Luca Foppiano 
  
Guillaume Lambard 
email: bard.guillaume@nims.go.jp
  
Toshiyuki Amagasa 
  
Masashi Ishii 
email: ishii.masashi@nims.go.jp
  
Mining experimental data from Materials Science literature with Large Language Models

This study is dedicated to evaluating the capabilities of advanced large language models (LLMs) such as GPT-3.5-Turbo, GPT-4, and GPT-4-Turbo in the extraction of structured information from scientific documents within the field of materials science. We introduce a novel methodology for the comparative analysis of intricate material expressions, emphasising the standardisation of chemical formulas to tackle the complexities inherent in materials science information assessment. To this end, we primarily focus on two critical tasks of information extraction: (i) a named entity recognition (NER) of studied materials and physical properties and (ii) a relation extraction (RE) between these entities. The performance of LLMs in executing these tasks is benchmarked against traditional models based on the BERT architecture and rule-based approaches. For NER, LLMs fail to outperform the baseline with zero-shot prompting and exhibit only limited improvement with few-shot prompting. However, for RE, a GPT-3.5-Turbo fine-tuned with the appropriate strategy outperforms all models, including the baseline. Without any fine-tuning, GPT-4 and GPT-4-Turbo display remarkable reasoning and relationship extraction capabilities after being provided with merely a couple of examples, surpassing the baseline. Overall, the results suggest that although LLMs demonstrate relevant reasoning skills in connecting concepts, for tasks requiring extracting complex domain-specific entities like materials, specialised models are currently a better choice.

Introduction

Mining experimental data from literature has become increasingly popular in materials science due to the vast amount of information available and the need for accelerating materials discovery using data-driven techniques. Data for machine learning in materials science is often sourced from published papers, material databases, laboratory experiments, or first-principles calculations [START_REF] Xu | Small data machine learning in materials science[END_REF]. The introduction of big data in materials research has led to a shift from traditional random techniques to more efficient, data-driven methods. Data mining of computational screening libraries has been shown to identify different classes of strong CO 2 -binding sites, enabling materials to exhibit specific properties even in wet flue gases [START_REF] Boyd | Data-driven design of metal-organic frameworks for wet flue gas co2 capture[END_REF]. Machine learning techniques have been employed for high-entropy alloy discovery, with a focus on probabilistic models and artificial neural networks [START_REF] Rao | Machine learning-enabled high-entropy alloy discovery[END_REF]. However, the use of advanced machine learning algorithms in experimental materials science is limited by the lack of sufficiently large and diverse datasets amenable to data mining [START_REF] Zakutayev | An open experimental database for exploring inorganic materials[END_REF]. A present central tenet of data-driven materials discovery is that with a sufficiently large volume of accumulated data, and suitable datadriven techniques, the process of designing a new material could be more efficient and rational [START_REF] Huan | A polymer dataset for accelerated property prediction and design[END_REF]. The materials science field is indeed moving away from traditional manual, serial, and human-intensive work towards automated, parallel, and iterative processes driven by artificial intelligence, simulation, and experimental automation [START_REF] Edward | Accelerating materials discovery using artificial intelligence, high performance computing and robotics[END_REF][START_REF] Huber | Machine learning and data mining in materials science[END_REF]. But, materials science literature is a vast source of knowledge that remains relatively unexplored with data mining techniques [START_REF] Park | Advances in scientific literature mining for interpreting materials characterization[END_REF], especially for the reason that materials science data come in diverse forms such as unstructured textual content and structured tables and graphs, adding complexity to the extraction process. As a result, many projects still depend nowadays on manual data extraction. While there exist extensive structured databases containing accumulated experimental data [START_REF] Chittam | Big data mining and classification of intelligent material science data using machine learning[END_REF], they remain limited in number and extremely costly due to the amount of human labour involved [START_REF] Ma | Data augmentation in microscopic images for material data mining[END_REF].

Additionally, addressing issues related to the quality and meaning of materials science data often demands a curation step assisted by a sub-domain knowledge often specific to the approached sub-field of materials science, e.g. polymers, metal-organic frameworks, high-entropy alloys, etc, with their own physical and chemical phenomena, methods and protocols, terminology and jargon. For instance, the classification of superconductors can be complex and sometimes arbitrary, blending compound-based classes like cuprates [START_REF] Ivan | Microstructure and properties of high-temperature superconductors[END_REF] and iron-based [START_REF] Hosono | Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides[END_REF] materials with unconventional classes like heavy fermions [START_REF] Mydeen | Electron doping of the iron-arsenide superconductor cefeaso controlled by hydrostatic pressure[END_REF]. The classification of superconductors can also be based on phenomena such as the Meissner effect, which describes how superconductors expel magnetic fields [START_REF] Bardeen | Theory of superconductivity[END_REF]. Superconductors can be divided into two classes according to how this breakdown occurs, the so-called type-I and type-II superconductors. As these classifications are not mutually exclusive certain materials could potentially fall into multiple categories, for example, a material can be both a cuprate and a type-II superconductor, the classification of superconductors is a complex task that demands an extensive knowledge of the developments and current state-of-the-arts. Moreover, substantial confusion may occur due to the cross-domain polysemy of used words, terms and symbols. In different sub-domains, the same term can take on specific nuances or meanings unique to a given sub-domain. This phenomenon is common in language and can lead to misunderstandings if the context of the sub-domain is not clear. For instance, the acronym "TC" or "T c " will be employed for denoting a "Temperature Curie" or a "superconducting critical temperature", respectively. These sub-domain-specific conventions pose a significant challenge when attempting to effectively create structured datasets across various sub-domains.

Meanwhile, the advent of large language models (LLMs) has inaugurated a new technological era, marked by extraordinary potential. These models not only excel in linking diverse concepts but also in engaging in sophisticated conversational reasoning [START_REF] Zhang | One small step for generative ai, one giant leap for agi: A complete survey on chatgpt in aigc era[END_REF][START_REF] Yao | Tree of thoughts: Deliberate problem solving with large language models[END_REF][START_REF] Valmeekam | On the planning abilities of large language models-a critical investigation[END_REF][START_REF] Sun | Pearl: Prompting large language models to plan and execute actions over long documents[END_REF]. Compared to Small Language Models (SLMs), LLMs offer the possibility of integrating large corpus of textual data at training, with often the ability to ingest large textual inputs at inference with a context window ranging from 4,096 to 128,000 tokens for GPT-3.5-Turbo and GPT-4-Turbo [START_REF] Openai | [END_REF], respectively (at the time of this writing). By comparison, BERT-based encoders are limited to only 512 tokens, where 1,000 tokens are about 750 English words. Furthermore, the interaction with LLMs via prompts, i.e., tailored instructions, changes the construction paradigm of programmatic solutions which becomes more accessible, flexible and suitable to human operators. Nevertheless, the actual capabilities of LLMs in reasoning, understanding and recognition are still under constant evolution and evaluation.

Previous studies in Information Extraction (IE) have shown evidence of LLMs proficiency in general tasks, presenting a valuable opportunity to develop more flexible Text and Data Mining (TDM) processes, but they fall short in areas where specific knowledge is required [START_REF] Kocoń | ChatGPT: Jack of all trades, master of none[END_REF]. In particular, LLMs are on par with SLMs in most of the discriminative tasks such as named entity recognition (NER), relation extraction (RE) and event detection (ED) in general domains [START_REF] Ma | Large language model is not a good few-shot information extractor, but a good reranker for hard samples![END_REF], in history [START_REF] González-Gallardo | can chatgpt identify entities in historical documents?[END_REF], and biology [START_REF] Moradi | Gpt-3 models are poor few-shot learners in the biomedical domain[END_REF]. Other works testing chemistry capabilities found that GPT-4 understands various aspects of chemistry, including chemical compounds [START_REF] Hatakeyama-Sato | Prompt engineering of gpt-4 for chemical research: what can/cannot be done?[END_REF]; however, its knowledge is general and lacks methods for learning through retrieving recent literature [START_REF] Hatakeyama-Sato | Using gpt-4 in parameter selection of polymer informatics: improving predictive accuracy amidst data scarcity and 'ugly duckling'dilemma[END_REF].

Therefore, this study aims to assess LLMs' ability to comprehend, manipulate, and reason with complex information that demands substantial background knowledge, as in materials science.

The objectives of this work can be summarised with the two following questions:

• Q1: How effectively can LLMs extract materials science-related information?

• Q2: To what extent can LLMs use reasoning to relate complex concepts?

We first classify the fundamental components of the materials science knowledge directed towards the design of novel materials with functional properties into two main entity classes: material and property expressions. Properties, e.g., a critical temperature of 4K, are expressed using measurements of physical quantities. They exhibit a structured format, including modifiers (e.g., "between", "less than", "approximately", or symbols such as "¿" or " "), values, and units, with a wide range of potential values. In contrast, material definitions are conceptually loose and often depend on the specific domain. They may require a substantial amount of accompanying text for a comprehensive description, encompassing details, e.g., compositional ratios, doping agent and ratio, synthesis protocol, process, and additional adjunct information. From a fundamental compositional standpoint, materials are defined by their chemical formula. However, in practice, authors in literature may frequently employ substantives such as commercial names, well-known terms, or crafted designations to describe samples, all of which streamline information in their research papers. Nonetheless, conveying such definitions can unambiguously be challenging.

To address Q1, we evaluate the LLM's performance on NER tasks related to materials and properties extraction. For each task, we choose a pertinent dataset and analyse the performance of each LLM.

We address Q2 by assessing the capability to establish connections between a predefined set of entities and extract relationships within a given context.

In both cases, we compare the outcomes against a baseline determined by scores (Precision, Recall and F1-score) achieved on the same datasets by either a BERTbased encoder or a rule-based algorithm we have developed in a previous work [START_REF] Foppiano | Automatic extraction of materials and properties from superconductors scientific literature[END_REF][START_REF] Foppiano | Automatic identification and normalisation of physical measurements in scientific literature[END_REF]. Our requirement for the models to be capable of generating output in a valid JSON (JavaScript Object Notation) format is part of our efforts to extract structured databases (Section 2.1.1).

The evaluation of generative models brings an additional complexity. Traditional SLMs implementations for solving NER tasks are based on sequence labelling algorithms. They classify each token in the input stream with a limited number of labels, returning a sequence that fits perfectly the original input (same number of tokens and structure). Evaluating their performance against expected datasets involves a straight-forward comparison of values. Soft-matching techniques can be employed to overlook minor discrepancies. However, with generative models, the output tokens may be structured in ways that significantly differ from the original input sequence. In more general scenarios, semantic models that compare the vectorised representations of two sequences can be utilised [START_REF] Reimers | sentence-bert: sentence embeddings using siamese bertnetworks[END_REF]. Nevertheless, when dealing with concepts like material expressions, a specialised approach is needed. As an illustration, the terms "solar cell" and "solar cells" represent identical concepts, yet the materials denoted by "Ca" (Calcium) and "Cr" (Chromium) are entirely distinct, highlighting a difference of just one letter between the two examples. For this reason, we introduce a novel evaluation method for material names, which involves normalising materials to their chemical formulas before conducting a pairwise comparison of each element. This approach provides a more meaningful and context-aware assessment of the model's performance.

We summarise our contributions as follows:

• We designed and ran a benchmark for LLMs on information extraction, in particular NER of materials and properties. This contribution addresses Q1. • We evaluated LLMs on RE on entities in the context of materials science to address Q2. • We propose a novel approach for evaluating Information Extraction tasks applied to materials entities which leverage "formula matching" via pairwise element comparison.

Method

We chose three OpenAI LLM models reported with their specific names for performing API calls: GPT-3.5-Turbo (gpt-3.5-turbo-0611), GPT-4 (gpt-4), and GPT-4-Turbo (gpt-4-0611-preview). The consideration of open-source LLMs has been deferred to future work due to their present limited capability to generate output in a valid JSON format (Section 2.1.1, necessitating a more in-depth investigation.

Our evaluation is carried out with different strategies: zero-shot prompting, few-shot prompting and fine-tuning (or instruction-learning). Few-shot prompting refers to the model's ability to adapt and perform a new task with minimal examples or prompts, while zero-shot prompting denotes the model's capability to generalise to tasks it has not been explicitly trained on, emphasising transfer learning within the language domain. Finally, fine-tuning involves adjusting the parameters of a pre-trained model on a specific task or domain using a smaller, task-specific dataset to enhance its performance for that particular application.

We selected two datasets for evaluation: MeasEval [START_REF] Harper | SemEval-2021 task 8: MeasEval -extracting counts and measurements and their related contexts[END_REF], a SemEval 2021 task of extracting counts, measurements, and related context from scientific documents and Su-perMat, an annotated and linked dataset of research papers on superconductors [START_REF] Foppiano | Supermat: construction of a linked annotated dataset from superconductors-related publications[END_REF]. SuperMat contains both materials and properties and for copyright reasons is not publicly distributed. This reduces the risk that its annotations had been used during the pre-training of any of the LLMs.

Baseline scores were established using a SciBERT-based [START_REF] Beltagy | SciBERT: A pretrained language model for scientific text[END_REF] encoder and RE rulebased algorithm [START_REF] Foppiano | Automatic extraction of materials and properties from superconductors scientific literature[END_REF] for material-related extractions. Grobid-quantities [START_REF] Foppiano | Automatic identification and normalisation of physical measurements in scientific literature[END_REF] served as the baseline for NER on properties extraction evaluated against MeasEval.

Evaluation scores, encompassing Precision, TP/(TP + FP), Recall, TP/(TP + FN)), and F1-score, 2 Precision × Recall/(Precision + Recall), were derived from pairwise comparisons between predicted and expected entities, where TP, FP and FN are the true positive, false positive and false negative instances, respectively. Precision gauges accuracy, recall assesses information capture, and F1-Score is their harmonic mean.

The presented evaluations condense average F1 scores and their standard deviation over three extraction runs. Detailed values are available in the Supplementary Materials section.

Named Entities Recognition

The NER task consists of identifying relevant entities: materials, expressed through a multitude of expressions [START_REF] Foppiano | Supermat: construction of a linked annotated dataset from superconductors-related publications[END_REF], or properties, expressed as measurements of physical quantities [START_REF] Foppiano | Automatic identification and normalisation of physical measurements in scientific literature[END_REF].

We calculated the evaluation scores using four different matching approaches, although we will present only the most relevant to the task (leaving the complete tables1 in the supplementary materials section):

• strict: Exact matching • soft Matching using Ratcliff/Obershelp2 with a threshold at 0.9 3• Sentence BERT Comparison using semantic similarity of sequences using Sentence BERT with a cross-encoder [START_REF] Reimers | sentence-bert: sentence embeddings using siamese bertnetworks[END_REF], applying a threshold set at 0.9 3 • formula matching Our novel method compares material expressions via formula normalisation and element-by-element exact matching.

Prompts for interacting with LLMs are defined by two components: system and user prompts. The system prompt is the initial instruction guiding the model's output generation, defining the task or information sought, while the user prompt is the input from the user, specifying their request and shaping the model's response.

The system prompt below was fixed across all tasks and was specifically crafted to prevent the making of non-existing facts and favour standardised answers (e.g., "I don't know", "None") in case of inability to respond.

Listing 1 Generic system prompt common to all requests

Use the following pieces of context to answer the user's question. If you don't know the answer, just say that you don't know, don't try to → make up an answer. ----------------{text} The users' prompts for NER with zero-shot prompting were described including the definitions and examples from the SuperMat4 and MeasEval5 annotations guidelines, respectively.

Below are the user prompt templates used for both materials and properties extraction:

Listing 2 User prompt designed for extracting materials and properties. They are separated by "--".

What are the superconductor materials mentioned in the text? Only provide the mention of the materials. Avoid repetition.

The material can be expressed as follows: -chemical formula with variables not substituted, like La(1-x)Fe(x), -chemical formula with substitution variables like Zr 5 X 3 (X = Sb, Pb → , Sn, Ge, Si and Al) -with complete or partial abbreviations like (TMTSF) 2 PF 6, -doping rates are represented as variables (x, y or other letters)

→ appearing in the material names. These values can be used to → complement the material variables (e.g. LaFexO1-x). -doping rates as percentages, like 4% Hdoped sample or 14% Cu doped → sample -material chemical form with no variables e.g. LaFe03NaCl2 where the → doping rates are included in the name -chemical substitution or replacements, like (A is a random variable, → can be any symbol): A = Ni, Cu, A = Ni, Ni substituted (which → means A = Ni) -chemical substitution with doping ratio, like (A is a random variable, → can be any symbol): A = Ni and x = 0.2

If you don't know the answer, just say you don't know, don't try to make → up an answer.

-----Quantity is either a Count, consisting of a value, or a Measurement, consisting of a value and usually a unit. A Quantity can additionally → include optional Modifiers like tolerances. Include relevant text that indicates the application of a modifier, such → as "between" "less than" "approximately", or symbols such as ">" or "˜" if they are contiguous with the span.

→ Ignore them if they are separated by additional text.

Example: "The soda can's volume was 355 ml", the quantity is "355 ml".

Extract all the Quantities in the text.

Then, we applied a few-shot prompting technique by incorporating in the users' prompt template above a set of suggestions extracted from the text (see Listing 3 below) using the respective SLMs based on the fine-tuned SciBERT-encoder for materials and properties, i.e., grobid-superconductors [START_REF] Foppiano | Automatic extraction of materials and properties from superconductors scientific literature[END_REF] and grobid-quantities [START_REF] Foppiano | Automatic identification and normalisation of physical measurements in scientific literature[END_REF], respectively. Also, as these suggestions originate from another model, they may not be entirely accurate; hence, we emphasised in the prompts that they only serve as examples or hints that may be ignored by the LLMs. 

Output format

For all tasks, we required the output to be formatted using a valid JSON document. We justify this decision for three main reasons: a) The responses need to be machinereadable so that the de-serialisation from JSON to objects in many programming languages becomes a trivial operation (e.g., Python, JavaScript). b) The JSON schema can be defined through a documented format regardless of the programming language or platform. Finally, c) the JSON format, being an open standard, can be used by anyone and does not require reinventing the wheel by re-implementing from scratch any of the transformation steps.

The JSON output was obtained by adding formatting instructions in the user's prompt based on the expected output data model, for which different concepts were described in different ways (e.g., properties are described as a value and an optional unit). We used the implementation provided by the LangChain library6 of which one example is illustrated in the following listing.

Listing 4 Example of formatting instruction to a valid JSON format

The output should be formatted as a JSON instance that conforms to the → JSON schema below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", " → description": "a list of strings", "type": "array", "items": {" → type": "string"}}}, "required": ["foo"]} the object {"foo": ["bar", "baz"]} is a well-formatted instance of the → schema. The object {"properties": {"foo": ["bar", "baz"]}} is not → well-formatted.

Here is the output schema: ''' {"properties": {"material": {"title": "Material", "description": " → Material or sample name, chemical formula, acronym. Include → everything that describes the material.", "type": "string"}, " → material_extra_info": {"title": "Material Extra Info", " → description": "Additional information about the material", "type → ": "string"}}, "required": ["material"]} '''

Formula matching

Matching materials poses challenges with generative models; while encoder and sequence labelling models maintain unchanged outputs from inputs, evaluating generative models can be complex due to potentially divergent yet semantically equivalent outputs. Previous works [START_REF] Taylor | Galactica: A large language model for science[END_REF] resort to manual evaluation due to these challenges. Notably, as of the time of writing, no specialised approach tailored for material expressions existed. Utilising Sentence BERT, trained on general text, does not ensure accurate material embeddings, raising concerns about the meaningfulness of final matches. To address issues arising from variable sets and to enhance evaluation precision, we propose a novel method named formula matching, involving element-by-element pairwise comparisons on normalised formulas for extracted material denominations. This approach extends strict matching and is activated only when the two input strings differ. In such instances, as depicted in Figure 1, the material expressions slated for comparison undergo normalisation to their formulas using a material parser developed in our prior work [START_REF] Foppiano | Automatic extraction of materials and properties from superconductors scientific literature[END_REF] (Figure 1 top). The material parser is adept at handling noisy material expressions, striving to parse them effectively. The anticipated output includes a structured representation with the chemical formula presented both as a raw string and as a dictionary, detailing elements and their respective amounts. Subsequently, these structures are compared element by element, as depicted in Figure 1 bottom. The summarised evaluation scores described in Section 3.2 are calculated using the formula matching.

Relation Extraction

The baseline is established by a rule-based algorithm from our previous work [START_REF] Foppiano | Automatic extraction of materials and properties from superconductors scientific literature[END_REF] which was evaluated with SuperMat and for which we report the aggregated result in Section 2.2.

The prompts are designed by providing a list of entities and requesting the LLM to group them based on their relation. Unlike the NER task, the LLM is expected to reuse information passed in the prompt to compose the response: non-matching information is considered incorrect. The summarised scores in Section 3.3 are obtained with strict matching.

The previous considerations remain applicable to both system and user prompts, with the task description reiterated within both the system and user prompts.

Listing 5 System prompt for RE modified by emphasising the tasks

You are a useful assistant, who knows about materials science, physics, → chemistry and engineering. You will be asked to compute relation extraction given a text and lists → of entities. If you are not sure, don't try to make up your answer, just answer "None → ".

We add specific rules to avoid the creation of invalid groups of relations: responses containing entities that are not supplied in the user prompt, or empty relation blocks.

The prompt for few-shot prompting was assembled by injecting one example with two materials listed between two "---" in the zero-shot prompt:

Listing 6 Few-shot prompting for extracting relations from lists of entities Given a text between triple quotes and a list of entities, find the → relations between entities of different classes: """ {text} """ {entities} --------Example:

The researchers of Mg have discovered that MgB2 is superconducting at 29 → K at ambient pressure.

entities: materials: MgB2, Mg tcs: 29K pressure: ambient pressure Result: material: MgB2, tc: 29K, pressure: ambient pressure --------Apply strictly the following rules:

-if the material is not specified, ignore the relation block, -if tc is not specified in absolute values, ignore the relation → block

Shuffled vs non-shuffled evaluation

The list of entities supplied to the Language Model (LLM) might be derived based on their order of appearance, creating a scenario where a model generating relations sequentially may achieve an inflated score that does not accurately reflect its relational inference capabilities. To address this, we evaluate each model for RE using two strategies: a non-shuffled evaluation, where entities are presented in the order they appear in the original document, and a shuffled evaluation, where entities are randomly rearranged before being introduced to the prompt.

Consideration about the fine-tuning

We fine-tuned the GPT-3.5-Turbo model using the OpenAI platform, which ingested training and testing data and generated a new model in a few hours. At the time of writing this article, the fine-tuning of GPT-4 and GPT-4-Turbo is not available. All fine-tuned models were trained using the default parameters selected by the OpenAI platform. Table 5 illustrates the dimension of each dataset. The fine-tuned model for properties extraction was trained using the "grobid-quantities dataset" [START_REF] Foppiano | Automatic identification and normalisation of physical measurements in scientific literature[END_REF] because MeasEval did not contain enough examples for a consistent and unbiased evaluation.

The primary challenge encountered when employing a fine-tuned model was to achieve a valid, machine-readable JSON format. Therefore, we formatted the training data with an expected output in valid JSON format. However, the obtained fine-tuned model struggled to produce valid JSON in its output, leading us to hypothesise that this limitation might be attributed to a shortage of training examples. To address this, we modified our training data expected output from JSON to a pseudo format structured with spaces and break-lines, facilitating simpler handling by the model. The subsequent example illustrates the expected output for a RE task:

Listing 7 Example format of the expected answer for the RE task material: mat1, tc: 22K, material: mat2, tc: 24K, pressure: 2GPa

We followed the same approach for fine-tuning the model for the NER task: Using this technique, we could fine-tune a model that was still answering conversationally and then use the GPT-3.5-Turbo base model to transform the response into JSON format.

To fine-tune the model for the RE task, we introduced the sorting variability in the entity lists provided in the prompt (Section 2.2). This approach does not modify the size of the data set and reduces the possibility that the model learns to aggregate entities in the order they appear in the document. This is the default approach we define as "FT.base" compared to others. In Section 3.3.1 we discuss the impact of two additional strategies for preparing the fine-tuning data. First, "FT.document order" keeps the lists of entities as they appear in the document. For example, the made-up sentence "The two materials MgB2 and MgB3 showed Tc of 39K and 40K, respectively" will lead to two lists of entities "MgB2, MgB3" and "39K and 40K" which could be assigned in order (MgB2, 39K) and (MgB3, 40K). Intuitively, this leads to poor performance, as we see when evaluating with shuffling conditions (Section 3.3). The second strategy, "FT.augmented", is to augment the size of the dataset generating multiple training records with further shuffled entity list, for each example in "FT.base". The data used with this strategy is roughly double that of "FT.base" (Table 5). We expect this strategy to obtain similar or better results than "FT.base".

Results and discussions

In this section, we present and discuss the aggregated results of our evaluations. The completed raw results are available in the Supplementary Material section.

NER on properties extraction

The property extraction assessment was performed using the MeasEval dataset, with the baseline established by grobid volumes, achieving an approximately 85% score using a holdout dataset created in conjunction with the application. The evaluation of grobid-quantities [START_REF] Foppiano | Automatic identification and normalisation of physical measurements in scientific literature[END_REF] against MeasEval yielded a score of around 59%. This disparity was anticipated, given the slightly divergent annotation strategies employed by the MeasEval developers compared to those used in the development of grobid-quantities (e.g., considerations such as approximate values and other proximity expressions were not taken into account).

Unexpectedly, none of the models managed to outperform grobid-quantities in zeroshot prompting, as depicted in Figure 2. This outcome is surprising considering that a) the expression of properties lacks a specific domain constraint (aside from potential variations in frequency distribution), and b) measurements of physical quantities are likely prevalent in the extensive text corpus used to pre-train the OpenAI models.

In the realm of few-shot prompting (Figure 2), a marginal improvement was observed only for GPT-4 and GPT-4-Turbo, resulting in an F1-score gain ranging around 2%. However, this improvement is not significant. We theorise that the hints provided to the LLMs may introduce bias, and when these hints are incorrect or incomplete, the LLMs struggle to guide the generation effectively, impacting the quality of the output results. Significantly, the fine-tuned model (Figure 2) appears to exhibit a slight enhancement compared to zero-shot, few-shot, and the baseline. Interestingly, in this specific instance where both the baseline and fine-tuned models are trained and evaluated on the same data, the LLM demonstrates an approximate 3% increase in the F1-score.

NER on materials expressions extraction

The evaluation of material expressions extraction was performed using the partition of the SuperMat [START_REF] Foppiano | Supermat: construction of a linked annotated dataset from superconductors-related publications[END_REF] dataset dedicated to validation, consisting of 32 articles.

In zero-shot prompting (Figure 3), both GPT-4 and GPT-4-Turbo achieved comparable F1-scores, hovering around 50%. Notably, all LLMs scored at least 10% lower than the baseline [START_REF] Foppiano | Automatic extraction of materials and properties from superconductors scientific literature[END_REF]. This disparity is expected, given that material expressions may involve extensive sequences and encompass multiple pieces of information that are not easily conveyed in the prompt. Few-shot prompting (Figure 3) yielded improved results, with GPT-3.5-Turbo and GPT-4 slightly surpassing the baseline. The introduction of hints in the prompt indeed enhances performance, but, as previously discussed, it appears to strongly influence the LLMs, not able to mitigate the impact of invalid hints that may be provided. Equally unexpected, fine-tuning did not outperform few-shot prompting. This outcome suggests that the additional training did not significantly enhance the LLMs' ability to handle material expressions.

Relation extraction

The evaluation of RE utilised the complete SuperMat dataset, with the results illustrated in Figure 4, providing a comparison of the effects of shuffling across different models.

GPT-3.5-Turbo zero-shot and few-shot prompting demonstrate a significant difference between shuffled and non-shuffled evaluation (Section ??, suggesting a sequential connection of entities without specific contextual reasoning. Notably, the fine-tuned GPT-3.5-Turbo model outperforms the baseline by approximately 15% F1-score and does not show relevant differences when the evaluation is performed under shuffling conditions.

Figure 5 specifically highlights the shuffled version of each model and extraction type. Except for GPT-3.5-Turbo, few-shot prompting shows an improvement compared to zero-shot prompting (Figure 5), achieved by incorporating additional examples in each prompt. GPT-4 and GPT-4-Turbo also exhibit stable results under shuffling conditions, achieving an F1-score of around 15-18% lower than fine-tuned GPT-3.5-Turbo.

Data variability for fine-tuning

In Section 2.3 we describe two additional ways to prepare the data for fine-tuning. As illustrated in Figure 6, the GPT-3.5-Turbo model fine-tuned with the strategy "FT.document order" showed an inability to generalise when evaluated under shuffling conditions, where the model loses around 30% in F1-score. This suggests that adding entropy (for example, by shuffling the data) should be performed as a best practice, which could result in models with larger reasoning capabilities.

When we increased the size of the dataset used in fine-tuning to almost double (Table 5), the resulting model did not show any kind of improvement compared to the FT.base. These results confirm that in fine-tuning, size does not matter, while data variability and quality do.

Code and data availability

This work is available at https://github.com/lfoppiano/MatSci-LumEn. The repository contains the scripts and the data used for extraction and evaluation. The code of the material parser used in the formula matching is available at https: //github.com/lfoppiano/material-parsers, and the service API is accessible at https://lfoppiano-material-parsers.hf.space.

Conclusion

When it comes to NER, LLMs appear to underperform significantly compared to SLMs in both material and property extraction (Q1) This finding is particularly surprising considering properties since these expressions are not confined to a specific domain.

In material extraction, GPT-3.5-Turbo with fine-tuning failed to outperform the baseline, and the same holds for any model with few-shot prompting. For property extraction, GPT-4 and GPT-4-Turbo with zero-shot prompting perform on par with the baseline. GPT-3.5-Turbo with few-shot and fine-tuning, on the other hand, outperform the baseline by a marginal increase in points. Our results suggest that, for material expressions, small specialised models remain the most accurate choice.

The scenario improves for RE (Q2). With two examples, few-shot prompting demonstrates a significant improvement over the baseline. GPT-4-Turbo exhibits enhanced reasoning capabilities compared to GPT-4 and GPT-3.5-Turbo. GPT-3.5-Turbo performs poorly in both zero-shot and few-shot prompting showing a substantial score decrease when entities are shuffled, aligning with previous observations. Fine-tuning, nevertheless, yields scores superior to both the baseline and other models, showing results stability when comparing shuffled and not-shuffled evaluation.

In conclusion, to answer Q2, GPT-4 and GPT-4-Turbo showcase effective reasoning capabilities for accurately relating concepts and extracting relations without the need for fine-tuning. However, fine-tuning GPT-3.5-Turbo out yields the best results with a relatively small dataset. GPT-4-Turbo, which costs one third of GPT-4, remains a robust choice given its reasoning capabilities. However, for Q1, for the extraction of complex entities such as materials, we find that training small specialised models remains a more effective approach.
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 1 Figure 1. Two materials that appear to have a very different composition, are, in reality overlapping. (Top) Summary of the Material Parser. More information is available in [26]. (Bottom) The pairwise comparison of each chemical formula is performed element-by-element.
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 2 Figure 2.Comparison scores for properties extraction using NER. The scores are the aggregations of the micro average F1 scores and are calculated using soft matching with a threshold of 0.9 similarity. The error bars are calculated over the standard deviation of three independent runs.
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 3 Figure 3. Comparison scores for material extraction using NER. The metrics are the aggregations of the micro average F1-scores, calculated using formula matching. The error bars are calculated over the standard deviation of three independent runs.
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 4 Figure 4. Comparison of the scores of the shuffled extraction using zero-shot prompting, few-shot prompting and the fine-tuned model for RE on materials and properties. The metrics are the aggregated micro average F1-scores calculated using strict matching. The error bars are calculated over the standard deviation of three independent runs.
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 5 Figure5. Overview evaluation on shuffling the provided entities in RE on materials and properties. The metrics are the aggregated micro average F1-scores calculated using strict matching. The error bars are calculated over the standard deviation of three independent runs.
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 6 Figure 6. Evaluation of the impact of data variability in fine-tuning of GPT-3.5-Turbo. The metrics are the aggregated micro average F1-scores calculated using strict matching. The model "FT.document order" was fine-tuned with the original data, where entities were taken of appearance. In "FT.base", our default strategy, the entities provided to the prompt, were scrambled. The error bars are calculated over the standard deviation of three independent runs.

Table 1 .

 1 Datasets and support information for fine-tuning GPT-3.5-Turbo. For each task, the data was divided into 70/30 partitions for training and testing, respectively. The testing dataset is different from the evaluation dataset.

	Task Preparation strategy	Dataset	# Training # Test
	NER	N/A	SuperMat	1639	703
	NER	N/A	grobid-quantities dataset	485	208
	RE	FT.base/FT.document	SuperMat	344	148
	RE	FT.augmented	SuperMat	695	299

Table A8 .

 A8 Performance Metrics for GPT3.5-turbo NER in materials extraction, zero-shot prompting. P: Precision, R: Recall, F1: harmonic average of P and R, Supp: Support, number of extracted entities.

	Run	Matching	P	R	F1	Supp
	Run1	Sentence BERT Formula	37.34 22.58 28.14 59.49 35.97 44.83	1617 1617
	Run2	Sentence BERT Formula	37.06 22.83 28.26 59.21 36.48 45.15	1641 1641
	Run3	Sentence BERT Formula	37.45 22.07 27.77 59.74 35.2 44.3	1587 1587
	Mean and Standard deviation of F1 score				
	Matching	Avg.	σ 2			Avg. Supp
	Sentence BERT	28.05	0.25			1615
	Formula	44.76	0.42			

Table A9 .

 A9 Performance Metrics for GPT-4 NER in materials extraction, zero-shot prompting. P: Precision, R: Recall, F1: harmonic average of P and R, Supp: Support, number of extracted entities.

	Run	Matching	P	R	F1	Supp
	Run1	Sentence BERT Formula	49.9 31.25 38.43 66.4 41.58 51.14	1103 1103
	Run2	Sentence BERT Formula	49.9 30.61 37.94 66.94 41.07 50.91	1097 1097
	Run3	Sentence BERT Formula	49.59 30.74 37.95 66.46 41.2 50.87	1108 1108

Mean and Standard deviation of F1 score

  

	Matching	Avg.	σ 2	Avg. Supp
	Sentence BERT	38.10	0.28	1102
	Formula	50.97	0.14	

Table A13 .

 A13 Performance Metrics for GPT4-turbo NER in materials extraction, few-shot prompting. P: Precision, R: Recall, F1: harmonic average of P and R, Supp: Support, number of extracted entities.

	Run	Matching	P	R	F1	Supp
	Run1	Sentence BERT Formula	54.78 59.95 57.25 60.26 65.94 62.97	1735 1735
	Run2	Sentence BERT Formula	55.54 59.44 57.42 60.91 65.18 62.97	1707 1707
	Run3	Sentence BERT Formula	55.81 60.08 57.86 61.02 65.69 63.27	1707 1707
	Mean and Standard deviation of F1 score				
	Matching	Avg.	σ 2			Avg. Supp
	Sentence BERT	57.51	0.31			1716
	Formula	63.07	0.17			

Table A31 .

 A31 Performance Metrics for the GPT3.5-turbo model fine-tuned using the strategy "FT.augmented" on RE in materials-properties extraction. In this run, entities are not shuffled when included in the prompt. P: Precision, R: Recall, F1: harmonic average of P and R, Supp: Support, number of extracted entities.

	Run	Matching	P	R	F1	Supp
	Run1	Strict matching Soft matching	89.6 92	80 82.14 86.79 84.53	125 125
	Run2	Strict matching Soft matching	89.6 92	80 82.14 86.79 84.53	125 125
	Run3	Strict matching Soft matching	89.6 92	80 82.14 86.79 84.53	125 125
	Mean and Standard deviation of F1 score				
	Matching	Avg.	σ 2			Avg. Supp
	Strict matching	84.53	0			125
	Soft matching	86.79	0			

Table A32 .

 A32 Performance Metrics for the GPT3.5-turbo model fine-tuned using the strategy "FT.augmented" on RE in materials-properties extraction. In this run, entities are shuffled to make it more challenging for the LLM. P: Precision, R: Recall, F1: harmonic average of P and R, Supp: Support, number of extracted entities.

	Run	Matching	P	R	F1	Supp
	Run1	Strict matching Soft matching	91.13 80.71 85.61 91.94 81.43 86.36	124 124
	Run2	Strict matching Soft matching	87.9 77.86 82.58 88.71 78.57 83.33	124 124
	Run3	Strict matching Soft matching	89.52 79.29 84.09 91.94 81.43 86.36	124 124
	Mean and Standard deviation of F1 score				
	Matching	Avg.	σ 2			Avg. Supp
	Strict matching	84.09	1.51			124
	Soft matching	85.35	1.74			

The calculation of micro average provides a measure independent of the distribution of the extracted entities over the different documents.

https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970?pgno=5

The threshold is fixed to a value yielding more than 90% similarity.

https://supermat.readthedocs.io

https://github.com/harperco/MeasEval/tree/main/annotationGuidelines#basic-annotation-set

https://github.com/langchain-ai/langchain
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Appendix A. Full evaluation results

A.1. NER for properties extraction

A.1.1. Zero-shot prompting

Table A1. Performance Metrics for GPT-3.5-turbo NER in properties extraction, zero-shot prompting. P: Precision, R: Recall, F1: harmonic average of P and R, Supp: Support, number of extracted entities. 

Run