cooperation and communication between various groups and those
engaged in the production process. By providing a common digital
platform for sharing data and information, virtual manufacturing can
help ensure that all stakeholders have access to the same information,
which can help reduce errors and improve decision-making. The appli-
cations of virtual manufacturing in Industry 4.0 are presented in Fig. 1.

To increase the effectiveness of Industry 4.0 in the part production
process, a digital manufacturing foundation was presented for produc-
tivity enhancement from both commercial and public perspectives
(Gerrikagoitia et al., 2019). To create improved assembly systems for
Industry 4.0, procedures for digital production and assembly systems
have been studied (Cohen et al., 2019). To improve product production
in Industry 4.0, product development using smart simulation has been
proposed (Ahmed et al., 2019). A virtual engineering factory was
developed to enhance decision-making in Industry 4.0 (Shafiq et al.,
2016). A versatile framework is offered to represent Industry 4.0 pro-
cesses for virtual simulations of part production (Ottogalli et al., 2019).
To transform agent technology into a manufacturing sturdy, an Industry
4.0 review and platform is suggested (Adeyeri et al., 2015). To reduce
design and production costs in part manufacturing, a learning environ-
ment of virtual reality for Industry 4.0 is provided (Liagkou et al., 2019).
To increase the efficiency of smart manufacturing, it has been suggested
that product production can be improved through creative virtual
product development (Ahmed et al., 2020). The incorporation of virtual
reality in training for Industry 4.0 is proposed as a way to minimize costs
and improve part production efficiency and safety (Paszkiewicz et al.,
2021).

Soori et al. (2013, 2014, 2016, 2017) suggested virtual machining
techniques for evaluating and enhancing CNC machining in virtual



Fig. 1. The applications of virtual manufacturing in Industry 4.0.
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environments. To investigate and enhance performance in the process of
component production employing welding procedures, Soori et al.
(2020) suggested an overview of current developments in friction stir
welding techniques. Soori and Asmael (2021d) examined the imple-
mentation of virtual machining technology to minimize residual stress
and displacement errors throughout the turbine blade five-axis milling
procedures. Soori and Asmael (2021b) explored the applications of vir-
tualized machining techniques to assess and reduce the cutting temper-
ature during the milling operations of difficult-to-cut objects. Soori et al.
(2021) proposed an advanced virtual machining approach to improve
surface characteristics during five-axis milling procedures for turbine
blades. Soori and Asmael (2021c) created virtual milling processes to
reduce displacement errors throughout five-axis milling operation of
impeller blades. Soori (2019) discussed virtual product development to
examine and develop the component production process in virtual set-
tings. Soori and Asmael (2022) proposed an overview of current ad-
vancements in published research to review and enhance the parameter
technique for machining process optimization. To increase the effec-
tiveness of energy usage, the reliability and precision of component
manufacturing, and the quality and availability of data across the supply
chain, Dastres et al. (2022) proposed a review of raido frequency iden-
tification (RFID)-based wireless manufacturing systems. Soori et al.
(2023e) explored machine learning and AI in CNCmachine tools to boost
productivity and improve profitability in the production of components
employing CNC machining operations. To improve the performance of
machined components, Soori and Arezoo (2022c) reviewed the mea-
surement and reduction of residual stress during machining operations.
To improve the surface integrity and decrease the residual stress during
Inconel 718 grinding operations, Soori and Arezoo (2022b) proposed
optimum machining parameters using the Taguchi optimization method.
To analyze and modify the CNC machine tool operations and structures,
application of the finite element method is reviewed by Soori and Arezoo
(2023f). To enhance accuracy in the five-axis CNC milling operation of
turbine blades, a deformation error compensation methodology was
presented by Soori (2023b).

To increase the life of cutting tools during machining operations,
Soori and Arezoo (2022a) examined different tool wear prediction al-
gorithms. Soori and Asmael (2021a) investigated computer-assisted
process planning to boost productivity in part manufacturing proced-
ures. Dastres and Soori (2021c) reviewed the applications of artificial
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neural networks in different sections, such as risk analysis systems, drone
navigation, evaluation of welding, and evaluation of computer simula-
tion quality, to explore the execution of artificial neural networks to
improve the effectiveness of products. Dastres and Soori (2021e) pro-
posed employing a communication system for environmental concerns to
minimize the negative effects of technological advancement on natural
catastrophes. To enhance network and online data security, Dastres and
Soori (2020) suggested a secure socket layer. Dastres and Soori (2021b)
studied web-based decision support systems to develop a methodology
for decision support systems by evaluating and suggesting gaps between
the proposed approaches. To strengthen network security measures,
Dastres and Soori (2021d) analyzed recent advancements in network
threats to enhance security in the web of data. To increase the potential of
image processing systems in several applications, Dastres and Soori
(2021a) evaluated image processing and analysis systems. Dimensional,
geometrical, tool deflection, and thermal defects have been modified by
Soori and Arezoo (2023b) to improve the accuracy of five-axis CNC
milling processes. Recent developments in published articles were
examined by Soori et al. (2023b) to assess and improve the impact of AI,
machine learning, and deep learning in advanced robotics. Soori and
Arezoo (2023c) developed a virtual machining system application to
examine whether cutting parameters affect tool life and cutting tem-
perature during milling operations. Soori and Arezoo (2023d) studied the
impact of coolant on the cutting temperature, surface roughness, and tool
wear during turning operations with Ti6Al4V alloy. Additional recent
developments in published papers were reviewed by Soori (2023a) to
examine and alter composite materials and structures. Soori et al.
(2023d) examined the Internet of things application for smart factories in
Industry 4.0 to increase quality control and optimize part manufacturing
processes. To minimize cutting tool wear during drilling operations,
Soori and Arezoo (2023a) designed a virtual machining system and Soori
and Arezoo (2023e) decreased the residual stress and surface roughness
to improve the quality of items produced utilizing abrasive water jet
machining. Application of a virtual machining system for deformation
error compensation was proposed by Soori (2023b) to enhance the ac-
curacy of the five-axis milling operation of turbine blades. Application of
digital twins in smart manufacturing was reviewed by Soori et al. (2023c)
to analyze and enhance the performance of smart manufacturing in the
part production process. Recent achievements in virtual manufacturing
systems were reviewed and discussed by Soori et al. (2023a) to analyze
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and modify the processes of part production. Optimization of energy
consumption in industrial robots was discussed by Soori et al. (2023f)
with the aim of optimizing the energy consumption in industrial robots.

While the potential benefits of virtual manufacturing in the Industry
4.0 era have been widely studied in different studies, a noticeable gap
exists in the comprehensive understanding of its practical implementa-
tion, challenges, and impact on traditional manufacturing paradigms.
Despite the growing body of literature on this subject, there is a lack of
synthesis and critical analysis consolidating diverse findings and insight
into a coherent framework for the application of virtual manufacturing in
Industry 4.0. Through an in-depth analysis of the literature, this review
aims to contribute to the body of knowledge surrounding virtual
manufacturing in Industry 4.0 by offering a comprehensive overview of
its implications for manufacturing processes, resource allocation, cost
effectiveness, innovation, and overall operational efficiency. The results
of this study provide valuable insight for practitioners and researchers
looking to harness the full potential of virtual manufacturing within the
rapidly evolving landscape of Industry 4.0.

To evaluate and modify the part production processes in Industry 4.0,
recent breakthroughs in the application of virtual manufacturing systems
were investigated and addressed in this paper. This review aims to
address this gap by systematically examining the role of virtual
manufacturing in the context of Industry 4.0. By conducting a thorough
review and synthesis of the existing research, this study seeks to provide
a holistic understanding of the key concepts, technologies, and meth-
odologies associated with virtual manufacturing. Furthermore, it intends
to identify the major challenges, limitations, and barriers that organi-
zations may encounter when transitioning to virtualized production en-
vironments. Future research topics are also suggested, and the limitations
and benefits of Industry 4.0’s virtual production systems are highlighted.
Reviewing and assessing recently released publications in virtual
manufacturing in Industry 4.0 has been found to advance the scientific
field.

The advantages and limitations of virtual manufacturing in Industry
4.0 are presented in Sections 2 and 3, respectively. Virtual manufacturing
and the Internet of things in Industry 4.0 are discussed in Section 4.
Virtual manufacturing and big data analytics in Industry 4.0 are pre-
sented in Section 5. Section 6 presents virtual and additive
manufacturing in Industry 4.0. Applications of autonomous robots and
big data analysis in virtual manufacturing and Industry 4.0 are presented
in Sections 7 and 8, respectively. AI and sustainability in virtual
manufacturing and Industry 4.0 are discussed in Sections 9 and 10,
respectively. Web-based virtual manufacturing platforms and cyberse-
curity in Industry 4.0 are presented in Sections 11 and 12, respectively.
RFID technology for Industry 4.0, is discussed in Section 13. Simulation-
based optimization of CNC machining using virtual machining systems is
presented in Section 14. Finally, the results of the study and suggestions
for future research are presented in Section 15.

2. Advantages of virtual manufacturing in Industry 4.0

Virtual manufacturing in Industry 4.0 offers numerous advantages
that can help companies improve their manufacturing processes, reduce
costs, and increase efficiency and productivity (M€oller andM€oller, 2016).
The advantages of virtual manufacturing in Industry 4.0 are outlined
below.

(1) Reducing costs: Virtual manufacturing allows companies to
simulate production processes and test their designs, which can
help them identify potential problems and make changes to the
process before production begins. This reduces the cost of physical
prototyping and can also reduce the number of physical pro-
totypes required (Javaid et al., 2022b).

(2) Improved efficiency: By identifying obstacles, cutting waste, and
increasing productivity, virtual manufacturing helps businesses
optimize their production procedures. Consequently, the
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efficiency of the production process can be improved (Enrique
et al., 2021).

(3) Faster time to market: By using virtual manufacturing, companies
can decrease the time required to develop and promote a product.
As the design and testing phases can be completed more quickly,
companies can start producing their products sooner, leading to a
faster time to market (Cardoso et al., 2017).

(4) Flexibility: Virtual manufacturing allows companies to quickly
and easily modify their production processes to accommodate
changes in product design and customer demand. This can lead to
greater flexibility in the manufacturing process and improved
responsiveness to market changes (Krauβ et al., 2021).

(5) Improved quality: Virtual manufacturing enables companies to
identify and eliminate potential problems in the production pro-
cedure before production begins. This improves the quality of the
final product and reduces the likelihood of defects and errors
(Javaid et al., 2022b).

(6) Improved safety: By using virtual manufacturing, companies can
simulate potentially hazardous manufacturing processes and
identify potential safety hazards before production begins. This
can improve worker safety and reduce the likelihood of accidents
and injuries (Ammar et al., 2021).

3. Limitations of virtual manufacturing in Industry 4.0

Virtual manufacturing in Industry 4.0 has many advantages; however,
it also has some limitations that should be carefully considered to ensure
the successful implementation of Industry 4.0. By understanding these
limitations, manufacturers can make informed decisions regarding how
to integrate virtual manufacturing into their operations to optimize ef-
ficiency and performance (Skobelev and Borovik, 2017). Although vir-
tual manufacturing has many advantages, it also has some limitations
and challenges (da Silva et al., 2019). Some of the key limitations of
virtual manufacturing in Industry 4.0 include the following.

(1) Accuracy: Virtual manufacturing relies heavily on computer sim-
ulations to predict the behavior of manufacturing systems.
Although these simulations can be highly accurate, they are not
always perfect. Real-world manufacturing systems are complex
and exhibit unexpected behavior that cannot be fully captured in a
simulation (Verma et al., 2022).

(2) Scope: Virtual manufacturing is typically used to simulate discrete
manufacturing processes and components. It is often difficult to
simulate entire manufacturing systems that include many inter-
connected processes and components (Leng et al., 2021).

(3) Complex and customized products: Virtual manufacturing may
struggle with highly complex or customized products that have
intricate geometries, materials, or functionalities. Simulating
every possible configuration can be computationally intensive and
time consuming. Therefore, advanced simulation algorithms and
models that can handle complex geometries andmaterials must be
developed. In addition, high-performance computing to expedite
simulations should be utilized to integrate AI and machine
learning to predict and optimize the outcomes for different
configurations.

(4) Materials and physical properties: Virtual manufacturing often
relies on accurate material data for simulations. In certain sectors,
particularly those involving novel materials, precise data may not
be readily available. To address this issue, it is essential to invest
in material characterization and testing to gather accurate data
and develop material databases that can be integrated into
simulation tools. Material suppliers and researchers can help solve
this problem by ensuring accurate material representation.

(5) Data availability: Virtual manufacturing relies on accurate data to
simulate manufacturing processes. However, data collection can
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be challenging, particularly in legacy systems that were not
designed with data collection in mind.

(6) Customization: Virtual manufacturing systems are often designed
for specific manufacturing processes or components. It can be
challenging to customize these systems to fulfil the specific needs
of certain industrial operations (Perez et al., 2022).

(7) Human involvement: Virtual manufacturing systems are highly
automated, which limits the role of human workers in the
manufacturing process. This can be disadvantageous in situations
in which human expertise is required to resolve unexpected
problems or make decisions (Peruzzini et al., 2021).

(8) Skill and knowledge gap: Lack of expertise and training in virtual
manufacturing tools can hinder their adoption in certain sectors.
Therefore, training and educational programs should be provided
to upskill the workforce. Collaboration between academia and
industry can be fostered to develop specialized training programs
for virtual manufacturing.

Overcoming these limitations requires a combination of technological
advancements, interdisciplinary collaboration, and a proactive approach
to addressing sector-specific challenges. By continuously refining virtual
manufacturing tools and methodologies, industries can unlock their full
potential and reap the benefits of enhanced efficiency, reduced costs, and
accelerated innovation. Applications of virtual manufacturing in Industry
4.0 is shown in Fig. 2.

4. Virtual manufacturing and IoT in Industry 4.0

Virtual manufacturing and the IoT are two related concepts in In-
dustry 4.0 and are applied to developing manufacturing processes for
optimization (Gerrikagoitia et al., 2019). These concepts have rapidly
transformed the manufacturing industry. IoT is a global network of
Fig. 2. Applications of virtual m
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real-world objects that can collect and exchange data through software,
sensors, and connections. These objects include machinery, automobiles,
and buildings (Branger and Pang, 2015). IoT devices can be employed in
manufacturing to manage inventories and data in the supply chain,
operate production equipment, and optimize energy consumption. The
combination of these two concepts can provide significant benefits for
manufacturers. For example, the IoT can present real-time data on the
performance of machines, which can be used to optimize virtual
manufacturing models (Kurfess et al., 2020a,b). This can help manufac-
turers identify areas for improvement, make changes to improve pro-
ductivity, reduce costs, and increase quality. Virtual manufacturing and
the IoT can create a highly optimized and efficient manufacturing process
in Industry 4.0 (Bi et al., 2021). The development of new manufacturing
technologies, such as additive manufacturing (3D printing), which can be
utilized to create complex and personalized components on demand, is
also being facilitated by the modification of virtual manufacturing and
the IoT (Ashima et al., 2021). These technologies are transforming the
manufacturing industry by enabling faster prototyping, greater flexi-
bility, and more efficient resource use. IoT devices can be used to collect
real-time data on the performance of manufacturing equipment and feed
these data into a virtual model of the production line. This allows engi-
neers to identify potential bottlenecks, optimize machine settings, and
improve overall efficiency (Riley et al., 2021). Additionally, virtual
manufacturing can be used to emulate various scenarios and evaluate the
impact of modifications before implementing them. This reduces the risk
of errors and downtime and allows for continuous improvement of the
manufacturing process (Jeschke et al., 2017). Overall, virtual
manufacturing and the IoT are transforming the manufacturing industry,
making it more efficient, cost-effective, and flexible. Future
manufacturing methods are expected to become considerably more so-
phisticated and creative as these technologies improve. The combination
of virtual manufacturing and the IoT enables manufacturers to create
anufacturing in Industry 4.0.
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smarter, more efficient, and more responsive production systems (Zem-
rane et al., 2021). Although virtual manufacturing and the IoT offer
numerous benefits in Industry 4.0, these limitations must be carefully
considered and managed to ensure successful implementation and
operation.

(1) Security and privacy concerns: Connecting numerous devices and
sensors to the Internet increases the potential attack surface for
cybercriminals, leading to security and privacy vulnerabilities.

(2) Data overload: The IoT generates vast amounts of data that can
overwhelm systems and make it challenging to extract meaningful
insight. This can lead to difficulties in data processing, storage,
and analysis (Liu et al., 2020).

(3) Interoperability: IoT devices from different manufacturers often
use different communication protocols and standards, which
makes it difficult for them to communicate and work together
seamlessly.

(4) Reliability and maintenance: IoT devices can experience technical
glitches, software bugs, or hardware failures leading to potential
downtime and maintenance challenges (Jeschke et al., 2017).

(5) Costs: The deployment and maintenance of IoT devices, sensors,
and networks can incur significant costs, especially for small and
medium-sized enterprises (SMEs).

(6) Skill gap: Implementing and managing IoT systems require
specialized knowledge and skills that may not be readily available
in the workforce.

(7) Environmental impact: The production and disposal of IoT devices
can contribute to electronic waste and environmental concerns if
not managed properly (Lopes de Sousa Jabbour et al., 2018).

(8) Dependency on connectivity: IoT systems rely heavily on network
connectivity. Poor or unstable network connections can disrupt
the functionality of the IoT devices and systems.

(9) Ethical and legal issues: The collection and use of data through IoT
devices raise ethical and legal questions regarding data owner-
ship, consent, and potential misuse (Soldatos et al., 2016).

(10) Cultural shift: Adopting IoT technologies often requires a cultural
shift within organizations, including changes in processes, work-
flows, and decision-making practices (Manavalan and Jayak-
rishna, 2019).

Addressing these limitations requires careful planning, investment,
and continuous improvement strategies. It is essential for industries to
weigh the benefits against the challenges and strategically adopt these
technologies to fully leverage their potential in the context of Industry
4.0.

5. Virtual manufacturing and big data analytics in Industry 4.0

Virtual manufacturing and big data analytics are two interconnected
concepts that are transforming manufacturing processes to develop the
manufacturing process in Industry 4.0. Big data analytics can be used in
conjunction with virtual manufacturing to provide valuable insight and
optimize production processes (M€oller and M€oller, 2016). Big data ana-
lytics provide tools and techniques for processing, analyzing, and
extracting insight from this massive amount of data. By analyzing the
vast amounts of data generated by sensors and other sources, manufac-
turers can identify patterns and trends that may not be immediately
apparent (Kurfess et al., 2020a,b). This information can be used to
enhance manufacturing procedures, reduce waste, and improve product
quality. Big data and analytics can be used to monitor production line
performance in real time and identify potential bottlenecks and other
issues before they impact production (Tao et al., 2019). This can assist
organizations in making prudent decisions regarding personnel, equip-
ment servicing, and production schedules. Big data and analytics can be
used in conjunction with virtual manufacturing in Industry 4.0 to provide
valuable insight and further optimize production processes. By analyzing
52
the vast amounts of data generated by different sensors and other de-
vices, manufacturers can identify patterns and trends that may not be
immediately apparent. Utilizing data helps enhance product quality,
decrease waste, and optimize production operations (Aceto et al., 2020).
In addition, big data and analytics can be used to analyze customer
feedback and other data sources to inform product design and develop-
ment. This can help manufacturers create products that better meet
customer needs and preferences, leading to improved customer satis-
faction and increased sales. Overall, Industry 4.0 applications can offer
companies a potent collection of tools to optimize their production pro-
cesses, cut costs, and increase product quality and customer satisfaction.
Fig. 3 demonstrates the applications of virtual manufacturing and big
data analytics in prodcutivity enhancement of part manufacturing.

Some of the key applications of big data analytics in Industry 4.0
include the following:

(1) Predictive maintenance: By analyzing sensor data, big data ana-
lytics can proactively predict equipment failures and schedule
maintenance, which reduces downtime and improves overall
equipment effectiveness (Sahal et al., 2020).

(2) Quality control: Big data analytics can identify patterns and
anomalies in production data, which can help detect and prevent
defects in products, reduce waste, and improve product quality (ur
Rehman et al., 2019).

(3) Supply chain optimization: Big data analytics can provide insight
into supply chain performance, including inventory levels, de-
livery times, and supplier performance. This can help improve
supply chain efficiency and reduce costs (Lu and Xu, 2019).

(4) Product design and development: Big data analytics can be used to
analyze customer feedback, product usage data, and other sources
to identify opportunities for product improvement and new
product development (Bag et al., 2021a,b).

(5) Energy management: Big data analytics can help optimize energy
usage in manufacturing processes, thereby reducing energy costs
and environmental impact.

Overall, big data analytics is a crucial component of Industry 4.0 as it
offers the tools and methods needed to properly utilize cutting-edge
technology, promote innovation, and expand the economies of
manufacturing and other sectors.

6. Virtual manufacturing and additive manufacturing in Industry
4.0

Three-dimensional objects are constructed using an additive
manufacturing technique, which involves stacking layers of material on
top of one another. This process, also known as 3D printing, involves the
use of a computer-controlled machine to create a physical object from a
digital model. Complex forms and structures that can be challenging or
impossible to produce using conventional production techniques can be
produced using additive manufacturing (Hernandez Korner et al., 2020).
It is often used to produce prototypes, custom parts, and small batches of
products. Although virtual and additive manufacturing are distinct con-
cepts, they are often used together in modern manufacturing processes
(Butt, 2020). The integration of virtual and additive manufacturing can
provide significant benefits to manufacturers. Virtual manufacturing can
be applied to designing and optimizing the additive manufacturing
process, while additive manufacturing can be applied to produce parts
and components for the virtual manufacturing process. These technolo-
gies can help manufacturers create more efficient and effective
manufacturing processes, reduce costs, and improve product quality
(Mehrpouya et al., 2019). This allows manufacturers to use virtual tools
to design and simulate their products and processes and then use additive
manufacturing to physically produce those products in Industry 4.0
(Sepasgozar et al., 2020). This procedure results in faster product
development, improved product quality, and lower costs. Virtual
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manufacturing can be used to optimize the production design and process
before physically producing a part, and additive manufacturing can be
used to create that part in a more efficient and cost-effective manner
(Ceruti et al., 2019). Together, they enable manufacturers to create
high-quality, customized products at a lower cost and with a shorter lead
time. The finite element analysis of produced part by the additive
manufacturing is presented in Fig. 4.

Additive manufacturing can be used in Industry 4.0 to completely
alter the method of part production in different industries. The ability to
produce complicated parts that are difficult or impossible to fabricate
using conventional methods is one of the main advantages of additive
manufacturing (Nazir and Jeng, 2020). This methodology enables com-
panies to create new products and improve existing ones, leading to
greater innovation and competitiveness. Additionally, additive
manufacturing is a highly adaptable technique that can be utilized to
efficiently produce a small number of parts (Rai et al., 2021). This is
especially crucial in Industry 4.0, as businesses place greater emphasis on
creating individualized and unique goods that cater to each customer’s
unique desires. The ability to build parts on demand via additive
manufacturing eliminates the need for businesses to have significant
Fig. 4. The finite element analysis of produced part by the additive
manufacturing.
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reserves of parts (Lemu, 2019), which can help reduce waste and opti-
mize supply chain management. Overall, additive manufacturing is a key
technology in Industry 4.0, enabling companies to create more complex
and customized products, reduce waste and inventory, and improve
supply chain management (Mahamood et al., 2021).

7. Virtual manufacturing and autonomous robots in Industry 4.0

Two technologies are revolutionizing manufacturing in Industry 4.0:
virtual manufacturing and autonomous robots. Robots that can work
independently of human direction or control are considered autonomous.
These robots are programmed with algorithms that enable them to sense,
perceive, and act on their environment (Goel and Gupta, 2020).
Manufacturing facilities are increasingly using autonomous robots to
perform repetitive and dangerous tasks such as welding, painting, and
assembly, enabling human employees to concentrate on more difficult
and sophisticated activities. Virtual manufacturing and autonomous ro-
bots are interconnected concepts that have changed the face of the
manufacturing industry (Gonzalez et al., 2017). In Industry 4.0, when
virtual manufacturing and autonomous robots are coupled, producers
can build highly effective and adaptable production lines that can change
swiftly to meet changing customer demands and market conditions
(Fragapane et al., 2022). Virtual manufacturing systems can also be
utilized to simulate and optimize a production line, while autonomous
robots can be deployed to perform tasks on said production line with
little to no human intervention (Tosello et al., 2019). The combination of
virtual manufacturing and autonomous robots is particularly effective.
Virtual manufacturing allows manufacturers to design and optimize
production processes that are specifically tailored to the capabilities of
autonomous robots (Inkulu et al., 2022). This, in turn, can lead to more
efficient and cost-effective manufacturing operations (Ustundag et al.,
2018a,b). Moreover, as autonomous robots become more advanced, they
will be able to work collaboratively with humans, taking on dangerous
tasks or reducing the physical demands of labor and allowing people to
concentrate on more complicated and creative activities. The use of
autonomous robots in Industry 4.0 has several advantages, including the
following:

(1) Increased productivity: Autonomous robots can work around the
clock without resting, leading to increased production rates and
efficiency (Rüßmann et al., 2015).

(2) Improved safety: Autonomous robots can perform tasks in haz-
ardous environments, thereby reducing the risk of injury to
human workers.
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(3) Higher quality: Autonomous robots can perform tasks with
extreme accuracy and consistency, thereby creating products of
better quality (Silvestri et al., 2020).

(4) Cost savings: Companies can save money by using autonomous
robots to boost productivity and decrease labor expenses (Erboz,
2017).

(5) Flexibility: Autonomous robots can be scheduled to perform a
wide range of tasks, making them adaptable to changing pro-
duction needs. Application of virtual manufacturing and autono-
mus robots in Industry 4.0 is shown in Fig. 5.

Although virtual manufacturing and autonomous robots offer signif-
icant benefits in Industry 4.0, they also have certain limitations and
challenges. Some key limitations associated with these technologies are
as follows:

(1) Complex environments: While autonomous robots excel in
controlled environments, they may struggle in complex, unstruc-
tured, or unpredictable settings. Handling variability and adapt-
ing to unforeseen circumstances can be challenging (Javaid et al.,
2021).

(2) Safety concerns: Autonomous robots operating alongside humans
raise safety concerns. Ensuring the safety of human workers and
preventing accidents in dynamic environments require advanced
sensing, collision avoidance, and fail-safe mechanisms (Cheng
et al., 2016).

(3) Limited dexterity: Many autonomous robots have limitations in
terms of their dexterity and finemotor skills. This can restrict their
ability to perform intricate tasks that require human-like
precision.

(4) High initial costs: Developing and deploying autonomous robots
can be costly, particularly for customized solutions. The integra-
tion of robotics into existing production processes may require
substantial investments in training, infrastructure, and software.

(5) Maintenance and repairs: Maintaining and repairing autonomous
robots can be complex and require specialized skills and resources.
Downtime due to maintenance can affect the overall productivity.

(6) Ethical and social implications: The rise of autonomous robots
raises ethical questions related to job displacement, the loss of a
human touch in certain industries, and the potential impact on
society. Balancing automation with human welfare is a key
consideration (Jamwal et al., 2021a,b).
Fig. 5. Application of virtual manufacturing
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(7) Legal and regulatory challenges: Regulations and standards for
autonomous robots are still evolving. Navigating the legal and
regulatory frameworks for safety, liability, and compliance can be
complex.

(8) Limited adaptability: Some autonomous robots are designed for
specific tasks or environments, which makes them less adaptable
to changes or new tasks without significant reprogramming or
modifications (Vach�alek et al., 2017).

It is important to note that advancements in technology continue to
address many of these limitations, but they remain important factors to
consider when implementing virtual manufacturing and the use of
autonomous robots in the context of Industry 4.0. Overall, virtual
manufacturing and autonomous robots are driving innovation in
manufacturing in Industry 4.0. Their potential benefits are substantial,
including increased efficiency, reduced costs, and improved safety for
workers. They are revolutionizing the manufacturing industry, making it
more efficient, productive, and cost-effective. Autonomous robots are a
crucial part of Industry 4.0 to boost production, efficiency, and quality
while lowering costs and enhancing safety.

8. Virtual manufacturing and cloud computing in Industry 4.0

Industry 4.0 is placing increasing emphasis on two related ideas:
cloud computing and virtual manufacturing. The principles of virtual
manufacturing and cloud computing can be applied to improving the
efficacy and efficiency of manufacturing operations (Aceto et al., 2020).
Cloud computing employs distant servers to store, manage, and process
data rather than using local servers or personal PCs for these purposes.
This allows manufacturers to access and share data more easily, collab-
orate with partners and suppliers in real time, and scale their operations
up or down as needed (Vel�asquez et al., 2018). Virtual manufacturing
and cloud computing can revolutionize the manufacturing industry by
enabling greater flexibility, efficiency, and agility. By leveraging these
technologies, manufacturers can rapidly prototype and iterate new
products, optimize production processes, and respond quickly to
changing customer demands. Virtual manufacturing and cloud
computing offer a powerful combination of tools for Industry 4.0 to
improve productivity throughout the part production process (Dogo
et al., 2019). Manufacturers can optimize their operations and reduce
costs by creating virtual models of their manufacturing processes and
products. By using cloud computing in Industry 4.0 to store and share
and autonomus robots in Industry 4.0.
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data, manufacturers can improve communication, collaboration, and
efficiency across their supply chains. Manufacturers can create a virtual
manufacturing environment hosted on the cloud by combining virtual
manufacturing and the cloud (O'Donovan et al., 2019). This environment
can be accessed by manufacturers and their partners from anywhere in
the world, enabling collaboration and real-time monitoring of
manufacturing processes (Matt, 2018). Cloud-based virtual
manufacturing can also help manufacturers reduce their environmental
footprint by minimizing the need for physical prototyping and testing.
This process can result in significant cost reductions and increased sus-
tainability. Cloud computing provides the infrastructure necessary for
Industry 4.0. It enables the storage, processing, and sharing of data and
applications across multiple devices and platforms, facilitating manu-
facturers in accessing and analyzing data in real time (Sanchez et al.,
2020). Cloud computing also provides a scalable and flexible computing
environment that can adapt to the changing demands of manufacturing
processes. One of the main advantages of cloud computing in Industry 4.0
is the development of digital twins. The virtual reproduction of tangible
assets such as machinery, goods, and even complete industries is known
as a digital twin (Moraes et al., 2022). Digital twins enable producers to
model and test various situations beforemaking changes in the real world
to save costs and increase efficiency (Hussain et al., 2020). Cloud
computing also enables manufacturers to leverage the power of AI and
machine learning to optimize their processes. For example, real-time
sensor data analysis using machine-learning algorithms can be
employed to identify abnormalities and predict equipment problems (Liu
and Xu, 2017). This can help manufacturers increase productivity and
reduce downtime. The applications of cloud computing in Industry 4.0 is
shown in Fig. 6.

Overall, Industry 4.0 is greatly facilitated by cloud computing in
terms of increasing part manufacturing productivity. It provides busi-
nesses with the infrastructure and resources needed to take advantage of
cutting-edge technology to build flexible, productive, and efficient smart
factories.

9. Virtual manufacturing and AI in Industry 4.0

In Industry 4.0, the design, production, and evaluation of products are
being revolutionized by two closely connected technologies: virtual
manufacturing and AI. AI can be used in virtual manufacturing to analyze
data from simulations and make recommendations for improvements
(Lee et al., 2018). For example, AI algorithms can analyze data from
virtual simulations to identify areas in which production can be opti-
mized by adjusting machine settings or streamlining workflows (Jan
Fig. 6. The applications of cloud
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et al., 2022). AI can also be used to proactively predict equipment failure,
schedule maintenance, reduce downtime, and minimize the risk of un-
expected delays (B�ecue et al., 2021). Virtual manufacturing and AI can
enable manufacturers in Industry 4.0 to accomplish the following.

(1) Optimize production processes: Virtual manufacturing can be
used to simulate many situations and determine the most effective
production methods. AI can then be used to analyze data from the
manufacturing process in real time and make adjustments to
optimize production (B�ecue et al., 2021).

(2) Reduce costs: Virtual manufacturing can help reduce production
costs by simulating different manufacturing scenarios and opti-
mizing production processes. Moreover, AI can be used to detect
inefficiencies and waste in the manufacturing process, further
reducing costs (Massaro et al., 2020).

(3) Improve quality: Virtual manufacturing can be applied to simulate
various quality control situations and identify potential
manufacturing process imperfections. AI can then be used to
detect defects in real time and make adjustments to improve
quality (Javaid et al., 2022a).

(4) Increased flexibility: Virtual manufacturing can be used to simu-
late different production scenarios and identify potential bottle-
necks or production constraints. AI can then be used to adjust
production in real time to maximize output (Fragapane et al.,
2022).

(5) Predict maintenance needs: By analyzing data from the
manufacturing process, AI can identify potential equipment fail-
ures and predict the need for maintenance before these issues
occur. This can help reduce downtime and maintenance costs (Lee
et al., 2019).

There are limitations and challenges associated with the imple-
mentation of virtual manufacturing and AI in Industry 4.0.

(1) Data dependence: Virtual manufacturing and AI rely heavily on
accurate and abundant data to make informed decisions and
predictions. Poor data quality, a lack of data integration, and data
privacy concerns can hinder the effectiveness of these
technologies.

(2) Initial investment and implementation costs: Adopting virtual
manufacturing and AI technologies requires significant upfront
investment in terms of hardware, software, training, and infra-
structure. Smaller and resource-constrained companies may find it
computing in industry 4.0.
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challenging to afford and implement these technologies (Jamwal
et al., 2021a,b).

(3) Complex integration: Integrating virtual manufacturing and AI
into existing manufacturing processes can be complex and time
consuming. Compatibility issues between different systems and
the need for reengineering processes can slow the adoption
process.

(4) Skill gap: The successful implementation and operation of virtual
manufacturing and AI require a skilled workforce with expertise in
areas such as data analysis, machine learning, and automation.
The shortage of skilled professionals in these domains may be an
obstacle.

(5) Limited generalization: AI models often perform well in specific
scenarios or tasks on which they have been trained but may
struggle when faced with new or unfamiliar situations. However,
achieving true generalizations across various manufacturing pro-
cesses can be challenging.

(6) Ethical and social concerns: AI and automation can lead to job
displacement and ethical concerns related to decision-making al-
gorithms. Decisions made by AI systems may lack transparency,
accountability, and the ability to understand the ethical implica-
tions of the choices made (Yao et al., 2017).

(7) Uncertainty and variability: Manufacturing processes can be
subject to various sources of uncertainty, such as material vari-
ability, machine wear and tear, and unexpected events. AI models
may struggle to effectively handle these uncertainties (Peres et al.,
2020).

(8) Maintenance and reliability: AI-driven systems can become less
reliable or even fail if not properly maintained or if the underlying
algorithms degrade over time. Ensuring the ongoing reliability
and robustness of these systems presents a challenge (Leng et al.,
2021).

(9) Cultural resistance and change management: Implementing new
technologies often requires changes in the organizational culture
and employee mindsets. Resistance to change difficulties in
managing the transition can hinder successful adoption (B�ecue
et al., 2021).

(10) Security and cybersecurity risks: As manufacturing becomes more
digitally connected, the risk of cyberattacks and data breaches
increases. Protecting sensitive information and ensuring the
cybersecurity of AI-driven systems is crucial.

It is important to note that while these limitations exist, ongoing
research, development, and improvements in technology can help miti-
gate many of these challenges over time. The successful integration of
virtual manufacturing and AI in Industry 4.0 requires careful planning,
investment, and a proactive approach to addressing these limitations.
Overall, AI and virtual manufacturing have the potential to enhance the
effectiveness, consistency, and adaptability of manufacturing processes,
resulting in quicker production cycles, better-quality products, and lower
prices. As these technologies develop, they may become more significant
in the industrial sector. AI and virtual manufacturing can help businesses
increase productivity, reduce costs, and produce better products.
Increased use of these technologies in manufacturing is likely in the
future as they continue to evolve and improve.

10. Virtual manufacturing and sustainability in Industry 4.0

Sustainability is an increasingly important consideration in
manufacturing as companies strive to reduce their environmental impact
while maintaining profitability. Virtual manufacturing can help com-
panies achieve sustainability goals by reducing the waste, energy con-
sumption, and emissions associated with physical prototyping and
testing in Industry 4.0 (Tseng et al., 2021). It can also help companies
optimize their supply chain, reduce transportation-related emissions, and
minimize the use of resources such as water and materials (Sharma et al.,
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2021). Additionally, virtual manufacturing can facilitate the design of
more sustainable products by allowing manufacturers to test and opti-
mize their designs for recyclability, energy efficiency, and durability.
Virtual manufacturing in Industry 4.0, which can also enable the use of
alternative sustainable materials, may be more difficult or costly to test
using physical prototypes (Bag et al., 2021a,b). In summary, virtual
manufacturing and sustainability are closely linked concepts that can
work together to create a more efficient and environmentally friendly
Industry 4.0 (Kamble et al., 2020a,b). By using computer simulation to
design and optimize manufacturing processes, companies can decrease
waste, energy usage, and CO2 emissions while also creating more sus-
tainable products. Sustainability in digital manufacturing is shown in
Fig. 7.

The following are several examples of how Industry 4.0 can promote
sustainability:

(1) Energy efficiency: Using IoT sensors and big data analytics,
manufacturers can monitor energy consumption, identify oppor-
tunities to reduce waste, and optimize energy usage (Koh et al.,
2019).

(2) Waste reduction: AI and robotics can be used to improve the
product design and reduce material waste during production. In
addition, IoT sensors can help monitor waste levels in real time,
enabling companies to make adjustments and reduce waste
(Jamwal et al., 2021a,b).

(3) Supply chain transparency: To identify and mitigate environ-
mental and social risks in the supply chain, blockchain technology
can be used to build a transparent and traceable supply chain
(Kamble et al., 2020a,b).

(4) Circular economy: Technology from Industry 4.0 can be used to
move toward a circular economy, in which resources are used as
long as feasible with the least amount of waste and environmental
effect possible (Kumar et al., 2020).

(5) Social responsibility: By using AI and other advanced technolo-
gies, companies can monitor and improve working conditions,
safety, and labor practices, promoting social responsibility and
ethical business practices (Leng et al., 2020).

In summary, sustainability in Industry 4.0 involves using advanced
technologies to optimize industrial processes while minimizing envi-
ronmental impact and promoting social responsibility.

11. Web-based virtual manufacturing platforms In industry 4.0

Web-based virtual manufacturing platforms play a crucial role in In-
dustry 4.0 by providing a collaborative environment for designing,
testing, and optimizing the manufacturing process. Modern technologies,
such as cloud computing, IoT, and AI, are being incorporated into
manufacturing processes as part of Industry 4.0 (Liu et al., 2022).
Web-based virtual manufacturing platforms are a key component of this
movement. These platforms enable manufacturers to create virtual rep-
licas of their factories, which can be used to simulate and optimize
manufacturing processes (Elbestawi et al., 2018). One of the key benefits
of web-based virtual manufacturing platforms is that they allow for vir-
tual prototyping, which can significantly reduce the time and cost of
developing new products. By creating a digital model of a product and
simulating its behavior in a virtual environment, manufacturers can
identify and correct design flaws before physical prototypes are pro-
duced, saving time and money (Wu et al., 2015). Furthermore,
web-based virtual manufacturing platforms facilitate remote collabora-
tion and communication among team members, even when they are
located in different parts of the world (Kurfess et al., 2020a,b). This en-
ables faster decision-making and problem-solving, which can lead to
increased productivity and efficiency (Kabasakal et al., 2023). Further-
more, these platforms can assist manufacturers in optimizing their pro-
duction processes by evaluating data from numerous sources, including
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sensors andmachines. They can accomplish this by looking for trends and
insights that can be utilized to increase efficiency and decrease waste.
Some of the key features of web-based virtual manufacturing platforms in
Industry 4.0 include the following:

(1) Simulation and modeling: These platforms allowmanufacturers to
create 3D models of their factories and simulate manufacturing
processes, including material flow, assembly lines, and logistics.
This helps identify bottlenecks, optimize workflows, and reduce
production costs (Kerin and Pham, 2019).

(2) Real-time monitoring: Web-based virtual manufacturing plat-
forms enable manufacturers to monitor their production processes
in real time. This provides valuable insight into production effi-
ciency, equipment utilization, and quality control (Shamsuzzoha
et al., 2021).

(3) Predictive maintenance: Web-based virtual manufacturing sys-
tems can determine when the equipment is likely to break by
collecting data from sensors and other sources, allowing manu-
facturers to proactively undertake maintenance and save expen-
sive downtime (Georgakopoulos and Bamunuarachchi, 2021).

(4) Collaborative design: These platforms facilitate collaboration
among designers, engineers, and other stakeholders, enabling
them to work together on product design and development.

(5) Cloud-based deployment: Most web-based virtual manufacturing
systems are cloud-based, making it possible to use them from any
location with an Internet connection. This makes them highly
flexible and scalable, enabling manufacturers to easily add new
features and capabilities as required (Wu et al., 2015).

Overall, web-based virtual manufacturing platforms are an essential
tool for manufacturers in the Industry 4.0 era, helping them increase
efficiency, reduce costs, and improve product quality.

12. Cybersecurity in Industry 4.0

Although connections among different devices and technologies can
bring significant benefits to organizations in Industry 4.0, they also
create new security challenges that should be evaluated to ensure the
safety and security of sensitive data and systems. Cybersecurity in In-
dustry 4.0 involves the protection of critical assets and infrastructure
from cyber threats, including cyber-attacks, data breaches, and other
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malicious activities (Mullet et al., 2021), and requires a comprehensive
approach that addresses both the technical and non-technical aspects of
security, including policies, procedures, and employee training. One of
the key challenges in Industry 4.0 cybersecurity is the increased attack
surface created by the use of IoT devices and other connected technol-
ogies (Fern�andez-Caram�es and Fraga-Lamas, 2020). These devices often
lack the security features necessary to protect themselves from sophis-
ticated attacks, making them vulnerable to compromise. To mitigate this
risk, organizations must implement robust security controls and regularly
monitor their networks for suspicious activity. Another critical aspect of
Industry 4.0 cybersecurity is the protection of data privacy (Mahesh
et al., 2020). Organizations must create efficient data governance policies
and ensure that data are securely protected and stored in consideration of
the growing volume of data generated by IoT devices and other tech-
nologies. Industry 4.0 presents both opportunities and challenges for
cybersecurity (Thach et al., 2021). To protect against the evolving threat
landscape, organizations must adopt a proactive and holistic approach to
cybersecurity with a focus on risk management, threat intelligence, and
continuous monitoring and improvement. The following are key con-
siderations for cybersecurity in Industry 4.0.

(1) Risk assessment: The first step in developing a cybersecurity
strategy is to assess the risks faced by an organization. This in-
cludes the identification of potential threats, vulnerabilities, and
consequences.

(2) Cybersecurity frameworks: Organizations should adopt cyberse-
curity frameworks such as National Institute of Standards and
Technology (NIST), International Organization for Standardiza-
tion (ISO), and International Electrotechnical Commission (IEC),
to establish a baseline for their security posture and ensure that all
relevant security controls are in place.

(3) Network segmentation: Industry 4.0 systems often involve com-
plex networks with multiple entry points. Segmentation of net-
works and systems can reduce the impact of a breach and limit an
attacker’s ability to move laterally (Abdullahi et al., 2022).

(4) Secure communication: All communication channels among IoT
devices, machines, and other systems must be secured. This in-
cludes implementing encryption, strong authentication, and
access-control measures.

(5) Endpoint security: Endpoint security measures such as antivirus
software, intrusion detection/prevention systems, and routine
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software upgrades should be used to protect Industry 4.0 equip-
ment such as sensors and machines.

(6) Data protection: As more data are generated and transmitted
across Industry 4.0 systems, ensuring confidentiality, integrity,
and availability becomes more critical. Encryption, backup, and
disaster recovery measures must be implemented to protect data
from loss and theft (Pang et al., 2021).

(7) Employee taining: Employee awareness and training are essential
for effective cybersecurity. Employees must be trained in security
policies, procedures, and best practices to prevent common
cyberattacks such as phishing and social engineering (Ustundag
et al., 2018a,b). Cyber-physical System in digital manufacturing is
shown in Fig. 8.

In summary, cybersecurity is critical to the success and sustainability
of Industry 4.0. Organizations must take a proactive approach to identify
and mitigate risks, implement effective security controls, and continually
monitor and improve their security posture.

13. RFID technology for Industry 4.0

RFID technology employs radio waves to transmit data between a
reader and an electronic tag affixed to an item such as a product or
container. RFID is a wireless communication technology. It has been
around for several decades but has become more popular in recent years
due to its potential applications in Industry 4.0 (Elbasani et al., 2020).
Throughout the supply chain, Industry 4.0 uses RFID technology to track
and monitor products, resources, and equipment. RFID technology is an
essential component of Industry 4.0 and is transforming the
manufacturing industry by providing real-time visibility, optimizing
processes, reducing costs, and improving productivity (Chiarini, 2021).
The ability to allow real-time data collection is a major advantage of RFID
technology in Industry 4.0. These data can then be used to monitor and
optimize the manufacturing process as well as to provide valuable insight
into customer behavior and preferences (Neal et al., 2021). Additionally,
RFID technology can enable predictive maintenance, which involves the
use of data analytics to identify potential equipment failures before they
occur (Anbalagan and Moreno-Garcia, 2021). Companies can monitor
the flow of goods from their point of origin to the point of consumption
by adding RFID tags to items or containers, thereby ensuring visibility
and transparency across the supply chain (Raut et al., 2020). This can
help companies optimize their inventorymanagement, reduce waste, and
improve their overall efficiency. RFID technology can also be used to
improve supply chain safety and security. By tracking the movement of
products and materials, companies can identify potential security threats
or safety issues and take appropriate action to prevent them. In addition,
RFID technology can be used to enable automated and autonomous
Fig. 8. Cyber-physical system in digital manufacturing.
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systems in Industry 4.0 (Beliatis et al., 2021). For example, RFID tags can
be used to identify products or materials as they move through a pro-
duction line, triggering automated processes or machine-learning algo-
rithms that optimize production and reduce downtime (D'Avella et al.,
2022). In addition, products, raw materials, and equipment can all be
assigned RFID tags so that they can be traced throughout the
manufacturing process (Ghoreishi et al., 2020). As a result,
manufacturing processes are optimized, waste decreases, and quality
control is enhanced. The following are ways in which RFID technology is
transforming Industry 4.0.

(1) Asset tracking: RFID technology is used to track assets in
manufacturing plants, warehouses, and supply chain operations.
Assets can be assigned RFID tags so that their whereabouts can be
tracked in real time, giving managers a real-time view of their
inventory and asset usage (�Zidek et al., 2020).

(2) Production monitoring: RFID technology is used to monitor the
production processes in real time. RFID tags can be attached to
components, and the production line can be monitored for bot-
tlenecks or issues. This can help optimize production processes
and improve productivity (Neal et al., 2021).

(3) Quality control: RFID technology is also being used for quality
control purposes. RFID tags can be attached to products, and their
quality can be monitored at each stage of the production process.
This can ensure that the product meets the required quality
standards (Rafiquea et al., 2022).

(4) Supply chain management: Additionally, RFID technology is used
in supply chain management. Products can be supplied with RFID
tags to monitor their movement throughout the supply chain. This
can accelerate deliveries, reduce costs, and increase supply chain
efficiency (Dastres et al., 2022).

(5) Maintenance and repair: Finally, RFID technology is employed for
maintenance and repair. The maintenance and repair history of
machinery and equipment can be identified using RFID tags. This
can enhance machine performance, save downtime, and optimize
maintenance schedules (Karabegovi�c et al., 2020). The applica-
tions of the RFID system in Industry 4.0 are shown in Fig. 9.

RFID technology is an important component of Industry 4.0,
providing a reliable and efficient method to track and monitor products,
materials, and equipment throughout the supply chain. As technology
continues to evolve, it will likely play an even greater role in
manufacturing and logistics.

14. Simulation-based optimization of CNC machining using
virtual machining systems

A virtual model of the CNC machining process was developed using
physics-based simulation software incorporating real-world material
properties, tool characteristics, and machine dynamics. As a result, the
surface quality of the machined turbine blades was increased using the
virtual machining system developed in this study (Soori et al., 2021). The
effects of the optimized machining parameters on the surface quality
enhancement of machined turbine blades are shown in Table 1 (Soori
et al., 2021).

Thus, the ability to model, simulate, and optimize manufacturing
processes leads to substantial improvements in machining time, tool
wear, surface finish, energy consumption, and resource utilization. These
findings emphasize the potential of virtual fabrication to revolutionize
manufacturing practices and contribute to the goals of efficiency, sus-
tainability, and cost effectiveness in Industry 4.0.

15. Conclusion and future research directions

Industry 4.0, also known as the fourth industrial revolution, is defined
as the incorporation of cutting-edge technology into manufacturing and



Fig. 9. The applications of the radio-frequency identification (RFID) system in Industry 4.0.

Table 1
The effects of optimized machining parameters in surface quality enhancement of machined turbine blades (Soori et al., 2021).

Number Before optimization After optimization Percentage of change

Measured surface
roughness ðμmÞ

Predicted surface
roughness ðμmÞ

Measured surface
roughness ðμmÞ

Predicted surface
roughness ðμmÞ

Measured surface
roughness

Predicted surface
roughness

Point 1 0.50 0.45 0.4 0.35 20.00000 22.22222
Point 2 0.54 0.49 0.39 0.4 27.77778 18.36735
Point 3 0.58 0.51 0.41 0.33 29.31034 35.29412
Point 4 0.53 0.48 0.39 0.37 26.41509 22.91667
Point 5 0.52 0.49 0.37 0.35 28.84615 28.57143
Point 6 0.59 0.45 0.39 0.3 33.89831 33.33333
Point 7 0.51 0.43 0.39 0.34 23.52941 20.93023
Point 8 0.52 0.46 0.41 0.33 21.15385 28.26087
Point 9 0.47 0.45 0.36 0.30 23.40426 33.33333
Point 10 0.53 0.47 0.38 0.33 28.30189 29.78723
Average 0.529 0.468 0.389 0.34 26.26371 27.30168
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other sectors, including the IoT, big data analytics, AI, machine learning,
and automation. This revolution focuses on the development of smart
factories that can operate autonomously and communicate with each
other, thereby enabling a higher degree of efficiency, productivity, and
quality in the manufacturing process. The way commodities are created
and produced is being revolutionized, which has a significant impact on
the world economy, improving production procedures and decreasing
downtime. Industry 4.0 also uses sophisticated analytics and predictive
maintenance. The phrase “Industry 4.0” is used to refer to the present
automation and data-sharing trend in industrial technology. This enables
companies to produce specialized goods and services on demand and
react rapidly to shifting consumer needs. Industry 4.0, a paradigm shift in
manufacturing that uses cutting-edge technologies such as AI, the IoT,
big data analytics, and cloud computing, is centered on virtual
manufacturing. In virtual manufacturing, computer simulations and
models are used to design and optimize the manufacturing processes and
products. Virtual manufacturing helps businesses build products faster
and more affordably by enabling them to test and improve their ideas in a
virtual setting before spending money on prototypes. By providing real-
time data on inventory levels, production schedules, and delivery time-
frames, virtual manufacturing may help businesses better manage their
supply chains. Virtual manufacturing in the context of Industry 4.0 also
refers to the integration of digital technologies such as simulation,
modeling, and virtual reality into manufacturing processes to enhance
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efficiency, productivity, and decision-making. Consequently, businesses
can better coordinate their efforts and react to shifts in market dynamics.
This may have resulted in a shorter time to market and better product
quality. Virtual manufacturing will be a key element in Industry 4.0,
allowing firms to enhance their processes, cut costs, and commercialize
cutting-edge goods more quickly and effectively than ever before. Man-
ufacturers will be able to work more efficiently with their suppliers,
clients, and other partners owing to virtual manufacturing. Manufac-
turers can collaborate to create and improve goods and processes as well
as improve supply chain operations by exchanging virtual models and
data. The utilization of big data analytics and virtual manufacturing,
which helps businesses simplify their processes, save money, improve
quality, and enhance production, is revolutionizing the manufacturing
sector. RFID technology is an important tool for manufacturers seeking to
adopt Industry 4.0 principles and stay competitive in today’s fast-paced
business environment. RFID technology enables real-time supply chain
monitoring and control and offers insightful data that may help busi-
nesses enhance productivity, cut costs, and satisfy customers. As tech-
nology advances, its significance in enabling the smart factories of the
future will as well. Generally, virtual manufacturing is a crucial element
of Industry 4.0, allowing manufacturers to optimize their processes, in-
crease productivity, reduce costs, and improve cooperation and
communication across numerous teams and stakeholders. It is a key
enabler of Industry 4.0 vision and is likely to play an increasingly
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important role in the future of manufacturing. In the era of Industry 4.0
(IoT), there will surely be an increase in the utilization of big data ana-
lytics, cloud computing, and the IoT. Large volumes of data from
equipment, goods, and consumers will be collected, stored, and analyzed
by manufacturers owing to these technologies. These data can then be
used to improve production processes, predict maintenance needs, and
personalize products and services for customers.

The following are some potential areas of future research in Industry
4.0 using virtual manufacturing.

(1) Smart factories: Future studies should look at the best ways to
plan, execute, and scale smart factories to increase manufacturing
productivity, quality, and agility while lowering costs and envi-
ronmental impact. This could include topics such as the devel-
opment of smart sensors, automation, and optimization
algorithms to improve the production process.

(2) Smart machines: One key trend in Industry 4.0 is the increasing
use of smart machines that can communicate with each other and
with humans. These machines can gather and analyze data in real
time, allowing for more efficient production processes and better
decision-making. In addition, Industry 4.0 is likely to see
increased use of robotics and automation, which will allow for
greater precision and accuracy in manufacturing.

(3) Augmented reality (AR): AR technology is used to train workers in
Industry 4.0 and is expected to become more prevalent in the
future. This enables workers to see virtual images and information
overlaid on the real world, which can help them perform their jobs
more effectively.

(4) Increased automation: The use of robotics, AI, and machine
learning is expected to become more widespread, thereby
reducing the need for human intervention in manufacturing
processes.

(5) Digital twins: Digital twins are virtual representations of genuine
resources that enable real-time monitoring and preventive main-
tenance. Future studies may examine how digital twins and In-
dustry 4.0 technology can be used to streamline production,
reduce downtime, and boost product quality.

(6) Internet of things (IoT): The IoT will continue to play a significant
role in Industry 4.0, as it enables the connection of machines and
devices to the Internet, enabling them to communicate with each
other and exchange data.

(7) Supply chain optimization: Virtual manufacturing can extend
beyond the factory floor to the entire supply chain. Researchers
can investigate how digital technologies can optimize logistics,
demand forecasting, and inventory management, leading to more
responsive and efficient supply chains.

(8) Blockchain: Blockchain technology can help secure and authen-
ticate data in Industry 4.0. Future research could explore how
blockchain can be used to secure the supply chain, improve
traceability, and reduce the risk of fraud.

(9) AI and machine learning: These technologies are already being
used in Industry 4.0; however, many remain to be learned
regarding how to optimize their use and improve their accuracy
and efficiency. AI and machine learning can be used to assess data
from machines and sensors, identify patterns, and forecast the
future. By doing this, firms can cut costs, enhance product quality,
and optimize manufacturing processes.

(10) Adoption of the IoT: For machines, sensors, and other devices to
share data and interact with one another, the IoT includes con-
necting them to the Internet. This can assist producers in real-time
production monitoring, rapid problem detection and resolution,
and data-driven decision making.

(11) Greater connectivity: Industry 4.0, which is anticipated to rely
extensively on the IoT, will make it possible for machines and
gadgets to connect with one another and with centralized systems,
increasing production and efficiency.
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(12) Cybersecurity: As more devices are connected in Industry 4.0, the
risk of cyberattacks increases. Future research could explore how
to develop and implement effective cybersecurity measures to
protect critical manufacturing infrastructure. Cybersecurity is
becoming increasingly important in Industry 4.0. Therefore,
companies must invest in cybersecurity measures to protect their
data and intellectual property.

(13) Data analytics: Considering the growing volume of data produced
by linked devices, sophisticated analytics tools are needed to make
sense of these data and derive insight that can drive business
decisions. Industry 4.0 generates vast amounts of data, and the
ability to analyze and make sense of them is critical for optimizing
processes and making informed decisions. Researchers are
exploring new ways to collect, store, and analyze data to improve
efficiency and productivity.

(14) Adaptive manufacturing systems: The ability of manufacturing
systems to adapt quickly to changes in product design, production
volume, and market demand is crucial. Research can also explore
how virtual manufacturing technologies can enable versatile and
responsive adaptive manufacturing systems.

(15) Human-machine interaction: As Industry 4.0 systems become
more automated, there is a need to understand how humans
interact with these systems. Future research could explore how to
design human-machine interfaces that are intuitive, safe, and
effective.

(16) Sustainability: Industry 4.0 has the potential to reduce waste and
increase efficiency, but it also has the potential to increase energy
consumption and carbon emissions. Future research could explore
how to optimize Industry 4.0 systems for sustainability, including
topics such as energy-efficient manufacturing processes and the
recycling of electronic waste.

(17) Additive manufacturing: 3D printing is already being used in In-
dustry 4.0; however, it is expected to become more widespread in
the future. It allows for the creation of complex parts and products
with less waste and at a lower cost than traditional manufacturing
methods. With 3D printing, manufacturers can quickly and easily
produce complex parts and components without expensive tooling
and molds.

(18) Ethical and social implications: As with any new technology,
ethical and social implications must be considered. Researchers
are exploring the potential impact of Industry 4.0 on jobs, privacy,
and society as a whole and developing frameworks for responsible
implementation.

(19) Economic and business models: Beyond technical aspects,
research can explore the economic implications of virtual
manufacturing in Industry 4.0. This may involve studying new
business models, calculating returns on investment, and assessing
the long-term economic benefits of adopting these technologies.

(20) Standardization and interoperability: Industry 4.0 envisions a
connected ecosystem of devices and systems. Future research
should focus on developing standardized communication pro-
tocols and data formats to ensure seamless interoperability among
different manufacturing components and technologies.

(21) Multidisciplinary collaboration: Virtual manufacturing involves
expertise in various fields including engineering, computer sci-
ence, and materials science. Future research should emphasize
multidisciplinary collaboration to ensure a holistic approach to
developing and implementing virtual manufacturing solutions.

Overall, the future of Industry 4.0 is exciting and full of opportunities
for innovation and growth. As technology advances, manufacturers can
produce products in a faster and more efficient way with greater preci-
sion. This has resulted in increased productivity, greater competitiveness,
and better products for customers.
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