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This study develops a linear-rational multi-curve term structure model based on the Wishart affine process. The model allows for a stochastic correlation between the curves whilst the pricing of swaptions remains at par in terms of numerical complexity with caps and floors. We also show how the constant maturity swap (CMS) and the CMS spread option can be priced. We provide swaption and CMS spread option price approximations that are fast to evaluate and accurate. These approximations heavily rely on the affine property of the Wishart process. We illustrate how the model performs on real data by rolling a calibration using a 3-month long sample of at-the-money swaption data. We find that the estimated parameters are remarkably stable and the calibration procedure is robust. In particular, thanks to the specific Wishart properties the model can handle the stochastic correlation between the OIS term structure and the Euribor-OIS spread term structure.

Introduction

Following the global financial crisis, interest rate models were revisited to take into account the widening of the spread between the overnight interest swap (OIS) term structure given by Eonia swaps in the European interest rate market and the Euribor term structure. This led to what is commonly named nowadays the multi-curve models. These models are more challenging as they need to specify not only the dynamic of each curve but also the correlation between these curves making the problem a multidimensional problem that is naturally more complicated. Interest rate derivatives such as caps/floors and swaptions become more difficult to price and manage due to this additional complexity while exotic derivatives are even more challenging but remain the most adequate instruments to reveal the implied correlation structure of the market.

Following the works of [START_REF] Rogers | The potential approach to the term structure of interest rates and foreign exchange rates[END_REF] and [START_REF] Filipović | Linear-rational term structure models[END_REF], we propose a multifactor linearrational multi-curve term structure model. This model is based on the Wishart process. In this framework, the zero-coupon bond price, whose value depends on the OIS curve, and the spread between the Euribor and OIS curves are linear-rational functions of two sets of factors obtained as linear combinations of terms of a n × n Wishart process. The model allows for stochastic correlation between these two sets of factors, as the Wishart process allows for non-trivial correlation between its entries. In the simplest case of a 2 × 2 Wishart process, the zero-coupon bond price and the spread between the Euribor and OIS curves are determined by the diagonal terms of the process, while its off-diagonal component allows for stochastic correlation -a third factor -between these two curves. The model thus captures the dependency between the OIS curve and the spread that is prevalent in the EUR interest rate derivatives market, while continuing to provide simple and efficient pricing formulas even for complex products such as the swaption. [START_REF] Rogers | The potential approach to the term structure of interest rates and foreign exchange rates[END_REF] shows how standard interest rate models fit into the framework of the potential approach. By standard interest rate models we are referring to the exponential affine framework that builds upon [START_REF] Duffie | A yield-factor model of interest rates[END_REF] and constitutes the dominant part of the interest rate literature.1 Roughly speaking, the potential approach amounts to conveniently choosing a stochastic process to model the underlying risk factors and a function to define a pricing kernel. The author also shows how to generate new interest rate models. Among those new models, the linear-rational model, which owes its name to the fact that the zero-coupon bond price is a linear-rational function of the state variable, is of particular interest as the pricing of swaptions is extremely simple and at par, in terms of computational difficulty, with caps and floors.

Several works have investigated the linear-rational interest rate framework, [START_REF] Nakamura | Interest rate, currency and equity derivatives valuation using the potential approach[END_REF] and [START_REF] Macrina | Heat kernel models for asset pricing[END_REF] in the single-curve case and for the multi-curve case [START_REF] Nguyen | The multi-curve potential model[END_REF], [START_REF] Macrina | Consistent valuation across curves using pricing kernels[END_REF] and [START_REF] Filipović | Linear-rational term structure models[END_REF] to name a few.2 However, among multicurve works, those performing an empirical analysis of the swaption market are much fewer. To the best of our knowledge, such kind of results can be found only in [START_REF] Nguyen | The multi-curve potential model[END_REF] who calibrate the model using 1 day of at-the-money (ATM) swaption quotes, Crépey et al. (2015b) who calibrate the model using 4 days of swaption quotes (with different strikes, so not only ATM swap-tions) and [START_REF] Filipović | Linear-rational term structure models[END_REF] who calibrate simultaneously 866 weekly ATM swaption quotes. 3Regarding specifically the correlation between the curves, Crépey et al. (2015b) and [START_REF] Nguyen | The multi-curve potential model[END_REF] obtain positive correlations with EUR swaption data. [START_REF] Filipović | Linear-rational term structure models[END_REF] work with a linear-rational vector affine model and US swaption data. As the US interest rate data do not exhibit any correlation between the curves [START_REF] Filipović | The term structure of interbank risk[END_REF], the limitations of the standard affine model in terms of correlation between the components of the process as explained in [START_REF] Duffie | Affine processes and applications in finance[END_REF] do not impair the model's ability to handle swaption data. However, building a multi-curve linear-rational model using the affine framework that can handle the correlation between the curves, as observed in the EUR interest rate derivatives market, requires to look beyond the vector affine process and consider the Wishart process which is an affine matrix process. Ideally, the correlation should be extracted from the swaption (EUR) derivatives market, which highlights the importance of the linear-rational framework in order to fully exploit the swaption market to calibrate the model.

As a first result of our multifactor linear-rational multi-curve term structure model based on the Wishart process, we derive a pricing formula for swaptions whose numerical cost is at par with caps and floors. Swaptions are important interest rate derivatives both in terms of transaction volume and as key elements in the pricing process of any sophisticated interest rate derivatives. Indeed, according to [START_REF] Skantzos | The perfect smile[END_REF], as of June 2018, the monthly trading volume of the interest rate options market is approximately 1.5 trillion USD, two-thirds of which comes from swaption trades and a further 125 billion USD from the cap/floor market. As such, the swaption market is a major component of the interest rate derivatives market. Regarding the corresponding EUR market, its size (expressed in USD) amounts to two-thirds of the USD market and both the USD and EUR markets account for more than 85% of the global notional amount of interest rate derivatives outstanding at the end of 2021, according to the BIS. 4 Further to this, exotic interest rate derivatives need to be priced with a model that has to be calibrated on the swaption market. Therefore, building a model that can be calibrated easily on swaption data so that its performance can be analyzed is a crucial first step.

Notice that even when single-curve models were the standard in the interest rate derivatives industry, swaptions were challenging to price as they are a kind of product that is intrinsically multidimensional. Even if there are some approximation formulas for the swaption price, see for example Collin-Dufresne and Goldstein (2002a), [START_REF] Singleton | Pricing coupon-bond options and swaptions in affine term structure models[END_REF] or [START_REF] Schrager | Pricing swaptions and coupon bond options in affine term structure models[END_REF], the numerical difficulty is such that only very few empirical studies on the swaption market are available in the literature (see [START_REF] Trolle | The swaption cube[END_REF]. This is in sharp contrast with the equity derivatives literature where comparisons between different model specifications were extensively performed. As a consequence, it should not come as a surprise that in the multi-curve case, which is more challenging numerically, the swaption market is barely analyzed. With regards to the correlation between the curves, it is problematic as swaptions should be used to estimate that correlation.

As a second result, we show that exotic interest rate derivatives such as the constant maturity swap (CMS) and CMS spread options can be priced in our framework. We then develop approximations, which enable a fast and accurate pricing, by adjusting Collin-Dufresne and Goldstein (2002a)'s methodology. This approximation technique is based on the moments of the Wishart process and is very flexible and applies, with equal performance, to swaptions, CMS and CMS spread options. The approximation crucially relies on the affine property of the Wishart process. Interestingly, the moments also allow us to apply the approach proposed by Filipović et al. (2013) that provides another option price approximation that is also very accurate. As such, the model enables an efficient and fast pricing of exotic interest rate derivatives, it is definitively an important second step.

Finally, we perform a rolling calibration over a 3-month sample of daily ATM swaption prices. The calibrated parameters are extremely stable thereby showing the ability of the model to handle the daily fluctuation of the data. We show how information regarding the correlation between the two curves can be extracted from swaptions as well as the advantages of the Wishart process compared to the affine vector process to manage this dependency. Indeed, we show that the correlation factor explains more than 90% of the implied correlation between the OIS curve and the spread on the European market whatever the maturity. Finally, using the calibrated model, we show that the approximation formulas, for both swaptions and CMS or CMS spread options, are very accurate. The results convincingly demonstrate the need to account for correlations between the OIS curve and the spread as well as the performance of the Wishart process as a modeling tool for interest rate derivatives.

The structure of the paper is as follows. Section 2 reviews the main analytical properties of the Wishart process. In section 3, the interest rate model is specified and we make explicit the pricing formulas for different interest rate products. Section 4 presents the data and illustrates how well the model performs in practice. Section 5 concludes the paper while proofs are gathered in the appendix.

The Wishart process

Given a filtered probability space (Ω, F, F t , P) we denote by

E [ • ] (resp. E t [ • ] := E [ • |F t ]
) the expectation (resp. conditional expectation) under the probability measure P. The Wishart process {x t ; t ≥ 0}, proposed in [START_REF] Bru | Wishart processes[END_REF] and introduced in finance in [START_REF] Gouriéroux | Derivative pricing with multivariate stochastic volatility[END_REF], satisfies the matrix stochastic differential equation

dx t = (ω + mx t + x t m )dt + √ x t dw t σ + σ dw t √ x t , (1) 
where x t is an n × n matrix that belongs to the set of positive definite matrices denoted S ++ n , m, σ belong to the set of n × n real matrices denoted M(n), {w t ; t ≥ 0} is a matrix Brownian motion of dimension n × n (i.e., a matrix of n 2 independent scalar Brownian motions) under the probability measure P and • stands for the matrix transposition. 5 The matrix ω ∈ S ++ n satisfies certain constraints involving σ σ to ensure the positiveness of the matrix process x t . Note that the transpositions in Eq. ( 1) are necessary to preserve the symmetry of the solution. The quantity √ x t is well defined since x t ∈ S ++ n . The matrix m is such that { (λ m i ) < 0; i = 1, . . . , n} where λ m i ∈ Spec(m) for i = 1, . . . , n and Spec(m) is the spectrum of the matrix m while ( • ) stands for the real part. The matrix σ belongs to GL n (R) the general linear group over R (i.e., the set of real invertible matrices). Thanks to the invariance of the law of the Brownian motion to rotations and the polar decomposition of σ, we can assume that σ ∈ S ++ n . We denote by e ij the basis of M(n), it is the n × n matrix with 1 in the (i, j) place and zero elsewhere, so that x ij,t = tr[e ij x t ], where tr[ • ] stands for the trace of a matrix. The identity matrix of M(n) is I n while the null matrix is 0 n .

The infinitesimal generator of the Wishart process is given by [START_REF] Bru | Wishart processes[END_REF]:

G = tr[(ω + mx + xm )D + 2xDσ 2 D] , ( 2 
)
where D is the [START_REF] Bru | Wishart processes[END_REF] showed that the Wishart process is affine, that is the moment generating function is exponentially affine in the state variable. More precisely, the moment generating function is given by

(n × n) matrix operator D ij := ∂ x ij .
Φ(t, θ 1 , θ 2 , x 0 ) := E exp tr[θ 1 x t ] + t 0 tr[θ 2 x u ]du , ( 3 
)
where θ 1 , θ 2 belong to S n the set of real n × n symmetric matrices.

Following [START_REF] Grasselli | Solvable affine term structure models[END_REF], it is possible to prove that

Φ(t, θ 1 , θ 2 , x 0 ) = exp (tr[a(t, θ 1 , θ 2 )x 0 ] + b(t, θ 1 , θ 2 )) , (4) 
with the deterministic functions (a(t,

θ 1 , θ 2 ), b(t, θ 1 , θ 2 ))
, where a(t, θ 1 , θ 2 ) is an n×n matrix function and b(t, θ 1 , θ 2 ) a scalar function, satisfying the system

a = am + m a + 2aσ 2 a + θ 2 , ( 5 
) b = tr[ωa] , (6) 
with initial conditions a(0, θ 1 , θ 2 ) = θ 1 and b(0, θ 1 , θ 2 ) = 0. As usual • denotes the time derivative.

Eq. ( 5) is a Matrix Riccati ordinary differential equation (ODE) whose solution is given by

a(t, θ 1 , θ 2 ) = (θ 1 A 12 (t) + A 22 (t)) -1 (θ 1 A 11 (t) + A 21 (t)) , (7) 
where

A 11 (t) A 12 (t) A 21 (t) A 22 (t) := exp t m -2σ 2 θ 2 -m . ( 8 
)
Eq. ( 6), along with the corresponding initial condition, leads to b(t) after integration.

Taking the expectation of Eq. (1) gives

dE[x t ] = (ω + mE[x t ] + E[x t ]m )dt , (9) that leads, if m is diagonal, to the ODEs dE [x ii,t ] = (ω ii + 2m ii E [x ii,t ]) dt , (10) dE [x ij,t ] = (ω ij + (m ii + m jj ) E [x ij,t ]) dt . ( 11 
)
We conclude that the expectation of the diagonal terms E [x ii,t ] only depend on ω ii , m ii and x ii,0 and not on any off-diagonal term.

If the process (x t ) t≥0 is stationary then x∞ = lim t→+∞ E[x t ] satisfies the matrix equation

mx ∞ + x∞ m = -ω . ( 12 
)
In fact, when it comes to implementation it is advisable to rewrite Eq. (1) using the vec operator. It leads to

dvec (x t ) = (b + Avec (x t )) dt + (I n 2 + K nn ) (σ ⊗ √ x t ) vec (dw t ) , ( 13 
)
where b := vec (ω), A := I n ⊗ m + m ⊗ I n with ⊗ the Kronecker product while K nn stands for the commutation matrix that operates on M(n), see for example Lütkepohl (2005, Appendix A). Using Eq. ( 13), it is straightforward to obtain

d dt E [vec (x t )] = b + AE [vec (x t )] , ( 14 
)
that can be explicitly integrated

E[vec(x t )] = e At vec (x 0 ) + A -1 e At -I n 2 b. ( 15 
)
The above result enables us to derive the following simple representation of the expected value of a linear function of the Wishart process.

Lemma 2.1. Let u 0 ∈ M(n) then there exist a scalar function b 0 (t) and a matrix function

a 0 (t) ∈ M(n) such that E [tr[u 0 x t ]] = tr[a 0 (t)x 0 ] + b 0 (t). ( 16 
)
Proof. Using Eq. ( 15) one gets

E [tr[u 0 x t ]] = vec(u 0 ) E [vec(x t )] , = e A t vec(u 0 ) vec(x 0 ) + vec(u 0 ) A -1 e At -I n 2 b,
and

defining b 0 (t) = vec(u 0 ) A -1 e At -I n 2 b and a 0 (t) ∈ M(n) such that vec(a 0 (t) ) = e A t vec(u 0 ) we get the result. Remark 2.2. Notice that if a ∈ M(n) and b ∈ S n then tr[ab] = tr[(a + a )b]/2.
If the system is stationary, which requires the eigenvalues of m to be negative, and if the eigenvalues of A are then also negative thanks to the Kronecker product property, it leads to x∞ :

= lim t→+∞ E [x t ] that solves the equation vec (x ∞ ) = -A -1 b , ( 17 
)
which corresponds to the solution to the matrix equation Eq. ( 12) expressed in vector form.

Eq. ( 13) combined with Remark 2.2 are also useful to recover the covariations of the Wishart process. Suppose that u 1 , u 2 ∈ M(n) then

d tr[u 1 x . ], tr[u 2 x . ] t = 1 4 vec(u 1 + u 1 ) (I n 2 + K nn ) σ 2 ⊗ x t (I n 2 + K nn ) vec(u 2 + u 2 )dt , = vec(u 1 + u 1 ) σ 2 ⊗ x t vec(u 2 + u 2 )dt , = tr[(u 1 + u 1 )x t (u 2 + u 2 )σ 2 ]dt . ( 18 
)
For illustration purpose, by choosing adequately u 1 and u 2 Eq. ( 18) gives the quadratic covariations of the components of a 2 × 2 (i.e., n = 2) Wishart process: (24) where (σ 2 ) ij is the (i, j) element of the matrix σ 2 .

The Wishart process was initially defined and analyzed in [START_REF] Bru | Wishart processes[END_REF] under the assumption that ω = βσ 2 with β ∈ R + such that β ≥ n + 1 to ensure that x t ∈ S ++ n . Hereafter, this specification will be referred to as the Bru case. It was later extended in [START_REF] Mayerhofer | On strong solutions of positive definite jumpdiffusions[END_REF] (see also [START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF] to the case ω ∈ S ++ n and proved that if

ω βσ 2 , ( 25 
)
with β ≥ n + 1 (where Eq. ( 25) means that ω -βσ 2 ∈ S ++ n ) then x t ∈ S ++ n . From a financial modeling point of view, the advantage of having ω not so tightly related to the volatility matrix σ is that they are naturally estimated using different financial products, it gives the model a flexibility that is often necessary in the applications.

The moment generating function Eq. (4) gives the Laplace transform of the process x t as the following proposition shows.

Proposition 2.3. Define

ς t := - 1 2 t 0 e (t-s)m (-2σ 2 )e (t-s)m ds , ( 26 
)
ϑ t := ς -1 t e mt x 0 e m t , ( 27 
)
then the Laplace transform of x t in the Bru case (i.e., ω = βσ 2 ) rewrites as

E [etr(-θ 1 x t )] = det (I + 2ς t θ 1 ) -β/2 etr - ϑ t 2 2ς t θ 1 (I + 2ς t θ 1 ) -1 , ( 28 
)
for θ 1 ∈ S ++ n and etr(.) = exp(tr [.]).

The Laplace transform Eq. ( 28) is known to be associated with the density of a non-central Wishart distribution. Indeed, if X is a random variable with non-central Wishart distribution, it takes values in S ++ n and its law is denoted by W n (β, ς, ϑ) with β ≥ n, ς ∈ S ++ n and ϑ ∈ M(n). The density of X, reported in Gupta and Nagar (2000, Eq. 3.5.1 p. 114) for example, is given by

f (x) = 2 -nβ 2 Γ n (β/2) det(ς) -β 2 etr - ϑ 2 - ς -1 x 2 det(x) β-n-1 2 0 F 1 β 2 ; 1 4 ϑς -1 x , ( 29 
)
with x ∈ S ++ n , Γ n (z) with z ∈ C the multivariate gamma function defined in Gupta and Nagar (2000, Eq. 1.4.5 p. 18) and 0 F 1 (a; Z) with a ∈ C and Z ∈ M(n) is the hypergeometric function of matrix argument (see Gupta and Nagar, 2000, p. 34 for a definition). According to Gupta and Nagar (2000, Theorem 1.4.1 p. 19) the following relation between the multivariate gamma and the standard gamma function (of scalar argument) holds

Γ n (z) = π 1 4 n(n-1) n i=1 Γ (z -(i -1)/2).
In [START_REF] Gupta | Matrix Variate Distributions[END_REF], β ∈ N while one consequence of [START_REF] Bru | Wishart processes[END_REF] is to extend to the case β ∈ R with β ≥ n + 1 (see Mayerhofer 2019 and references therein). An efficient numerical algorithm to compute the hypergeometric function of a matrix argument appears in [START_REF] Koev | The efficient evaluation of the hypergeometric function of a matrix argument[END_REF] and its first use in quantitative finance can be found in [START_REF] Kang | Exact simulation of the Wishart multidimensional stochastic volatility model[END_REF]. Lastly, in the Bru case (i.e., ω = βσ 2 ) then from Eq. ( 28) we deduce that the asymptotic distribution of the Wishart process is a matrix Gamma distribution whose moment generating function is given by

lim t→+∞ Φ(t, θ 1 , 0, x) = det(I -2ς ∞ θ 1 ) -β/2 , ( 30 
)
with ς ∞ = lim t→+∞ t 0 e (t-s)m σ 2 e (t-s)m ds (which is well defined).

A multi-curve model

The OIS and Euribor-OIS term structure curves

We follow [START_REF] Filipović | Linear-rational term structure models[END_REF], who build upon the potential approach proposed by [START_REF] Rogers | The potential approach to the term structure of interest rates and foreign exchange rates[END_REF], in order to develop a two-curve model based on a Wishart process. First, we define a pricing kernel as:

6 ζ t := e -αt (1 + tr[u 1 x t ]) , (31) 
with u 1 ∈ S + n the set of positive semi-definite matrices, α ∈ R + and a Wishart process (x t ) t≥0 of size n × n. Define the positive function f :

S ++ n → R + such that f (x) := 1 + tr[u 1 x] (f
is positive, and even larger than one, by property of the trace and given u 1 ∈ S + n and x t ∈ S ++ n ). Define g(x) := (α -G)f (x), it is a function that we assume positive for a sufficiently large α (i.e., α > tr[ω]). We will try to keep the notations fairly general so that it is clear that many of the results hold for any dimension of the process. However, when it comes to implement the model we will consider the case n = 2, m in Eq. (1) will be diagonal for reasons explained later and u 1 = e 11 .

The pricing kernel allows us to compute the time t value of a collateralized zero-coupon bond with maturity T , denoted P (t, T ), that is given by

P (t, T ) := E Q t e -T t rsds = E t ζ T ζ t , ( 32 
) = e -α(T -t) 1 + E t [tr[u 1 x T ]] 1 + tr[u 1 x t ] , ( 33 
)
with r t the short rate and E Q t [•] the (conditional) expectation under the risk neutral probability Q equivalent to P under which zero-coupon bond prices are martingale.

From Eq. ( 16) the expectation in Eq. ( 33) can be explicitly computed and it gives the following proposition.

Proposition 3.1. The zero-coupon bond price is given by

P (t, T ) = e -α(T -t) b1 (T -t) + tr[a 1 (T -t)x t ] 1 + tr[u 1 x t ] , ( 34 
)
with b1 (t) := 1 + b 1 (t) and (b 1 (t), a 1 (t)) given by Lemma 2.1 applied to u 1 .

Notice that by construction the zero-coupon bond price does not depend on the volatility of the process (x t ) t≥0 , it is a consequence of the linear form of the function f (x) used to define the pricing kernel Eq. ( 31).

According to Rogers (1997, Eq. 2.4), the short rate is given by

r t = (α -G)f f , ( 35 
) = α - tr[u 1 ω] + 2tr[u 1 mx t ] 1 + tr[u 1 x t ] , ( 36 
)
and is positive by construction as α is such that g(x) is positive. Also, as m has negative eigenvalues then x t is stationary and it is straightforward to check from Eq. (34) the following result

lim T →+∞ - 1 T -t ln P (t, T ) = α , ( 37 
)
so that α is the infinite-maturity zero-coupon bond yield as in [START_REF] Filipović | Linear-rational term structure models[END_REF]. It gives a very simple way to estimate the parameter α from the zero-coupon bond price.

The discount factor P (T, T + ∆) is related to the time T overnight indexed swap (OIS) rate with maturity T + ∆ by the formula

OIS(T, T + ∆) = 1 ∆ 1 -P (T, T + ∆) P (T, T + ∆) . ( 38 
)
The above formula holds for an OIS with maturity less than one year.

Additionally we consider the Euribor rate L(T, T + ∆), which is the rate at time T for the period [T, T + ∆]. Let us denote by Spread(T, T + ∆), the spread between the Euribor and OIS rates, this is the difference between L(T, T + ∆) and OIS(T, T + ∆) and which is often called the Euribor-OIS spread. Before the global financial crisis, the spread was negligible but after the crisis it widened significantly and a multi-curve interest rate model aims at taking into account that spread and its stochastic evolution. The Euribor-OIS spread is defined by:

Spread(T, T + ∆) := L(T, T + ∆) -OIS(T, T + ∆) , ( 39 
) = L(T, T + ∆) - 1 ∆ 1 P (T, T + ∆) -1 . ( 40 
)
Similar to the approach in the appendix of [START_REF] Filipović | Linear-rational term structure models[END_REF], we specify for the time T deflated value of the Euribor-OIS spread payment at time T + ∆ a positive linear functional of the stochastic process. More precisely, the deflated time-T value of the Euribor-OIS spread time-T + ∆ payment is defined as7 

ζ T P (T, T + ∆)∆Spread(T, T + ∆) = e -αT tr[u 2 x T ] , ( 41 
)
with u 2 ∈ S + n . The right hand side of Eq. ( 41) is positive thanks to the fact that u 2 ∈ S + n and x T ∈ S ++ n . Once the deflated value of the Euribor-OIS spread payment at a future date is specified, its expectation gives the value of the spread as a (linear-rational) function of the process as shown in the next proposition.

Proposition 3.2. The time-t value of the Euribor-OIS spread payment set at time T and made at time T + ∆, simply called the (time-t value) Euribor-OIS spread, is given by:

A(t, T, T + ∆) = 1 ζ t E t [ζ T P (T, T + ∆)∆Spread(T, T + ∆)] , (42) = 1 ζ t E t e -αT tr[u 2 x T ] , ( 43 
) = e -α(T -t) b 2 (T -t) + tr[a 2 (T -t)x t ] 1 + tr[u 1 x t ] , ( 44 
)
with (b 2 (t), a 2 (t)) given by Lemma 2.1 applied to u 2 .

As for the zero-coupon bond, the linear relationship in Eq. ( 41) implies that A(t, T, T + ∆) does not depend on the volatility of the process (x t ) t≥0 .

When it comes to model implementation we consider a Wishart process of dimension n × n with n = 2, a matrix m diagonal, u 1 = e 11 and u 2 = e 22 . In that particular case, the zero-coupon bond and the spread have a very simple expression as the following proposition shows. Going back to the positivity of the function g(x) = (α -G)f (x) mentioned after Eq. ( 31), in the particular case of Proposition 3.3 the function rewrites as g(x) = α + αx 11 -ω 11 -2m 11 x 11 which is positive if α > ω 11 (as x 11 > 0 and m 11 < 0 by assumption).

Notice that P (t, T ) of Eq. ( 45) only depends on x 11,t , ω 11 and m 11 so that from the OIS zero-coupon curve we can estimate those parameters. The spread of Eq. ( 46) depends on x 11,t , x 22,t , ω 22 and m 22 but if x 11,t is known then using market spreads we can estimate x 22,t , ω 22 and m 22 . As a result, the structure of the model enables us to stage the estimation. The zero-coupon term structure and the Euribor-OIS spread term structure do not allow the estimation of σ, it requires nonlinear derivative products such as swaptions. Notice also that the zero-coupon bond and the spread are correlated as both depend on x 11,t but, more importantly, the spread also depends on x 22,t and these two components can be correlated thanks to Eq. ( 24); it will be the main channel to correlate the two curves. What is more, the correlation depends on x 12,t which is a specific factor that does not affect the zero-coupon and the spread, the model has an unspanned stochastic volatility factor (see, e.g., Collin-Dufresne and Goldstein, 2002b;[START_REF] Joslin | Can unspanned stochastic volatility models explain the cross section of bond volatilities?[END_REF] in addition to allowing for a fairly general correlation structure between the OIS term structure and the Euribor-OIS spread term structure. The next section closely look into that aspect.

Correlation structure

In [START_REF] Filipović | Linear-rational term structure models[END_REF], the time T deflated value of the Euribor-OIS spread payment at time T + ∆ given by Eq. ( 41) is an affine function of a standard vector affine process that is independent of the standard vector affine process that drives the OIS term structure given by Eq. ( 31). This independence is motivated by the empirical finding in [START_REF] Filipović | The term structure of interbank risk[END_REF] which states that the OIS term structure and the Libor-OIS spread term structure are not correlated for the US market. For the Eonia-Euribor market the empirical correlation between the Eonia and Euribor-Eonia curves is not null (as we shall see later in the empirical section), it is the main motivation to introduce the Wishart process to capture such a dependency. However, to simplify the analysis we restrict to the case of Proposition 3.3.

Let us denote F (T 1 -t, x 11,t ) := P (t, T 1 ) the bond price with maturity T 1 given by Eq. ( 45). One can check that

∂ x 11 F = e -α(T 1 -t) 1 - ω 11 2m 11 (e 2m 11 (T 1 -t) -1) (1 + x 11 ) 2 ≤ 0 , ( 47 
)
since m 11 < 0, whilst the Euribor-OIS spread G(T 2 -t, x 11,t , x 22,t ) := A(t, T 2 , T 2 + ∆) given by Eq. ( 46) satisfies

∂ x 11 G = - G 1 + x 11 ≤ 0 , ( 48 
)
∂ x 22 G = e -α(T 2 -t) a 2 (T 2 -t) 1 + x 11 ≥ 0 , ( 49 
)
therefore the instantaneous covariance between the OIS zero-coupon bond and the Euribor-OIS spread is given by

d P (•, T 1 ), A(•, T 2 , T 2 + ∆) t = 4∂ x 11 F ∂ x 11 G(σ 2 ) 11 x 11,t + ∂ x 22 G(σ 2 ) 12 x 12,t dt . ( 50 
)
Suppose that σ 12 = 0, then Eq. ( 24) implies that the right hand side of Eq. ( 50) comprises only the leftmost term that is positive thanks to Eq. ( 19), Eq. ( 47) and Eq. ( 48). We conclude that the OIS zero-coupon bond and the Euribor-OIS spread are positively correlated in that particular case. Notice that even if x 22 is independent of x 11 the Euribor-OIS spread depends on x 11 as Eq. ( 46) clearly shows. Thanks to the second term in Eq. ( 50), the correlation between the OIS zero-coupon bond and the Euribor-OIS spread of the Wishart multi-curve model proposed here can display any sign. Indeed, Eq. ( 24), Eq. ( 47) and Eq. ( 49) imply that the sign of the second term is -sign(x 12,t σ 12 ). So if x 12,t and σ 12 have the same signs, the second term in Eq. ( 50) can lead, if it is large enough in absolute terms, to a negative correlation between the OIS bond price and the Euribor-OIS spread.

As such, the Wishart multi-curve model possesses a stochastic basis whose correlation with the OIS term structure is stochastic and can take any sign. Further to this, from Eq. ( 48) we conclude that ∂ x 11 G is proportional to the spread whereas ∂ x 22 G is close to 1 with the consequence that the right hand side of Eq. ( 50) is mainly driven by the second term.8 

Eq. ( 50) also highlights the fact that, when n = 2, the model is actually a three-factor model and not just a two-factor model as might be suggested by the use of only the two diagonal variables of the matrix x t . Indeed, the off-diagonal term of the matrix appears as a third factor that drives the instantaneous correlation between the OIS term structure and the Euribor-OIS spread.

In the more general case, Eq. ( 18) leads to

d (1 + tr[u 1 x.])P (•, T 1 ), (1 + tr[u 1 x.])A(•, T 2 , T 2 + ∆) t = e -2α(T -t) tr[(a 1 + a 1 )x t (a 2 + a 2 )σ 2 ]dt ,
with a 1 = a 1 (T -t) and a 2 = a 2 (T -t), and the sign of the covariation depends on the choice of u 1 and u 2 .

Also of interest is the instantaneous covariance of the Euribor-OIS spread term structure. Let τ 1 = T 1 -t and τ 2 = T 2 -t two maturities and A(t, T 1 , T 1 + ∆) and A(t, T 2 , T 2 + ∆) the Euribor-OIS spreads with time to maturity τ 1 and τ 2 , respectively. The instantaneous covariance between those two Euribor-OIS spreads is given by

cov(τ 1 , τ 2 ) = ∂ x 11 G(τ 1 )∂ x 11 G(τ 2 )4x 11,t (σ 2 ) 11 + ∂ x 22 G(τ 1 )∂ x 22 G(τ 2 )4x 22,t (σ 2 ) 22 + (∂ x 11 G(τ 1 )∂ x 22 G(τ 2 ) + ∂ x 22 G(τ 1 )∂ x 11 G(τ 2 )) 4x 12,t (σ 2 ) 12 . ( 51 
)
From Eq. ( 47) and Eq. ( 49) we deduce that the first two terms of the right hand side of Eq. ( 51) are positive whilst the last term's sign is -sign(x 12,t σ 12 ) as (σ 2 ) 12 = σ 12 (σ 11 + σ 22 ). If σ 12 = 0 the covariance between the Euribor-OIS spreads depends on a factor that does not impact the OIS term structure nor the Euribor-OIS term structure. It is an unspanned stochastic volatility factor (USV). Further to this, the Wishart multi-curve model's additional factor x 12 can take any sign so the last term of Eq. ( 51) can mitigate the first two terms that are always positive.

Swaption pricing

The pricing of nonlinear derivatives is important as they are used to calibrate the model on liquid products such as caps/floors and swaptions, often called vanilla products, so that the calibrated model can then be used to price exotic derivatives. It is commonly said that exotic products are priced "consistently" with vanilla products. With exponential affine models, the pricing of caps/floors is often simple from a numerical point of view but, in contrast, the pricing of swaptions is often excessively difficult.

In order to derive the value of a swaption in the Wishart model, let us first compute the time-t value, denoted C(t, T, T + ∆), of a floating coupon fixed at time T and paying ∆L(T, T + ∆) at time T + ∆ as

C(t, T, T + ∆) = 1 ζ t E t [ζ T +∆ ∆L(T, T + ∆)] , (52) = 1 ζ t E t [ζ T P (T, T + ∆)∆L(T, T + ∆)] , ( 53 
) = P (t, T ) -P (t, T + ∆) + A(t, T, T + ∆) . ( 54 
)
Then, let us consider an interest rate swap starting at T 0 and maturing at T n 1 where the Euribor based floating leg payment dates are

T 1 , • • • , T n 1 , with T j -T j-1 = ∆ for j = 1, . . . , n 1 , the fixed leg payment rate K and the fixed leg payment dates are t 1 , • • • , t m 1 = T n 1 , t i -t i-1 = δ for i = 1, . . . , m 1 and t 0 = T 0 . The time t < T 0 value of the floating leg of the swap is n 1 j=1 C(t, T j-1 , T j ) = P (t, T 0 ) -P (t, T n 1 ) + n 1 j=1 A(t, T j-1 , T j ) while the fixed leg value is δK m 1 i=1 P (t, t i ).
So the fixed-rate payer swap value at time t is

Π swap t = P (t, T 0 ) -P (t, T n 1 ) + n 1 j=1 A(t, T j-1 , T j ) -δK m 1 i=1 P (t, t i ) . ( 55 
)
The time-t forward swap rate, denoted S T 0 ,Tn 1 t

, is

S T 0 ,Tn 1 t = P (t, T 0 ) -P (t, T n 1 ) + n 1 j=1 A(t, T j-1 , T j ) δ m 1 i=1 P (t, t i ) . ( 56 
)
Remark 3.4. The spot swap rate can be obtained from Eq. ( 56) by taking t = T 0 and, combined with the zero-coupon bonds extracted from the OIS curve, allows the computation of the current time value of the Euribor-OIS spread, that is the terms {A(T 0 , T i-1 , T i + ∆); i = 1, . . . , n 1 }.9 These terms can then be used in Eq. ( 46) to estimate the parameters ω 22 , m 22 and x 22,T 0 . This calibration strategy is consistent with the structure of the model that suggests to stage the estimation procedure.

Given Eq. ( 55) for the fixed-rate payer swap value at time t, we can derive the value of the corresponding swaption. A striking property of the linear-rational model based on the affine process (whether it be vector or matrix) is the relative simplicity of the swaption pricing formula as the following proposition shows.

Proposition 3.5. The value at time t < T 0 of the European payer swaption with maturity T 0 and swap tenor T n 1 -T 0 is given by

Π swaption t = E t ζ T 0 ζ t (Π swap T 0 ) + , = e -α(T 0 -t) 1 + tr[u 1 x t ] E t (b 3 (T 0 , T n 1 ) + tr[a 3 (T 0 , T n 1 )x T 0 ]) + , ( 57 
)
with b 3 (T 0 , T n 1 ) := b1 (T 0 -T 0 ) -e -α(Tn 1 -T 0 ) b1 (T n 1 -T 0 ) + n 1 j=1 e -α(T j-1 -T 0 ) b 2 (T j-1 -T 0 ) -Kδ m 1 i=1 e -α(t i -T 0 ) b1 (t i -T 0 ) , ( 58 
)
a 3 (T 0 , T n 1 ) := a 1 (T 0 -T 0 ) -e -α(Tn 1 -T 0 ) a 1 (T n 1 -T 0 ) + n 1 j=1 e -α(T j-1 -T 0 ) a 2 (T j-1 -T 0 ) -Kδ m 1 i=1 e -α(t i -T 0 ) a 1 (t i -T 0 ) , ( 59 
)
where ( b1 (t), a 1 (t)) are given in Proposition 3.1 while (b 2 (t), a 2 (t)) are given in Proposition 3.2.

As aforementioned, b 3 (T 0 , T n 1 ) and a 3 (T 0 , T n 1 ) do not depend on the volatility of the Wishart process. Also, the pricing of the swaption involves a linear function of the state variable. It sharply contrasts with the classical approach based on the exponential affine framework where the computation of a sum of exponential functions of the state variable is involved for which no simple procedure is available. There are approximation algorithms such as those presented in [START_REF] Singleton | Pricing coupon-bond options and swaptions in affine term structure models[END_REF] and [START_REF] Schrager | Pricing swaptions and coupon bond options in affine term structure models[END_REF] that freeze certain coefficients or the approximation of the density through the cumulant expansion of Collin-Dufresne and Goldstein (2002a). In the linearrational approach, the pricing of a swaption only requires the density of an affine function of the state variables which is known in closed form as we shall see below.

As usual, the caplet pricing formula is obtained by considering a swaption with one fixed payment. More precisely, a caplet with maturity T 0 on the Euribor rate L(T 0 , T 0 +∆), pays at time T 1 = T 0 +∆ the difference L(T 0 , T 0 +∆)-K, if it is positive, where K is the strike of the caplet. Indeed, standard computations show

Π caplet t = E Q t e -T 0 +∆ t rudu ∆(L(T 0 , T 0 + ∆) -K) + , ( 60 
) = E Q t e -T 0 t rudu P (T 0 , T 0 + ∆)∆(L(T 0 , T 0 + ∆) -K) + , (61) = E Q t e -T 0 t rudu P (T 0 , T 0 + ∆)∆ Spread(T 0 , T 0 + ∆) + 1 ∆ 1 P (T 0 , T 0 + ∆) -1 -K + , (62) = 1 ζ t E t [ζ T 0 (1 -P (T 0 , T 0 + ∆) + A(T 0 , T 0 , T 0 + ∆) -K∆P (T 0 , T 0 + ∆)) + ] , ( 63 
)
that is the expression of an option on a swap with one payment, which is a payer swaption.

One striking property of the linear-rational model is that the computational cost of a swaption is at par with the one of the caplet. Indeed, Eq. ( 57) clearly shows that only the terminal law of an affine function of the marginal of the process is needed, and it can be carried out very easily using a Fourier transform (see e.g., [START_REF] Carr | Option valuation using the fast Fourier transform[END_REF][START_REF] Carr | Option valuation using the fast Fourier transform[END_REF][START_REF] Duffie | Transform analysis and asset pricing for affine jump-diffusion[END_REF]. Define the scalar variable Y T 0 = b 3 (T 0 , T n 1 ) + tr[a 3 (T 0 , T n 1 )x T 0 ] then the expectation in Eq. ( 57) rewrites

E t [(Y T 0 ) + ]. The characteristic function of Y T 0 is given by Φ Y (z) = E t e izY T 0 = e izb 3 (T 0 ,Tn 1 ) Φ(T 0 - t, iza 3 (T 0 , T n 1 ), 0, x t )
with Φ defined by Eq. ( 3). We have

E t [(Y T 0 ) + ] = 1 π +∞ 0 Φ Y (z + iz i ) (i(z + iz i )) 2 dz , ( 64 
)
with i = √ -1 and z i < 0. That latter constraint on the integration axis corresponds to a similar constraint in Filipović et al. (2017, Theorem 4).

At that level, the choice of the stochastic process for the state variables is essential. In Crépey et al. (2015b), the authors use exponential martingales based on the Brownian motion and, therefore, need the density of their sum that is not known in closed form and have to rely on a multidimensional integration. In [START_REF] Nguyen | The multi-curve potential model[END_REF], a two-factor model is proposed, there it is called the multi-curve rational lognormal model, and leads to a two-dimensional integration of the bivariate Gaussian distribution. As a result, these n-dimensional models imply integrating the n-dimensional Gaussian distribution with the numerical difficulties that come with it when n is larger than two. In the linear-rational model based on the Wishart process for the Bru case (i.e., ω = βσ 2 ) one could compute the expectation by integrating the distribution Eq. ( 29) but it will remain numerically tedious. Instead, the formula above shows that in the linear-rational model based on the standard affine process as presented in [START_REF] Filipović | Linear-rational term structure models[END_REF] or the Wishart model as presented here, the pricing of a swaption leads to a one-dimensional integration, irrespective of the size of the model.

CMS and CMS spread option pricing

The vanilla swaption proved to be surprisingly simple to value in the linear-rational Wishart model and a natural question is whether other exotic products can be also easily priced in that framework. Looking at the interest rate derivatives actively traded on the market, the CMS is certainly the most obvious choice to consider. Another reason to consider the CMS market is that CMS spread options are often traded and it is known, at least in the equity derivatives market, that spread options are notoriously tedious to price, see [START_REF] Hurd | A Fourier transform method for spread option pricing[END_REF]. Lastly, the difficulties one faces when dealing with CMS and CMS spread options are representative of the problems one faces when pricing other exotic derivatives such as, for example, in-arrears swaps and in-arrears caps.10 Following the academic literature (e.g., Brigo and Mercurio 2006, Chapter 13.7) we now recall the characteristics of that product.

Consider a CMS with tenor dates T 0 , • • • , T n 1 , with T j -T j-1 = ∆. The two legs of the CMS have the same payment dates T 1 , • • • , T n 1 . At a payment date T j+1 , with j = 0, . . . , n 1 -1, one leg pays the Euribor rate resetting at time T j plus a fixed spread K, while the other leg pays the swap rate S T j,0 ,T j,ns T j , which is the swap rate with tenor structure and payment dates T j,l = T j + l∆ s with l = 0, . . . , n s for the floating leg and t j,k = T j + kδ s for k = 0, . . . , m s for the fixed leg and T j,ns = t j,ms . We suppose that ∆ and ∆ s are equal so that there is no need to introduce another factor (or several factors) to handle the two tenor structures. In practice ∆, ∆ s and δ s are different but we stress the fact that all the computations below can be performed for that more general case without additional significant difficulty.

Proposition 3.6. The time-t value of the CMS receiving the Euribor (plus a fixed rate K) leg and paying the swap leg is therefore given by

Π cms t = P (t, T 0 ) -P (t, T n 1 ) + n 1 j=1 A(t, T j-1 , T j ) + ∆K n 1 j=1 P (t, T j ) - n 1 -1 j=0 ∆E t ζ T j+1 ζ t S T j ,T j,ns T j , ( 65 
)
with

E t ζ T j+1 ζ t S T j ,T j,ns T j = e -α(T j+1 -t) 1 + tr[u 1 x t ] E t ( b1 (∆ s ) + tr[a 1 (∆ s )x T j ])(b 4 (T j , T j,ns ) + tr[a 4 (T j , T j,ns )x T j ]) δ s b 5 (T j , T j,ns ) + δ s tr[a 5 (T j , T j,ns )x T j ] , ( 66 
)
with ( b1 (t), a 1 (t)) from Proposition 3.1 and b 4 (T j , T j,ns ) := b1 (T j -T j ) -e -α(T j,ns -T j ) b1 (T j,ns -T j ) + ns l=1 e -α(T j,l-1 -T j ) b 2 (T j,l-1 -T j ) , a 4 (T j , T j,ns ) := a 1 (T j -T j ) -e -α(T j,ns -T j ) a 1 (T j,ns -T j ) +

ns k=1 e -α(T j,l-1 -T j ) a 2 (T j,l-1 -T j ) , b 5 (T j , T j,ns ) := ms k=1 b1 (t j,k -T j ) , a 5 (T j , T j,ns ) := ms k=1 a 1 (t j,k -T j ) , with (b 2 (t), a 2 (t)) from Proposition 3.2.
To compute the value of the CMS, the expectation Eq. ( 66) needs to be evaluated but its simple structure, a rational function, combined with the affine property of the Wishart process enable an explicit computation thanks to the following well known remark.

Remark 3.7. Suppose that we know the moment generating function of the vector (X, Y ), that is

G(z 1 , z 2 ) = E e z 1 X+z 2 Y . To compute E X Y , the relation 1/y = +∞ 0 e -sy ds leads to E X Y = +∞ 0
E Xe -sY ds, and using the propriety of the moment generating function, we get

E X Y = +∞ 0 ∂ z 1 E e z 1 X-sY ds| z 1 =0
. As E e z 1 X-sY is known and can possibly be derived explicitly with respect to z 1 , we obtain a quasi closed form for the expectation of the ratio of the two random variables. It is clear that the same technique by deriving twice can be used to compute E X 1 X 2 Y for a vector (X 1 , X 2 , Y ) with a known moment generating function.

Proposition 3.8. The integral representation of the ratio of two random variables combined with the moment generating function of the Wishart process Eq. (4) give an explicit expression for the expectation:

E t tr[v 1 x T j ] c 0 + tr[v 2 x T j ] , ( 67 
)
with c 0 > 0 a constant and v 1 , v 2 ∈ S + n two matrices, which is sufficient to compute Eq. (66).

The CMS naturally serves as an underlying for interest rate derivatives but instead of the standard call/put on an CMS rate what is frequently found is the CMS spread single-option which involves two CMS rates as its name suggests. Let us denote by Π CmsSpSO t (T 1 , n s 1 , n s 2 , K) the t-value of a CMS spread call option with single expiration date T 1 and strike K. It is an option whose value at time T 1 is based on the difference between the spot swap rate S T 1,0 ,T 1,ns 1 T 1 , starting at time T 1 and ending at time T 1,ns 1 > T 1 , and the spot swap rate S T 1,0 ,T 1,ns 2 T 1 starting at time T 1 and ending at time T 1,ns 2 > T 1 .

The underlying swap S T 1,0 ,T 1,ns 1 T 1 floating leg's tenor and payment dates are T 1,l = T 1 + l∆ s with l = 0, . . . , n s 1 whilst the fixed leg's tenor and payment dates are t 1,k = t 1 + kδ s with k = 0, . . . , m s 1 and we further have that T 1,0 = T 1 , t 1,0 = t 1 = T 1 and T 1,ns 1 = t 1,ms 1 which imply that both legs start and end at the same time. The swap S T 1,0 ,T 1,ns 2 T 1 is defined similarly.

Those two CMS rates are the underlyings of the CMS spread single-option whose pricing formula is presented in the next proposition.

Proposition 3.9. The option time-t value, denoted Π CmsSpSO t for simplicity, is given by:

Π CmsSpSO t = E t ζ T 1 ζ t S T 1,0 ,T 1,ns 1 T 1 -S T 1,0 ,T 1,ns 2 T 1 -K + , ( 68 
) = e -α(T 1 -t) 1 + tr[u 1 x t ] E t g 1 (x T 1 ) -g 2 (x T 1 ) -K(1 + tr[u 1 x T 1 ]) + , ( 69 
)
with for i ∈ {1, 2}

g i (x T 1 ) = (1 + tr[u 1 x T 1 ])(b 4 (T 1 , T 1,ns i ) + tr[a 4 (T 1 , T 1,ns i )x T 1 ]) δ s (b 5 (T 1 , T 1,ns i ) + tr[a 5 (T 1 , T 1,ns i )x T 1 ]) , ( 70 
)
and b 4 T 1 , T 1,ns i , a 4 T 1 , T 1,ns i , b 5 T 1 , T 1,ns i and a 5 T 1 , T 1,ns i are those of Proposition 3.6.
Similar to caplets (or floorlets) that are not traded individually but as a component of a cap (floor), the CMS spread single-option is traded through a CMS spread multi-option which is just a portfolio of CMS spread single-options and is defined as follows. Let Π CmsSpMO t (T 1 , T n 1 , n s 1 , n s 2 , K) be the t-value of the multi CMS spread call option with exercise dates T 1 , • • • , T n 1 , with T j -T j-1 = ∆ and strike K. It is a sum of CMS spread single call options with maturity dates T 1 , . . . , T n 1 . All the options' two underlying swaps have the same tenor structures. Using the previous definition, the option time t-value denoted Π CmsSpMO t , for simplicity and when no confusion is possible, is given by:

Π CmsSpMO t = n 1 j=1 Π CmsSpSO t (T j , n s 1 , n s 2 , K) .
Unfortunately, the pricing formula of the CMS spread single-option Eq. ( 69) is not as simple as the swaption pricing formula. Notice, however, that it only involves (x T ), the marginal distribution of the process at time T and not the process path from t to T . In the Bru case, the marginal distribution of the process can be expressed, when the parameter β is an integer, as the square of a matrix Gaussian distribution so it is computable by Monte Carlo very efficiently, see Gupta and Nagar (2000, Theorem 3.5.2). When β is not an integer, [START_REF] Ahdida | Exact and high-order discretization schemes for Wishart processes and their affine extensions[END_REF] derived an exact and fast simulation algorithm. Still, having accurate price approximations for these products is of interest and the following section shows that such approximations are available thanks to the affine property of the Wishart process.

Approximation of interest rate derivatives

The pricing of a swaption in the standard exponential affine framework is known to be notoriously tedious as it involves the density of a sum of exponentials of random variables. The swaption price can be computed easily only in some very specific cases, typically when the state variable is one dimensional. In Collin-Dufresne and Goldstein (2002a), the authors propose an approximation of the swaption price by approximating the density of a coupon bearing bond. Their result crucially relies on the affine property of the process driving the interest rates. In the approach adopted here, Proposition 3.5 shows that the pricing of a swaption is simple as it only requires a one-dimensional integration. Still, it is worth trying to obtain option price approximations. The affine property of the Wishart process enables us to use the approximation of Collin-Dufresne and Goldstein (2002a) and obtain an even faster option pricing formula. Our result heavily relies on the fact that the polynomial functions are stable for the infinitesimal generator of the Wishart process. In other words, the moment of a given order of the Wishart process depends on the lower order moments of the Wishart process thereby making them explicitly known. Not only do these moments allow us to apply Collin-Dufresne and Goldstein (2002a)'s results they also allow us to use Filipović et al. (2013)'s option price approximation which is an alternative to Collin-Dufresne and Goldstein (2002a). What is more, not only does the option price approximation apply to the swaption of Proposition 3.5 but also to the CMS of Proposition 3.6 and the CMS spread option of Proposition 3.9.

In order to implement the model we need to specify some of its properties. From now on, we assume that the hypotheses of Proposition 3.3 apply, that is n = 2, m is diagonal, u 1 = e 11 and u 2 = e 22 so that a 3 (t) in Eq. ( 59) is a diagonal matrix and therefore

Y T 0 = b 3 (T 0 , T n 1 ) + tr[a 3 (T 0 , T n 1 )x T 0 ]
the variable involved in the expectation Eq. ( 57) reads

Y T 0 = b 3 (T 0 , T n 1 ) + a 3,11 (T 0 , T n 1 )x 11,T 0 + a 3,22 (T 0 , T n 1 )x 22,T 0 . ( 71 
)
Then the q th -order moment of Y T 0 is simply given by

E[Y q T 0 ] = l 0 +l 1 +l 2 =q q l 0 , l 1 , l 2 b 3 (T 0 , T n 1 ) l 0 (a 3,11 (T 0 , T n 1 )) l 1 (a 3,22 (T 0 , T n 1 )) l 2 E[x l 1 11,T 0 x l 2 22,T 0 ] , (72) 
and therefore this moment is known if those of the Wishart process are. The next section focuses on that aspect.

The moments of the Wishart process

The moments of the marginal of the Wishart process are difficult to compute. [START_REF] Letac | The noncentral Wishart as an exponential family, and its moments[END_REF] provide the first three moments of a noncentral Wishart distribution (its corresponds to the marginal of the Wishart process in the Bru case) but also mention that the fourth order moment is tedious to compute. [START_REF] Graczyk | The moments of Wishart processes via Itô calculus[END_REF] derive the moments of the Wishart process when m = 0 using Itô's lemma and use the property that the polynomial functions are stable for the infinitesimal generator (the same argument that was used in the finance literature to compute the moments of affine processes). Lastly, Bishop et al. ( 2018) also look at the problem of the Wishart moments and underline the numerical difficulties. Working along those lines, we derive the moments of the Wishart process under the assumption of Proposition 3.3. They are given by the two following lemmas.

Lemma 3.10. Let y(t) be a solution to the ordinary differential equation

dy(t) dt = κy(t) + l i=1 μi + νi e κ i t , ( 73 
)
with κ = κ i ∀i ∈ {1, . . . , l} and μi , νi ∀i ∈ {1, . . . , l} some constants. Then it can be integrated to

y(t) = c + l+1 i=1 di e κ i t , ( 74 
)
with κ l+1 = κ and c = -

l i=1 μi κ , ( 75 
) di = νi κ i -κ , i = 1, . . . , l , (76) 
dl+1 = y(0) + l i=1 μi κ - l i=1 νi κ i -κ . ( 77 
)
The following lemma shows that the affine property of the Wishart process implies a simple expression for the expected value of a polynomial function of the process. 

+ iω 11 + 2ik(σ 2 ) 11 + 2i(i -1)(σ 2 ) 11 g(t, i -1, k, j) (79) + kω 12 + k(k -1)(σ 2 ) 12 + 2ik(σ 2 ) 12 + 2jk(σ 2 ) 12 g(t, i, k -1, j) (80) 
+ jω 22 + 2j(j -1)(σ 2 ) 22 + 2jk(σ 2 ) 22 g(t, i, k, j -1) (81)

+ k(k -1) 2 (σ 2 ) 22 g(t, i + 1, k -2, j) (82) + k(k -1) 2 (σ 2 ) 11 g(t, i, k -2, j + 1) (83) 
+ 4ij(σ 2 ) 12 g(t, i -1, k + 1, j -1) . ( 84 
)
Notice that Eqs. (79-84) involve polynomials with degree lower than or equal to i + k + j -1 whilst Eq. ( 78) involves a polynomial of degree i + k + j. It is a consequence of the affine property of the Wishart process. As g(t, 1, 0, 0), g(t, 0, 1, 0) and g(t, 0, 0, 1) can be written in the form μ0 + ν0 e κ 0 t with suitable μ0 , ν0 and κ 0 coefficients then we deduce by induction that g(t, i, k, j) solves an ODE of the form Eq. ( 73) and therefore Lemma 3.10 applies. Notice that the condition κ = κ i ∀i ∈ {1, . . . , l} of Lemma 3.10 is satisfied as m 11 < 0 and m 22 < 0.

Combining these results we conclude that as E[x l 1 11,T 0 x l 2 22,T 0 ] = g(T 0 , l 1 , 0, l 2 ) are known thanks to Lemma 3.11, the moments Eq. ( 72) are also known. Remark 3.12. Notice that although only terms of the form E[x l 1 11,T 0 x l 2 22,T 0 ] = g(T 0 , l 1 , 0, l 2 ) are needed to determine the moment E[Y q

T 0 ], Lemma 3.11 shows that these terms depend on moments involving x 12,T 0 (through Eq. 84).

Swaption price approximations

The moments allow us to apply Collin-Dufresne and Goldstein (2002a)'s swaption price approximation that is significantly faster to compute than the exact formula of Proposition 3.5. Indeed, starting from Collin-Dufresne and Goldstein (2002a, Eq. 17), which presents a series expansion of the density of Y T 0 , the expectation in Eq. ( 57) can be approximated after truncating the series at a given order, it leads to the following proposition. Proposition 3.13. Let Y T 0 given by Eq. (71) the variable involved in the expectation in Proposition 3.5 and suppose that its density f (y) admits the series expansion

1 √ 2πc 2 e - (y-c 1 ) 2 2c 2   j≥0 γ j (y -c 1 ) j   , ( 85 
)
with {γ j ; j ∈ N} and {c j ; j = 1, 2} some constants related to the moments of Y T 0 given by Eq. (72).

Truncating this series expansion (at the order 3) gives an approximation of the expectation Eq. (57)

of the form

E t (Y T 0 ) + ∼ 3 j=0 γ j +∞ 0 1 √ 2πc 2 y(y -c 1 ) j e - (y-c 1 ) 2 2c 2
dy , (86)

= 3 j=0 γ j λ j+1 + c 1 3 j=0 γ j λ j , ( 87 
)
where {γ j ; j = 0, . . . , 3}, {λ j ; j = 0, . . . , 4} and c 1 and c 2 are some constants that can be computed explicitly and depend on the first three moments of Y T 0 .

In the previous proposition, to compute the expectation of the random variable one approximates its density by a perturbation of the Gaussian distribution. As mentioned in section 2 and in particular Eq. ( 28), the Wishart process is closely related to the noncentral chi-squared distribution and the Gamma distribution. As a result, it seems more natural to approximate the density involved in the expectation associated with the option price with a perturbation of the Gamma distribution. Such a kind of approximation for the standard affine process appears in Filipović et al. (2013) and thanks to the affine property of the Wishart process, and in particular Lemma 3.11, it can be applied here as the following proposition shows.

Proposition 3.14. Let Y T 0 given by Eq. ( 71) the variable involved in the expectation in Proposition 3.5 with a 3,11 (T 0 , T n ) positive, which supposes that K is small enough (as it often occurs in practice), and a 3,22 (T 0 , T n ) positive by construction then we conclude that there exits k < 0 such that Y T 0 > k.

Using the first three moments of Y T 0 , the following option price approximation holds

E t (Y T 0 ) + = 3 j=0 j i=0 c j ν j,i β ( ᾱ + 1) i+1 Q( ᾱ + i + 2, -βk) + 3 j=0 j i=0 c j ν j,i k(ᾱ + 1) i Q(ᾱ + i + 1, -βk) , ( 88 
)
with {c j ; j = 0, . . . , 3}, {ν j,i ; j, i = 0, . . . , 3}, ᾱ and β some parameters that depend on k and the first three moments of Y T 0 , Q(s, x) is the upper regularized incomplete Gamma function while (x) n is the Pochhamer function (rising factorial) from DLMF (2010, Eq. (5.2.5)).

Given that the proposition above assumes a 3,11 and a 3,22 are positive, Y T 0 remains close to a shifted gamma distribution with shift parameter b 3 (T 0 , T n 1 ) < 0 so that a natural choice for k is k = b 3 (T 0 , T n 1 ).

Notice that even if Propositions 3.13 and 3.14 only use the first three moments, being able to compute higher moments through Lemmas 3.10 and 3.11 remains relevant when pricing certain exotic derivatives. To illustrate that point, we focus in the next section on the constant maturity swap, the constant maturity swap option and the constant maturity swap spread option that do not admit simple pricing formulas. The approximation techniques we just presented apply to these products as well and convincingly illustrate the versatility of the linear-rational Wishart model.

CMS and CMS derivative approximations

To evaluate a CMS, one needs to compute the expectation Eq. ( 66), it can be done exactly thanks to Proposition 3.8 but it requires a one or two dimensional integration depending on whether the Bru condition (i.e., ω = βσ 2 ) is satisfied or not. For standard interest rate models, such as exponential affine models, there is no closed form solution for that expectation and one needs to rely on some approximations (see [START_REF] Brigo | Interest Rate Models -Theory and Practice[END_REF][START_REF] Hanton | CMS, CMS spreads and similar options in the multi-factor HJM framework[END_REF]. It is useful to notice that Eq. ( 66) is the expectation of a ratio of two polynomials of the Wishart process and a series expansion of the denominator enables us to rewrite the problem as an expectation of a series of the Wishart process that when truncated leads to an expectation of a polynomial function of the Wishart process. The moments of the Wishart process being known, thanks to Lemma 3.11, we obtain an approximation of the expectation as the following proposition shows.

Proposition 3.15. The time-t value expectation

E t ( b1 (∆ s ) + tr[a 1 (∆ s )x T j ])(b 4 (T j , T j,ns ) + tr[a 4 (T j , T j,ns )x T j ]) δ s b 5 (T j , T j,ns ) + δ s tr[a 5 (T j , T j,ns )x T j ] ( 89 
)
in Eq. (66) of Proposition 3.6 can be rewritten as

I = E t c 0 + c 1 x 11,T j + c 2 x 22,T j + c 12 x 11,T j x 22,T j + c 11 x 2 11,T j µ 0 + µ 1 x 11,T j , ( 90 
)
and be approximated by

I(M ) = c 0 µ 0 M l=0 (-1) l µ 1 µ 0 l E t x l 11,T j + c 1 µ 0 M l=0 (-1) l µ 1 µ 0 l E t x l+1 11,T j + c 2 µ 0 M l=0 (-1) l µ 1 µ 0 l E t x l 11,T j x 22,T j + c 12 µ 0 M l=0 (-1) l µ 1 µ 0 l E t x l+1 11,T j x 22,T j + c 11 µ 0 M l=0 (-1) l µ 1 µ 0 l E t x l+2 11,T j , ( 91 
)
where M is the truncation order of the series 1/(1 + (µ 1 /µ 0 )x) and the constants c 0 , c 1 , c 2 , c 12 , c 11 , µ 0 and µ 1 , such that 0 < µ 1 /µ 0 < 1, are known.

In the Collin-Dufresne and Goldstein (2002a) swaption price approximation, the key ingredient is the set of moments of the random variable whose law, which is unknown, is needed to compute the expectation associated with the option price. In the CMS spread option case, the underlying random variable is the difference between two swap rates and each one of them is given by a ratio of polynomial functions of the Wishart process. As proposition 3.15 shows each ratio can be approximated by a polynomial function of the Wishart process and therefore the underlying variable of the CMS spread option can be approximated by a polynomial function of the Wishart process.

The moments of the Wishart process being known, the moments of that variable are also known and the option price can be approximated using Collin-Dufresne and Goldstein (2002a)'s result. The following proposition provides the details.

Proposition 3.16. Consider the CMS spread option of Proposition 3.9, and define the expectation in Eq. ( 69) by E t (Y T ) + where Y T = g 1 (x T ) -g 2 (x T ) -K(1 + x 11,T ) with g 1 (.) and g 2 (.) defined by Eq. (70). Define the approximation Y M T of order M of Y T by

Y M T = 2M +4 i=0 ζ i y i , ( 92 
)
with {ζ i ; i = 0, . . . , 2M + 4} constants given in the proof while y i = x i 11,T for i = 0, . . . M + 2 and y i = x 22,T x i-M -2 11,T for i = M + 3, . . . , 2M + 4. The q th moment of Y T can be approximated by the q th moment of Y M T given by

E (Y M T ) q = k 0 +...+k 2M +4 =q q k 0 , . . . , k 2M +4 2M +4 j=0 ζ k j j E 2M +4 l=0 y k l l . ( 93 
)
The expectation

E 2M +4 l=0 y k l l
is known thanks to Lemmas 3.10 and 3.11, so the q th moment of

Y M T is known.
Notice that to compute the moment of order q of Y M T we need the moments of order q(M + 2) of x T . Also, the support of Y T is in R and as Collin-Dufresne and Goldstein (2002a)'s approximation, presented in Proposition 3.13, is based on a perturbation of the Gaussian distribution, it seems more appropriate than the perturbation around the Gamma distribution proposed in Filipović et al. (2013) and presented in Proposition 3.14.

Model implementation

The data

This study considers the Euro market and the data comprise the OIS term structure, the Euribor term structure and the ATM swaption prices for the period 4 October 2011 to 12 March 2012. For the term structures, either OIS or Euribor, we restrict to a maturity smaller than 15 years.11 For the OIS, we use Eonia rates that have floating and fixed legs that pay annually (when the swap's maturity is larger than 1 year). For the Euribor rates, the floating leg pays semi-annually while the fixed leg pays annually. Table I reports the basic descriptive statistics, mean and standard deviation, for each term structure of interest rates. Both term structures are increasing and as expected the Euribor curve is above the OIS curve reflecting its credit risk component. For both curves, long term rates display lower standard deviations.

[ Insert Table I here ] The swaption data is usually quoted in terms of normal or log-normal volatility. In our data set, the normal volatility quotes are converted into prices using the Bachelier formula for at-the-money call options, it is the market practice and the approach used in Filipović et al. (2017, online appendix). Section A.1 of the appendix presents the basic formulas. By definition the at-the-money swaption is the option with a strike equal to the forward swap rate that can be synthesized using two spot swap rates which are quoted (see A.2 of the appendix for the details). Furthermore, for the swaption strike we follow [START_REF] Filipović | Linear-rational term structure models[END_REF] and set it to the model-implied forward swap rate. We consider the swaption maturities 1Y, 2Y, 3Y, 4Y and 5Y and the swap tenors 1Y, 2Y, 3Y, 4Y and 5Y. Table II reports mean and standard deviation of the normal implied volatility for each option. For a given swap tenor, the implied volatility is increasing with the swaption maturity while for a given swaption maturity, the implied volatility is, overall, increasing with the swap tenor for swaption maturities less than or equal to two years and decreasing for swaption maturities greater than or equal to three years. Regarding the standard deviations, for a given swaption maturity, the standard deviation decreases as the swap tenor increases while for a given swap tenor the standard deviation decreases as the swaption maturity increases.

[ Insert Table II here ] 

Calibration results and analysis

For the implementation, we follow the common market practice of performing a daily calibration and rolling it but we take into account the specifics of the model by staging the estimation procedure. More precisely, we proceed as follows. We consider a Wishart process of dimension n = 2 with m diagonal. First, relying on Eq. ( 37), α is estimated as the long-term zero-coupon bond yield. Then the parameters x 11,t , ω 11 and m 11 are estimated by solving the optimization problem

min 1 N N i=1 (P model (t, T i ) -P market (t, T i )) 2 , ( 94 
)
where P market (t, T i ) is the market price at time t of a zero-coupon with maturity T i , obtained by bootstrapping the OIS term structure, whilst P model (t, T i ) stands for the corresponding model price given by Eq. ( 45) and N is the number of zero-coupon prices available for that day. Using the Euribor swap rates along with the OIS zero-coupon bond market prices, we extract the market spreads given by Eq. ( 46) and then calibrate for each day the parameters x 22,t , ω 22 and m 22 by solving the optimization problem

min 1 N N j=1 (A model (t, T j-1 , T j ) -A market (t, T j-1 , T j )) 2 . ( 95 
)
Lastly, using the swaptions we calibrate σ 11 , σ 12 , σ 22 and x 12,t , ω 12 by solving

min 1 N N i=1 1 M i M i j=1 (σ model (t, T i , T i,j ) -σ market (t, T i , T i,j )) 2 , ( 96 
)
with σ model (t, T i , T i,j ) the swaption model (normal) implied volatility for day t, swaption maturity T i and swap tenor T i,j -T i given by Eq. ( 57), σ market (t, T i , T i,j ) stands for the corresponding market (normal) implied volatility while N is the number of swaption maturities and M i is the number of tenors for the i th maturity available for that day.

The mean value, standard deviation, minimum and maximum of the estimated parameters are reported in Table III while Table IV reports the eigenvalues of x, ω and σ in order to provide a sanity check of the estimates. Table V reports the correlations associated with x, ω and σ as well as the long term mean value x∞ given by Eq. ( 12). As per Eq. ( 37), the value of α corresponds to the long term yield and the mean value is equal to 2.4% with a small standard deviation. The mean values of x 11 and x 22 are positive with small standard deviations. The value of x 12 is negative and when combined with x 11 and x 22 leads to matrix (i.e., the matrix with x 11 and x 22 on the diagonal and x 12 on the off-diagonal) that has positive eigenvalues according to Table IV whilst the correlation associated with the matrix x is on average equal to -0.423 as shown in Table V. The mean values of ω 11 and ω 22 are positive with a small standard deviation for ω 11 but a rather large one (compared to the mean) for ω 22 . The value of ω 12 is positive and leads to a matrix ω which has positive eigenvalues according to Table IV, the correlation associated with the matrix ω is on average equal to 0.223 as shown in Table V. We find that for each day m 11 and m 22 are negative with the mean estimated values reported in Table III along with the standard deviations that are small. All the elements of σ are positive with small standard deviations, the eigenvalues of σ reported in Table IV are positive and the correlation associated with the matrix σ is 0.497, that is rather strong. As expected all the matrices belong to S ++ 2 and the correlations associated with these matrices give an indication of the dependency between the factors and therefore the curves in the model. Notice that x∞ given by Eq. ( 12) is a positive definite matrix whose correlation associated with the off-diagonal term is 0.208 according to Table V. There is a change in the correlation sign between the long term mean value of the Wishart process and its initial value.

The calibration errors are reported in Table VI, they are overall very reasonable if we take into account the parsimony of the model. Regarding the standard deviation of the errors, compared to the mean it is small for the OIS curve but rather large for the spread and translates the large standard deviation observed for ω 22 . The rather large (compared to the mean) standard deviation of the spread calibration error is due to the calibration procedure that is sequential. Any variation in the OIS calibration error will impact the spread calibration error that builds upon it.12 For the swaptions, the error is 36.24 with a small standard deviation showing the ability of the model to capture the daily variation of the data.

To the matrices x, ω and σ correspond certain correlation matrices with off-diagonal terms reported in Table V confirming that the model does not have a diagonal structure. In particular, σ 12 = 0 implies that the last term in Eq. (50) does not vanish (i.e., x 11,. , x 22,. t depends linearly on σ 12 according to Eq. 24). Furthermore, x 12 is negative, as the calibrated value or the correlation associated with x shows, combined with σ 12 that is positive, we deduce that the last term in Eq. ( 50) is positive and contributes to increase the covariance between the two curves. Whether that covariance is mainly driven by the first term or the second term of Eq. ( 50) determines the importance of the off-diagonal terms x 12 and σ 12 of the Wishart process and therefore the degree of dependency that exists between the two diagonal terms x 11 and x 22 of the Wishart process or factors and, by extension, the OIS and Euribor-OIS curves.

The importance of off-diagonal terms illustrates the result of [START_REF] Benabid | Wishart stochastic volatility: Asymptotic smile and numerical framework[END_REF] according to which the law of the diagonal terms of the Wishart process for a given time t (i.e., (x 11,t , x 22,t )), which are the only terms involved in the argument of the characteristic function Φ Y (.) in Eq. ( 64) as a 3 (T 0 , T n 1 ) is diagonal, is not the product of two noncentral chi-squared distributions. As a consequence, the off-diagonal terms x 12 , ω 12 and σ 12 of the Wishart process are essential for the model to capture the dependency between the OIS and the Euribor-OIS curves and Table V, which reports the correlations associated with these matrices, clearly shows that they are significant.

To further illustrate the importance of the correlation between the two curves, and the relevance of the Wishart process to capture that dependency, we compare the market correlation with the model correlation. Following Eq. ( 56), let us denote Ā(t, T n 1 ) = n 1 j=1 A(t, T j-1 , T j ) the sum of spreads up to T n 1 involved in a swap contract with maturity T n 1 and P (t, T n 1 ) the OIS zero-coupon bond with maturity T n 1 . We are interested in

Corr(dP (t, T n 1 ), d Ā(t, T n 1 )) , ( 97 
)
the correlation between P (t, T n 1 ) increments and Ā(t, T n 1 ) increments. Thanks to Eq. ( 50), it is known that it can take any sign but also that it is driven by two terms, the first one depending only on the first factor x 11 of the model while the second one depends on the off-diagonal term x 12 . To assess the quality of the linear-rational Wishart model, we compare the market correlation with the model correlation (i.e., the correlation given by the calibrated model, that is the right hand side of Eq. 50) and report the results in Table VII. The market correlation, reported in the line "Market", is positive and declines with the zero-coupon bond/spread maturity as the table shows. The model correlation is given by the right hand side of Eq. ( 50) computed using calibrated parameters and is reported in "Model" in Table VII. Comparing these values allow us to check whether the model correlation is close to the market correlation. 13 The values reported in line "Model" are consistent with those reported in the line "Market" and confirm the model's ability to handle the non trivial dependency that exists between the two curves.

[ Insert Table VII here ] To clarify further the analysis of the model, we decompose the correlation Eq. ( 97) into two terms thanks to the relation Eq. ( 50), the first one depending on x 11,. , x 11,. t named the "diagonal term", and the second one depending on x 11,. , x 22,. t that is linear in x 12 named the "off-diagonal term". It allows us to quantify the contribution of these two terms to the correlation between the OIS zerocoupon bond with a given maturity and sum of spreads up to that maturity. Obviously, summing them leads to the correlations of Table VII. According to Eq. ( 24), x 11,. , x 22,. t depends linearly on x 12 and σ 12 and therefore in a diagonal model (i.e., σ 12 = 0), such as the standard vector affine model of [START_REF] Duffie | A yield-factor model of interest rates[END_REF] used in [START_REF] Filipović | Linear-rational term structure models[END_REF], the correlation is only controlled by the factor x 11 and diagonal parameters. Table VIII contains the values and shows that for all the maturities, the main contributor to the correlation is by far the off diagonal term. Notice that ∂ x 11 G given by Eq. ( 48), which contributes to the diagonal term, is comparable to the spread whereas ∂ x 22 G given by Eq. ( 49), which contributes to the off-diagonal term, is comparable to a 2,22 (t) = e 2m 22 t according to Proposition 3.2. The first term can only be small and any significant correlation necessarily comes from the off-diagonal term. As a result, using a diagonal model, one cannot capture the correlation between the OIS curve and Euribor-OIS curve. In conclusion, the non trivial dependency between the two curves can be handled by the linear-rational Wishart model that provides, compared to the standard vector affine process, an additional factor that is crucial.

[ Insert Table VIII here ] 

Swaption price approximations

Once the model is calibrated, it is relevant to analyze the distribution of the variable Y T 0 of Eq. ( 71) that is involved in the swaption pricing in Eq. ( 57) and whose moments are known and given by Eq. ( 72). Using the characteristic function of that variable, we report in Figures 1-2 its density (solid blue line) for two pairs of maturity/tenor: (1 year, 1 year) and (5 years, 5 years). These pairs are the extremes of the swaption data reported in Table II. All the other pairs look similar to those reported here. The figures show two distributions that are uni-modal and slightly asymmetric. The third order Gaussian approximation of the density given by Eq. ( 85) is reported with a red dash line for the maturity/tenor pair (1 year, 1 year) in Figure 1 and in Figure 2 for the maturity/tenor pair (5 years, 5 years) while the corresponding third order Gamma approximation (Eq. 142 in the Appendix) is given by the black dot line. For the first pair, the two approximate densities are both very close to the true one. This suggests that a fairly accurate swaption price can be obtained using the first three moments. For the second pair, the Gaussian approximation differs more, while the Gamma approximation remains very good. This result is not surprising since the random variable Y T 0 is a shifted mixture of non-central chi-squared random variables. This means that a Gamma distribution is naturally a better starting point for the approximation than the Gaussian.

[ Insert Figure 1 here ] [ Insert Figure 2 here ]

To assess the quality of the Gaussian and Gamma approximations, we follow the details of section 3.5.2 and reprice all the options used to calibrate the model on the basis of the calibrated parameters and the approximation formulas Eqs. ( 87) and ( 88). We restrict to the first three cumulants as we found that taking higher cumulants deteriorates the results. For the Gamma approximation, since we find that for all the days and all the swaptions the parameter a 3,11 (T 0 , T n 1 ) is positive, so that necessarily b 3 (T 0 , T n 1 ) < 0, it is natural to have k = b 3 (T 0 , T n 1 ), a choice we make in the implementation.

For each day we compute the root mean square error between the swaption model prices (i.e., the prices generated by the model using the calibrated parameters for that day) and the price approximations. We reiterate using all the sample and using those daily errors we compute their average and standard deviation that we report in Table IX. Results show that Collin-Dufresne and Goldstein (2002a)'s swaption price approximation performs quite well as the root mean square error is 10.25 basis points and the standard deviation is 8.44. The Gamma approximation performs even better as the mean error is just 1.17 basis points while the standard deviation of the error is 0.99. Again, the superiority of the Gamma approximation is not surprising since, given the market conditions under consideration, the support of Y T 0 is in a half line and therefore the price approximation Eq. ( 88) is better than the approximation Eq. ( 87) as the variable density is approximated by a perturbation of the Gamma distribution.

[ Insert Table IX here ] 

Exotic derivative price approximations

Once the model is calibrated on liquid products such as swaptions, it can be used to price exotic derivatives. We focus on the CMS and CMS spread options as these are important products for which section 3.5.3 provides price approximations that we now evaluate. For the model parameters, we consider those of Table III while for the product parameters in Eq. ( 66) we take T j = 1Y and 5Y , the swap tenor is either 1Y or 5Y and δ s = ∆ s = 0.5. Regarding the truncation level M in Proposition 3.15, we consider M = 3 and M = 5. We benchmark the approximation given by Eq. ( 91) with a Monte-Carlo method with 50000 paths and a time discretisation of 250 days per year. The results reported in Table X confirm the quality of the approximation as evidenced by the small discrepancy between the two methods. Not surprisingly, the error decreases with the truncation level M in Eq. ( 91) and deteriorates with the maturity of the CMS (everything else being equal).

[ Insert Table X here ] Following these encouraging results, we consider the CMS spread option of Proposition 3.9 using the approximation of the underlying variable given by Proposition 3.16 and the Collin-Dufresne and Goldstein (2002a) approximation formula Eq. ( 87) where we restrict to the first three moments/cumulants. The two underlying swaps have a tenor of 1Y and 5Y, respectively, while δ s = ∆ s = 0.5. For the CMS spread option maturities, we take 1Y and 5Y . For the CMS spread option approximation, we consider M = 3 and M = 5. As for the CMS, we compare the price approximation with a Monte-Carlo method with 50000 paths and a time discretisation of 250 days per year and report in Table XI the absolute error between these two prices expressed in percent.

The table confirms the accuracy of the approximation for all the parameters selected. Taking into account the importance of the CMS and CMS spread option, it shows an interesting property of the linear-rational Wishart model as it enables a better integration between the swaption market, which is used to calibrate the model, and the exotic interest rate derivatives market, in this case the CMS and CMS spread option market, as these products can be priced easily using a polynomial approximation that is accurate.

[ Insert Table XI here ] 

Conclusion

We propose a linear-rational multi-curve term structure model based on the Wishart process. Following [START_REF] Filipović | Linear-rational term structure models[END_REF]'s modeling strategy that is based on the potential approach presented in [START_REF] Rogers | The potential approach to the term structure of interest rates and foreign exchange rates[END_REF], we use the Wishart process to build a multi-curve model that allows for a stochastic correlation between the curves. We develop the pricing formulas for interest rate products commonly traded on the market such as interest swaps, swaptions, constant maturity swap (CMS) and CMS spread options. One striking property of the model is that the swaptions have the same computational cost as caps/floors, a property very interesting as these products are commonly used to calibrate interest rate models. Thus, being able to efficiently price these derivatives is essential.

Pricing formulas for more complex interest rate derivatives such as CMS and CMS spread options are also derived but, unfortunately, they do not lead to simple mathematical expressions. Thanks to the affine property of Wishart process, we develop swaption price approximations in the spirit of Collin-Dufresne and Goldstein (2002a) and Filipović et al. (2013) that are accurate and simple to implement. Fortunately, the technique is rather generic and also applies to the CMS and CMS spread options with excellent results. To illustrate the framework, we analyze the model empirical properties, that is we perform a daily calibration of the model using a three-month sample of OIS term structure, Euribor-OIS term structure and ATM swaption prices. The calibration errors are stable and show the model's ability to handle the data fluctuations. The estimated parameters lead to a model that possesses the right statistical properties. The estimated parameters have small standard deviations, the model is therefore robust. What is more, the estimated parameters illustrate the ability of the model to capture the non null relationship that exists between the OIS curve and the Euribor-OIS spread curve that critically relies on the Wishart process properties. Further to this, the calibrated model is then used to price exotic derivatives such as CMS and CMS spread options using the approximation formulas that prove to be also very accurate. Overall, the results clearly underline the linear-rational model based on the Wishart process's ability to encompass interest rate dependencies, calibration of liquid derivatives and pricing of exotic derivatives in an efficient way.

A Appendix

A.1 Black formula for swaption pricing

Let us consider a swap starting at T 0 and ending at T n 1 , with floating leg payment dates (T j ) j=1,••• ,n 1 (and reset dates (T j ) j=0,••• ,n 1 -1 ) and fixed rate leg payment dates given by (t i ) i=1,••• ,m 1 with T j+1 -T j = ∆, t i+1 -t i = δ, t m 1 = T n 1 and t 0 = T 0 . At time t, the floating leg value is given by P (t, T 0 ) -P (t, T n 1 ) + n 1 j=1 A(t, T j-1 , T j ) and the fixed leg value is K m 1 i=1 δP (t, t i ), where K is the fixed rate.

We can therefore derive the time-t forward swap rate, S T 0 ,Tn 1 t as:

S T 0 ,Tn 1 t = P (t, T 0 ) -P (t, T n 1 ) + n 1 j=1 A(t, T j-1 , T j ) δ m 1 i=1 P (t, t i ) . ( 98 
)
Let us denote An T 0 ,Tn 1 t = m 1 i=1 δP (t, t i ) the annuity. The swap rate is a martingale under the swap numeraire (also called annuity numeraire) and if we assume that the swap rate follows a normal process, its dynamic under the swap numeraire can then be written as:

dS T 0 ,Tn 1 t = σdW t ,
with (W t ) t≥0 a one-dimensional Brownian motion. This leads to S

T 0 ,Tn 1 T ∼ N S T 0 ,Tn 1 t , σ √ T -t
the normal distribution with mean S T 0 ,Tn 1 t and standard deviation σ √ T -t. The value V swaption t at time t of a swaption associated with the swap described above, with option expiry date T 0 , is given by (below we simplify the notation by replacing An T 0 ,Tn 1 t with An t ):

V swaption t = An t E t   1 An T 0   P (T 0 , T 0 ) -P (T 0 , T n 1 ) + n 1 j=1 A(T 0 , T j-1 , T j ) -K m 1 i=1 δP (T 0 , t i )   +   , ( 99 
) = An t E t S T 0 ,Tn 1 T 0 -K + , ( 100 
) = m 1 i=1 δP (t, t i )   S T 0 ,Tn 1 t -K N   S T 0 ,Tn 1 t -K σ √ T 0 -t   + σ T 0 -tϕ   S T 0 ,Tn 1 t -K σ √ T 0 -t     , ( 101 
)
where N (.) is the cumulative distribution function of the standard normal variable and ϕ(.) the corresponding Gaussian density. When the swaption is at the money then its price simplifies to

V swaption t = m 1 i=1 δP (t, t i ) T 0 -t 2π σ . ( 102 
)
It is a market practice to quote the swaption price through its normal volatility σ.

A.2 Synthesizing a forward swap with two spot swaps

Following the notation of the swap above, let us consider the swap S T 0 =0,Tn 1 0 (the swap starting at time T 0 = 0 and ending at T n 1 , T 0 = 0 < T n 1 ) with the floating leg reset and payment dates

T 0 , T 1 , • • • , T n 1 , with T j -T j-1 = ∆, and the fixed leg payment dates t 1 , • • • , t m 1 = T n 1 and t i -t i-1 = δ, (T 0 = t 0 = 0).
Similarly, we consider a second swap S T 0 =0,Tn 2 0 with floating leg reset and payment dates T 0 , T 1 , • • • , T n 2 , with T j -T j-1 = ∆, and fixed leg payment dates t 1 , • • • , t m 2 = T n 2 and t i -t i-1 = δ, (with t m 2 = T n 2 , and T 0 = 0). The par swap rates are given by: S

0,Tn 1 0 = 1 -P (0, T n 1 ) + n 1 j=1 A(0, T j-1 , T j ) δ m 1 i=1 P (0, t i ) , ( 103 
) S 0,Tn 2 0 = 1 -P (0, T n 2 ) + n 2 j=1 A(0, T j-1 , T j ) δ m 2 i=1 P (0, t i ) . ( 104 
)
Suppose that T n 1 < T n 2 , then the forward starting swap rate S 

= P (0, T n 1 ) -P (0, T n 2 ) + n 2 j=n 1 +1 A(0, T j-1 , T j ) δ m 2 i=m 1 +1 P (0, t i ) , ( 105 
) = S T 0 ,Tn 2 0 (δ m 2 i=1 P (0, t i )) -S T 0 ,Tn 1 0 (δ m 1 i=1 P (0, t i )) δ m 2 i=m 1 +1 P (0, t i ) . ( 106 
)
For the model calibration purpose, we will consider spot swap rates (t = T 0 = 0). Further, in order to apply the formula (106) above, the start date T n 1 of the underlying swap of the swaption S Tn 1 ,Tn 2 t=0 should be one of the payment dates of the spot swap S T 0 =0,Tn 2 t=0

. Note: Market and model correlations, given by Eq. ( 97), between the OIS zero-coupon bond with maturity T and the sum of spreads up to maturity T for different values for T (in years). "Model" stands for the computation of Eq. ( 97) using the right hand side of Eq. ( 50) and the calibrated parameters solving Eq. ( 96) (along with x 11 and x 22 obtained from Eq. ( 94) and Eq. ( 95), respectively). The data sample period is 4 Oct 2011 to 12 Mar 2012 at daily frequency. 97) into two terms using Eq. ( 50), the first one depending on x 11,. , x 11,. t named the "diagonal term" and the second one depending on x 11,. , x 22,. t , named the "off-diagonal term". The correlation decomposition is performed for different values for T (in years). The calibrated parameters are obtained by solving Eq. (96) (along with x 11 and x 22 obtained from Eq. ( 94) and Eq. ( 95), respectively). The data sample period is 4 Oct 2011 to 12 Mar 2012 at daily frequency. Note: Model price approximations for swaptions. For each day and the model parameters for that day, swaption prices are generated using the exact formula Eq. ( 64) and price approximations using Eq. (87) (Gaussian) and Eq. (88) (Gamma). Those prices are transformed into corresponding normal volatilities and used to compute the root mean square error, expressed in basis points, between the exact price and the price approximation. Then using all the sample the mean and standard deviation of these errors are determined. Note: Absolute error expressed in % between the approximation I(M ) given by Eq. ( 91) and I given by the expectation on the right hand side of Eq. ( 66) or Eq. ( 90) computed using a Monte-Carlo method. The model parameters are those of Table III, the CMS maturity is T j = 1Y or 5Y , the swap tenor is equal to 1Y or 5Y and δ s = ∆ s = 0.5. The Monte-Carlo method is based on 50000 paths and a daily discretisation of the time interval. Note: Absolute error expressed in % between the CMS spread option price approximation given by Proposition 3.16 and the Monte-Carlo price given by Proposition 3.9. The two underlying rates are the swaps with tenors 1Y and 5Y with fixed and floating legs such that δ s = ∆ s = 0.5. The strikes of the options are such that they are at the money. The Monte-Carlo method is based on 50000 paths and a daily discretisation of the time interval. Note: Density of the variable Y defined as Y T 0 in Eq. ( 71) involved in the pricing formula Eq. ( 57) for a swaption with maturity 1Y and tenor 1Y given by the solid blue line (1Y1Y) and in red dash line (1Y1Y approx. Gaussian) the density approximation of Proposition 3.13 with the first three cumulants and in black dot line (1Y1Y approx. Gamma) the density approximation of Proposition 3.14 with the first three cumulants. The parameters used to compute the density are those of 4 Oct 2011.

A.3 Tables

A.4 Figures

Figure Note: Density of the variable Y defined as Y T 0 in Eq. ( 71) involved in the pricing formula Eq. ( 57) for a swaption with maturity 5Y and tenor 5Y given by the solid blue line (5Y5Y), in red dash line (5Y5Y approx. Gaussian) the density approximation of Proposition 3.13 with the first three cumulants and in black dot line (5Y5Y approx. Gamma) the density approximation of Proposition 3.14 with the first three cumulants. The parameters used to compute the density are those of 4 Oct 2011.

A.5 Proofs

Proof of Proposition 2.3. Thanks to the property of the exponential function, when θ 2 = 0 n (with 0 n the n × n null matrix) Eq. ( 8) leads to the system of matrix ODEs (e.g., see Van Loan 1978)

A 11 = mA 11 -2σ 2 A 21 , (107) As a result, e tr(a(t)x 0 ) in Eq. ( 4) after some transformations is given by etr e m t θ 1 t 0 e (t-s)m (-2σ 2 )e (t-s)m ds + I -1

A 12 = mA 12 -2σ 2 A 22 , ( 108 
θ 1 e mt x 0 , (

where etr(A) := e tr(A) .

In the Bru case the term e b(t) in Eq. ( 4) rewrites as Combining Eq. ( 112) and Eq. ( 114) gives the moment generating function of x t .

Consider Eq. ( 3) with θ 2 = 0 n and θ 1 replaced with -θ 1 with θ 1 ∈ S ++ n , it is the Laplace transform of x t that is given by E [etr(-θ 1 x t )] = det I -θ 1 t 0 e (t-s)m (-2σ 2 )e (t-s)m ds -β/2 × etr -e mt x 0 e m t θ 1 I -t 0 e (t-s)m (-2σ 2 )e (t-s)m dsθ 1 -1 (115) and defining ς t as in Eq. ( 26) and ϑ t as in Eq. ( 27) leads to the result after reorganizing the terms.

,

Proof of Proposition 3.6. It is known from Eq. ( 56) that the swap rate is given by S T j,0 ,T j,ns T j = P (T j , T j ) -P (T j , T j,ns ) + ns l=1 A(T j , T j,l-1 , T j,l ) δ s ms k=1 P (T j , t j,k ) .

(116)

The time t-value (with t ≤ T 0 ) of the leg that pays the Euribor rate plus a fixed rate K is given by P (t, T 0 ) -P (t, T n 1 ) + 

with c 0 = b1 (T j -T j ) + tr[a 1 (T j -T j )x T j ] -e -α(T j,ns -T j ) b1 (T j,ns -T j ) + tr[a 1 (T j,ns -T j )x T j ] , c 1 = ns l=1 e -α(T j,l-1 -T j ) b 2 (T j,l-1 -T j ) + tr[a 2 (T j,l-1 -T j )x T j ] ,

which is the announced result after introducing the symbols.

Proof of Proposition 3.8. The expectation Eq. ( 66) can be expressed using Remark 3.7

E t tr[v 1 x T j ] c 0 + tr[v 2 x T j ] =
+∞ 0 e -sc 0 ∂ z Φ(τ, θ, 0, x t )ds| z=0

with θ = zv 1 -sv 2 , τ = T j -t and Φ given by Eq. ( 4). Computing the derivative with respect to z amounts to compute the derivative of a(t, θ, 0) in Eq. ( 7). It leads to As a result, the expectation Eq. ( 67) is known up to an integration of dimension one. In the non Bru case (i.e., ω = βσ 2 ) then b(T j -t) = T j t tr[ωa(u)]du, the derivative of b(T j -t) can also be computed but it involves one additional integration.

Proof of Proposition 3.9. We have S T 1,0 ,T 1,ns 1 T 1 = b 4 (T j , T j,ns 1 ) + tr[a 4 (T j , T j,ns 1 )x T j ] δ s b 5 (T j , T j,ns 1 ) + δ s tr[a 5 (T j , T j,ns 1 )x T j ] , (123)

with b 4 T 1 , T 1,ns 1 , a 4 T 1 , T 1,ns 1 , b 5 T 1 , T 1,ns 1 and a 5 T 1 , T 1,ns 1 are those of Proposition 3.6.

A similar decomposition applies to S T 1,0 ,T 1,ns 2 T 1

. Inserting those expressions in Eq. ( 68) leads to

I = E t ζ T 1 ζ t S T 1,0 ,T 1,ns 1 T 1 -S T 1,0 ,T 1,ns 2 T 1 -K + , = e -α(T 1 -t) 1 + tr[u 1 x t ] E t (1 + tr[u 1 x T 1 ])(S T 1,0 ,T 1,ns 1 T 1 -S T 1,0 ,T 1,ns 2 T 1 ) -K(1 + tr[u 1 x T 1 ]) + ,
and we get the result after defining g i (x T 1 ) for i ∈ {1, 2} as in Eq. ( 70).

Proof of Proposition 3.13. If Y T 0 is given by Eq. ( 71) and suppose its density can be written as the series expansion Eq. ( 85). Denote by {µ n ; n = 1, . . . , 3} the first 3 moments of Y T 0 so that the first three cumulants of Y T 0 are given by

c 1 = µ 1 , ( 124 
)
c 2 = µ 2 -µ 2 1 , ( 125 
)
c 3 = µ 3 -3µ 1 µ 2 + 2µ 3 1 , (126) 
then truncating the series expansion to its first 3 terms leads to 

λ 0 = N c 1 √ c 2 , ( 130 
)
λ 1 = √ c 2 ϕ c 1 √ c 2 , ( 131 
)
λ 2 = c 2 N c 1 √ c 2 -λ 1 c 1 , ( 132 
)
λ 3 = λ 1 (c 2 1 + 2c 2 ) , ( 133 
)
λ 4 = 3c 2 2 N c 1 √ c 2 -λ 1 (c 3 1 + 3c 2 c 1 ) , ( 134) 
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 1 Figure 1: Density of the variable Y with maturity 1Y and tenor 1Y

  )A 21 = -m A 21 , (109)A 22 = -m A 22 , (110)and the initial conditions A 11 (0) = I n , A 12 (0) = 0 n , A 21 (0) = 0 n and A 22 (0) = I n (with I n the n × n identity matrix). Solving these ODEs leads to: A 21 (t) = 0, A 11 (t) = e mt , A 22 (t) = e -m t andA 12 (t) = t 0 e (t-s)m (-2σ2 )e -sm ds .(111)

  etr (log(θ1 A 12 + A 22 ))) -β/2 ,(113) and thanks to the relation det(e A ) = e tr(A) we get e b(t) = det I + θ 1 t 0 e (t-s)m (-2σ 2 )e (t-s)m ds

  θ, 0) = -(θA 12 + A 22 ) -1 θ z A 12 a(t, θ, 0) + (θA 12 + A 22 ) -1 θ z A 11 , (121)with θ z = v 1 . The derivative of b(t, θ, 0) given by Eq. (4) if we assume the Bru case (i.e., ω= βσ 2 ) is d dz b(t, θ, 0) = -β 2 tr θ z A 12 (θA 12 + A 22 ) -1 .(122) 

  d x 11,. , x 11,. t = 4x 11,t (σ 2 ) 11 dt ,

		(19)
	d x 22,. , x 22,. t = 4x 22,t (σ 2 ) 22 dt ,	(20)

d x 12,. , x 12,. t = x 11,t (σ 2 ) 22 dt + 2x 12,t (σ 2 ) 12 dt + x 22,t (σ 2 ) 11 dt , (21) d x 11,. , x 12,. t = 2x 11,t (σ 2 ) 12 dt + 2x 12,t (σ 2 ) 11 dt , (22) d x 12,. , x 22,. t = 2x 12,t (σ 2 ) 22 dt + 2x 22,t (σ 2 ) 12 dt , (23) d x 11,. , x 22,. t = 4x 12,t (σ 2 ) 12 dt ,

  2m 11 t -1), a 1,11 (t) = e 2m 11 t , b 2 (t) = ω 22 2m 22 (e 2m 22 t -1) and a 2,22 (t) = e 2m 22 t . The term a 1,11 (t) is the element (1, 1) of the matrix a 1 (t) in Eq. (34) (the other terms are null) while a 2,22 (t) is the element (2, 2) of the matrix a 2 (t) in Eq. (44) (the other terms are null).

	with b1 (t) = 1+ ω 11 2m 11 (e		
	Proposition 3.3. Assume that n = 2, m is diagonal, u 1 = e 11 and u 2 = e 22 then P (t, T ) of
	Eq. (34) and A(t, T, T + ∆) of Eq. (44) are given by		
	P (t, T ) = e -α(T -t) b1 (T -t) + a 1,11 (T -t)x 11,t 1 + x 11,t	,	(45)
	A(t, T, T + ∆) = e -α(T -t) b 2 (T -t) + a 2,22 (T -t)x 22,t 1 + x 11,t	,	(46)

  Table VI contains the average as well as the standard deviation of the root mean square errors of the calibrations Eqs. (94-96).

	[ Insert Table IV here ]
	[ Insert Table V here ]
	[ Insert Table VI here ]
	[ Insert Table III here ]

  Tn 1 ,Tn 2 0 with floating leg reset and payment datesT n 1 , T n 1 +1 , • • • , T n 2 and fixed leg payment dates t m 1 +1 , • • • , t m 2 = T n 2 can be expressed as a function of S

	T 0 =0,Tn 1 0	and S 0 T 0 =0,Tn 2	as follows
	Tn 1 ,Tn 2 0 S		

  Mean value and standard deviation of the OIS and Euribor term structures (with the maturity expressed in years). Rates are expressed in percentage and the data sample period is 4 Oct 2011 to 12 Mar 2012 at daily frequency. Mean value and standard deviation of the normal implied swaption volatilities (expressed in basis points) for the swaption maturities 1Y, 2Y, 3Y, 4Y and 5Y (in years) and swap tenors (in years). The data sample period is 4 Oct 2011 to 12 Mar 2012 at daily frequency.Note: Mean value, standard deviation, min value and max value of the eigenvalues of the estimated parameters. The data sample period is 4 Oct 2011 to 12 Mar 2012 at daily frequency. Mean value and standard deviation of the daily root mean square errors of the calibrations. OIS error stands for the square root of the error Eq. (94) expressed in basis points, Spread error stands for the square root of the error Eq. (95) expressed in basis points and Swaption error stands for the square root of the error Eq. (96) expressed in basis points. The data sample period is 4 Oct 2011 to 12 Mar 2012 at daily frequency.

	Table I: Descriptive statistics 1 3 5 7 OIS 0.466 0.460 0.713 1.189 1.598 1.995 2.187 2.365 0.5 10 12 15 Std. dev. 0.150 0.138 0.170 0.187 0.174 0.149 0.142 0.140 Maturity Mean Euribor Mean 1.575 1.423 1.423 1.806 2.143 2.464 2.618 2.756 Std. dev. 0.183 0.176 0.189 0.200 0.182 0.159 0.152 0.151 Swap tenor 1 2 3 4 5 3Y Mean 94.74 92.02 91.29 91.41 92.07 Std. dev. 8.27 6.52 5.55 5.07 4.41 Table IV: Eigenvalues of the matrices Note: Table II: Swaption volatilities 1Y Mean First Second 70.72 75.06 79.24 84.12 88.06 Std. dev. Param. Mean Std. dev. Min Max Mean Std. dev. Min 16.34 15.49 13.79 11.31 9.80 x 0.126 0.037 0.046 0.219 4.601 × 10 -3 9.890 × 10 -4 0.002 2Y Mean ω 0.130 0.029 0.068 0.203 4.130 × 10 -4 2.150 × 10 -4 5.000 × 10 -5 9.050 × 10 -4 Max 0.006 85.51 85.83 87.87 90.34 91.49 Std. dev. 12.39 10.43 8.71 7.12 6.36 σ 0.056 0.028 0.014 0.124 0.041 0.024 0.010 0.092
						4Y		
			Mean	96.58 92.52 91.44 90.91 90.63
			Std. dev.	5.74	4.71	4.11	3.49	3.14
						5Y		
			Mean Table V: Correlation associated with parameters 95.04 91.28 89.70 88.97 88.49
			Std. dev.	3.71	3.33	2.98	2.72	2.60
	Param. Mean Std. dev. x -0.423 0.124 ω 0.223 0.190 σ 0.497 0.118 x∞ 0.208 0.183 Note: Table III: Calibrated parameters Min -0.837 -0.258 Max 0.063 0.885 0.292 0.754 0.058 0.867 Note: Mean value, standard deviation, min value and max value of the correlation associated with
	the estimated parameters with x∞ defined in Eq. (12). The data sample period is 4 Oct 2011 to 12
	Param. Mar 2012 at daily frequency. Mean	Std. dev.			Min	Max
		α	0.024	1.440 × 10 -3		0.021	0.027
		x 11	0.125		0.037			0.045	0.218
		x 12	-1.121 × 10 -2 4.038 × 10 -3 -2.713 × 10 -2 -6.675 × 10 -3
		x 22	5.745 × 10 -3 6.590 × 10 -4		0.004	0.006
		ω 11 ω 12	0.130 1.797 × 10 -3 2.011 × 10 -3 1.950 × 10 -4 0.029 0.068 Table VI: Calibration errors	0.203 0.011
		ω 22	4.660 × 10 -4 2.320 × 10 -4 5.026 × 10 -5 OIS error Spread error Swaption error 9.610 × 10 -4
		m 11	-0.375 Mean	115.04	0.016	3.58	-0.416	36.24	-0.352
		m 22	-0.181 Std. dev.	8.63	0.053	2.11	-0.284	4.27	-0.069
		σ 11	0.050		0.013			0.019	0.121
	Note:	σ 12	0.024	6.904 × 10 -3		0.009	0.038
		σ 22	0.047		0.085			0.020	0.067
	Note: Mean value, standard deviation, min value and max value of the calibrated parameters obtained
	by rolling the daily calibration. The data sample period is 4 Oct 2011 to 12 Mar 2012 at daily
	frequency.							

Table VII :

 VII Market vs. model correlations

	Maturity	1	3	5	7	10	12	15
	Market	0.514 0.270 0.241 0.174 0.184 0.181 0.128
	Model	0.353 0.342 0.322 0.301 0.272 0.256 0.235

Table VIII :

 VIII Correlation decomposition

	Maturity	1	3	5	7	10	12	15
	Diagonal term	0.025 0.025 0.025 0.025 0.024 0.024 0.024
	Off-diagonal term 0.328 0.316 0.296 0.275 0.247 0.231 0.211
	Note: Decomposition of the correlation Eq. (					

Table IX :

 IX Price approximations

	Statistics Gaussian Gamma
	Mean	10.25	1.17
	Std. dev.	8.44	0.99

Table X

 X 

	: CMS approximation	
	Tenor 1Y	Tenor 5Y
	M = 3 M = 5 M = 3 M = 5
	Maturity 1Y 0.129	0.009	0.064	0.002
	Maturity 5Y 0.130	0.059	0.093	0.061

Table XI :

 XI CMS spread option approximation

	M = 3 M = 5
	Maturity 1Y 0.640	0.632
	Maturity 5Y 1.004	0.613

  2: Density of the variable Y with maturity 5Y and tenor 5Y
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  while the time t-value (with t ≤ T 0 ) of the leg that pays the swap rate is given byP (T j , T j ) -P (T j , T j,ns ) + ns l=1 A(T j , T j,l-1 , T j,l ) δ s ms k=1 P (t i , t i,k )Taking into account Eq. (34) E T j e -αT j+1 ζ T j+1 = e -αT j+1 ( b1 (∆ s ) + tr[a 1 (∆ s )x T j ]), the above expectation leads to determine

			n 1			n 1
				A(t, T j-1 , T j ) + ∆K	P (t, T j ) ,	(117)
			j=1		j=1
		E t	  n 1 -1 j=0	ζ T j+1 ζ t	∆S T j T j ,T j,ns	  ,	(118)
	and taking into account Eq. (116), it leads to evaluate	
	E t	ζ T j+1 ζ t					.	(119)
		( b1 (∆			
		E t				

s ) + tr[a 1 (∆ s )x T j ])(c 0 + c 1 ) δ s ms k=1 b1 (t j,k -T j ) + tr[a 1 (t j,k -T j )x T j ]

,

We refer the reader to[START_REF] Fonseca | A flexible matrix Libor model with smiles[END_REF],[START_REF] Moreni | Parsimonious HJM modelling for multiple yield curve dynamics[END_REF],[START_REF] Morino | Nonlinear Economic Dynamics and Financial Modelling: Essays in Honour of Carl Chiarella[END_REF],Crépey et al. (2015a),[START_REF] Grbac | Affine LIBOR models with multiple curves: Theory, examples and calibration[END_REF],[START_REF] Grasselli | A flexible spot multiple-curve model[END_REF],[START_REF] Cuchiero | A general HJM framework for multiple yield curve modeling[END_REF],[START_REF] Cuchiero | Affine multiple yield curve models[END_REF] or[START_REF] Alfeus | A consistent stochastic model of the term structure of interest rates for multiple tenors[END_REF] just to name a few.

For other applications of the potential theory to finance see[START_REF] Jin | Equilibrium positive interest rates: A unified view[END_REF] and[START_REF] Rogers | ONE FOR ALL the potential approach to pricing and hedging[END_REF].2Electronic copy available at: https://ssrn.com/abstract=4176102

The data used inCrépey et al. (2015b) are also used inCrépey et al. (2015a) but they need to rely on[START_REF] Singleton | Pricing coupon-bond options and swaptions in affine term structure models[END_REF] to price swaptions as the model is of the standard exponential affine type.

See https://stats.bis.org/statx/srs/table/d7

Electronic copy available at: https://ssrn.com/abstract=4176102

By definition, wt is an (n × n) matrix Brownian motion if and only if ∀u, v ∈ R n , (wtu, wtv) is a vector Brownian motion with covariance structure covt [dwtu, dwtv] = u vIndt with In the n × n identity matrix.

Note that[START_REF] Filipović | Linear-rational term structure models[END_REF] suggests to consider a function of the form e -αt (a0 + a1x11,t) with a0 > 0 and a1 > 0 but for identification reasons, clearly explained inFilipović et al. (2017, Theorem 5), one needs to impose a0 = 1 and a1 = 1.

Filipović et al. (2017, online appendix) suggest to specify the right hand side of Eq. (41) as e -αT (1 + x22,T ) but we found that specification rather inconvenient as the left hand side of Eq. (41) can be arbitrarily small, if for example the spread is small, and as x22,t is a positive process it can lead to calibration problems. In fact, the specification Eq. (41) matches the one ofRogers (1997, Example 3.7).

That property holds in the more general case n > 2.

We remind the reader that T0 is the current time in that particular case.

We put aside Bermudan swaptions that lead to an optimal exercise problem.

The current framework is designed to generate positive interest rates. Indeed[START_REF] Rogers | The potential approach to the term structure of interest rates and foreign exchange rates[END_REF] generalizes the work of[START_REF] Constantinides | A theory of the nominal term structure of interest rates[END_REF] that focuses on nominal interest rates, whilst they have been close to zero and even negative during a recent period. This forces us to consider the period at the beginning of 2012. Furthermore, during that period the Euribor-OIS spread was particularly large and volatile therefore appropriate to test a model designed to handle such dependency.

Notice that it seems to affect more ω22 than x22.

When analyzing the right hand side of Eq. (50) ω12 is not needed.

with N (.) and ϕ(.) the cumulative normal distribution and normal distribution density, respectively.

Proof of Proposition 3.14. If Y T 0 is given by Eq. ( 71) and as a 3,11 is positive for K small enough while a 3,22 > 0 then we conclude that there exists k such that Y T 0 > k. Furthermore, we should even have k < 0 as otherwise the option could never end out of the money. Then if we denote Z = Y T 0 -k we can rewrite the option price Eq. ( 57) as

with

given by Eq. ( 72). Notice that as Z > 0 by construction then µ Z 1 > 0 and we approximate its distribution by a perturbation of the Gamma distribution following Filipović et al. (2013). The density of

can be approximated at order three by

with w the auxiliary density function w(z) = z ᾱe -z Γ(1+ ᾱ) , that is the Gamma distribution with shape 1+ ᾱ and rate 1, some known constants c j , and {H j | j = 0, . . . , 3} an orthonormal basis of polynomials. Filipović et al. (2013) prove that the functions H j are given by H j = Hj Hj (z) , with Hj (z) = j i=1 (i+ ᾱ) j! and

Following Filipović et al. (2013, Section 7.1), we choose ᾱ =

1 > 0 then the coefficients {c i ; i = 0, . . . , 3} are given by: c 0 = 1, c 1 = 0, c 2 = 0 and

Eventually, the density of Z, taking into account the change of variable

and therefore, by rewriting H j (z) = j i=0 ν j,i z i , we get

where we used the condition β > 0 while Γ(s, x) stands for the upper incomplete Gamma function.

To avoid overflows with the Gamma function, we use its regularized version so that

and thank to the relations Q(s, x) = Γ(s, x)/Γ(s) and (x) n = Γ(x + n)/Γ(x) where (x) n is the Pochhamer function (rising factorial) we deduce the result.

Proof of Proposition 3.15. Under the assumption of Proposition 3.3 the integrand in Eq. ( 89) simplifies to tr[a 1 (∆)x T j ] = a 1,11 (∆)x 11,T j , tr[a 4 (T j , T j,ns )x T j ] = a 4,11 (T j , T j,ns )x 11,T j + a 4,22 (T j , T j,ns )x 22,T j , δ s tr[a 5 (T j , T j,ns )x T j ] = δ s a 5,11 (T j , T j,ns )x 11,T j , and therefore Eq. ( 89) rewrites as Eq. ( 90) with

A look at µ 0 and µ 1 shows that 0 < µ 1 /µ 0 < 1. Rewriting

leads to the result after truncating the series.

Proof of Proposition 3.16. Using the series expansion 1/(1 + (µ 1 /µ 0 )x) = +∞ l=0 (-1) l ( µ 1 µ 0 ) l x l and truncating it at the order M gives an approximation of Y T by Y M T defined by

where

with c i 0 , c i 1 , c i 2 , c i 12 , c i 11 , µ i 0 and µ i 1 are those of Proposition 3.15 (each function g i leads to a set of constants). Rewrite Eq. ( 149) as

with the first M + 2 terms given by v l x l 11,T and the last M + 2 terms given by u l x 22,T x l 11,T . Using the standard multinomial expansion we get

and therefore taking the expectation of Eq. ( 160) leads to the announced result.