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CONCENTRATION PROFILES IN FITZHUGH-NAGUMO NEURAL

NETWORKS: A HOPF-COLE APPROACH

Alain Blaustein
1 and Emeric Bouin

2

Abstract. In this paper we focus on a mean-field model for a spatially extended FitzHugh-Nagumo
neural network. In the regime where strong and local interactions dominate, we quantify how the
probability density of voltage concentrates into a Dirac distribution. Previous work investigating
this question have provided relative bounds in integrability spaces. Using a Hopf-Cole framework,
we derive precise L

∞ estimates using subtle explicit sub- and super- solutions which prove, with
rates of convergence, that the blow up profile is Gaussian.

1. Introduction

The model. Understanding the complex dynamics induced by interactions in large assemblies of
neurons constitute one of the great challenge in neuroscience. As described in neuroscience textbooks
[38], neurons behave and interact according to intricate chemical and electrical mechanisms. Due
to the complexity of these mechanisms, it is mandatory to consider simplified models. A key step
in this direction is the pioneering work of A. Hodgkin and A. Huxley [33, 34], who built an accurate
model describing the membrane potential dynamics of a single nerve cell submitted to an external
current. This model captures the main features of a neuron’s membrane potential behaviour such
as periodic patterns, relaxation toward equilibrium state as well as spiking behaviour also known as
action potential. It falls into the category of so called “voltage-conductance based models” which
describe the dynamics of the membrane potential through auxiliary variables taking into account
ionic exchanges between a neuron and its extra-cellular environment (see [12, 27, 38] for precise
introductions to such models). Due to the complexity of this model, we focus on a simplified
version introduced by R. FitzHugh and J. Nagumo [30, 49], which conserves the main features of
the Hodgkin-Huxley model while remaining more tractable from a mathematical point of view











dvt = (N(vt)− wt + Iext) dt+
√
2dBt,

dwt = A (vt, wt) dt,

where vt ∈ R is the membrane potential coupled whereas wt ∈ R is an adaptation variable. The
non-linear drift N takes the form N(v) = v − v3 in the original articles of R. FitzHugh and J.
Nagumo but we shall consider a broader class of drifts here. Coefficient A is given by

A(v,w) = a v − bw + c ,

where a, c ∈ R and b > 0. The Brownian motion Bt describes non deterministic fluctuations of the
potential which are not taken into account by the model, whereas Iext stands for the current received
by the neuron from its environment. Since our purpose is to describe interactions between neurons,
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we introduce coupling through the term Iext: we consider Ohmic interactions between neurons with
spatially dependent conductance given by a connectivity kernel Φ : K × K → R, where K is a
compact set of Rd. Hence, in the case of m interacting neurons described by the triplet voltage-
adaptation-position (vi, wi,xi)1≤i≤m, the current received by neuron i from its neighbors is given
by

(1.1) Iext = − 1

m

m
∑

j=1

Φ(xi,xj) (v
i
t − vjt ) .

Therefore, we obtain the following microscopic description of a FitzHugh-Nagumo neural network


















dvit =



N(vit) − wi
t − 1

m

m
∑

j=1

Φ(xi,xj) (v
i
t − vjt )



 dt +
√
2 dBi

t ,

dwi
t = A

(

vit, w
i
t

)

dt ,

where i ∈ {1, ...,m}. The mean-field limit, corresponding to m → +∞ in the latter system, was
rigorously analysed in the case of FitzHugh-Nagumo neurons [24, 45] as well as in more general
cases, including the Hodkin-Huxley case [1, 9, 41]; we also mention similar works for mean-field
limits with non-exchangeable systems [36, 55] and [8] for a related model in collective dynamics.
It was proved that the empirical measure associated to the latter system converges towards a
distribution function f := f(t, x,u), with u = (v,w) ∈ R

2, representing the density of neurons at
time t, position x ∈ K, with membrane potential v and adaptation variable w ∈ R. The dynamics
of the distribution function f are prescribed by the following mean-field equation

∂tf + ∂v ((N(v)− w −KΦ[f ]) f) + ∂w (A(v,w)f) − ∂2vf = 0 ,

where the operator KΦ[f ] takes into account spatial interactions and is given by

KΦ[f ](t, x, v) =

∫

K×R2

Φ(x,x′) (v − v′) f(t, x′,u′)dx′ du′ .

This model is a typical example of McKean-Vlasov equation including voltage and conductance
variables; other models of this type are available in the literature [16, 54] as well as other popular
family of models including integrate-and-fire neural networks [13, 14, 17] and time-elapsed neuronal
models [20, 21, 22, 46, 53]. We mention that the discrete analog of KΦ[f ] given by (1.1) may be
recovered replacing f in the definition of KΦ[f ] by the empirical distribution of the microscopic
model.

The question at hand. In the present article, we are interested in the dynamics of the network
when short-range interactions dominate: we consider a situation where the connectivity kernel Φ
decomposes as follows

(1.2) Φ(x,x′) = Ψ(x,x′) +
1

ε
δ0(x− x

′) ,

where the Dirac mass δ0 accounts for short-range interactions whereas the interaction kernel Ψ
models long-range interactions. The scaling parameter ε > 0 represents the magnitude of short-
range interactions: we now write f ε instead of f and focus on the regime ε≪ 1. Such decomposition
is biologically relevant since visual [35] and sensory [47, 48] cortices are organized into sub-regions
called cortical columns within which neuron strongly interact and have thus similar answers to
external signals [42]. This structure has been studied both at mathematical and numerical levels
[6, 7, 11, 25, 26, 56]. We point out that it is possible to replace the Dirac mass approximation for
short range interactions with a localized kernel [11, 26].
Let us present what is known in our particular context. To do so, we introduce the macroscopic
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quantities associated to the network: the spatial distribution of neurons (which is time-homogeneous,
according to an integration of the mean-field equation with respect to u ∈ R

2)

ρε0(x) =

∫

R2

f ε(t,x,u)du,

as well as the averaged voltage and adaptation variable at spatial location x ∈ K

(1.3) Uε := (Vε,Wε) , with















ρε0 (x)Vε(t,x) =

∫

R2

v f ε(t,x,u)du

ρε0 (x)Wε(t,x) =

∫

R2

w f ε(t,x,u)du

.

We outline that the interaction term KΦ[f
ε] admits the following simple expression in terms of the

macroscopic quantities

KΦ[f
ε](t,x, v) = Φ ∗ ρε0(x) v − Φ ∗ (ρε0 Vε)(t,x),

where ∗ denotes the convolution on the right side of any function g with Φ

Φ ∗ g(x) =

∫

K
Φ(x,x′)g(x′)dx′.

According to (1.2), we substitute Φ with Ψ + δ0/ε in the latter expression of KΦ[f
ε]; it yields

KΦ[f
ε](t, x, v) = Ψ ∗ ρε0(x) v −Ψ ∗ (ρε0 Vε)(t,x) +

1

ε
ρε0(x) (v − Vε(t,x)) .

Therefore, the mean-field equation may be rewritten

(1.4) ∂tf
ε + divu [bεf ε]− ∂2vf

ε =
1

ε
ρε0∂v [(v − Vε)f ε] ,

where coefficient bε is defined for all (t,x,u) ∈ R
+ ×K × R

2 as

(1.5) bε(t,x,u) :=

(

Bε(t,x,u)

A(u)

)

=

(

N(v)− w − vΨ ∗ ρε0 +Ψ ∗ (ρε0 Vε)

av − bw + c

)

.

To infer the asymptotic behaviour of the network in the regime of strong interactions, we look for
the leading order in (1.4): in our case, it is induced by short-range interactions between neurons,
and as ε→ 0, we expect

(v − Vε)f ε →
ε→0

0,

to make sure that no term is singular in (1.4). Since (1.4) conserves total mass, this means that f ε

concentrates into a Dirac ditribution centered in Vε with respect to the v-variable, that is

(1.6) f ε(t,x,u) ≈
ε→0

δ0 (v − Vε(t,x)) ⊗ F ε(t,x, w),

where Vε is given by (1.3) and F ε is defined as the marginal of f ε with respect to the voltage
variable

F ε (t,x, w) =

∫

R

f ε (t,x,u) dv.

Multiplying equation (1.4) by u/ρε0 and integrating with respect to u, one finds that the couple
(Vε,Wε) solves the following system

(1.7)

{

∂tVε = N(Vε)−Wε − VεΨ ∗ ρε0 +Ψ ∗ (ρε0Vε) + E(f ε),

∂tWε = A(Vε,Wε),

where the error term E (f ε) is given by

(1.8) E (f ε (t,x, ·)) =
1

ρε0(x)

∫

R2

N(v)f ε (t,x,u) du−N(Vε) .
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All this, in turn, implies that as ε vanishes, (Vε,Wε) converges to the couple (V,W), which solves

(1.9)



















∂tV = N(V)−W − VΨ ∗ ρ0 +Ψ ∗ (ρ0V),

∂tW = A(V,W),

(V (0, ·) ,W (0, ·)) = (V0,W0) ,

where ρ0 = limε→0 ρ
ε
0. As of the marginal F ε, it has been shown in [6, 7, 25] that it also converges.

The reaction-diffusion system (1.9) has been extensively studied, especially since it features traveling
waves solutions [15, 32, 37]. In (1.9), the non-local term may be replaced by a diffusion operator,
sometimes also acting on the adaptation variable [19]. Macroscopic systems with diffusion operators
may be obtained from (1.4) as ε → 0 taking localized instead of punctual interactions in (1.2), as
shown in [26].

In this article, we refine convergence (1.6) by investigating the concentration profile of the solution
f ε when ε goes to 0. To this end, we perform the so-called Hopf-Cole transform of f ε

(1.10) φε(t,x,u) := ε ln

(
√

2πε

ρ0
f ε(t,x,u)

)

, ∀ (t,x,u) ∈ R
+ ×K ×R

2 ,

and study the convergence of φε as ε goes to zero. This approach has been widely followed to
study concentration phenomena occurring in selection-mutation models in population dynamics
[3, 5, 10, 18, 29, 39, 43, 44]. Quininao and Touboul have shown in [56] that it can lead to fruitful
results in the present context. Indeed, inverting (1.10), we obtain

f ε =

√

ρ0
2πε

exp

(

φε

ε

)

,

and therefore expect φε ≤ 0 as ε→ 0. Furthermore, we see that the concentration points of f ε are
characterized by the level sets {φε = 0} . Here, we are specifically interested in the behavior of φε

at v → +∞, which describes precisely the asymptotic tail of f ε with respect to v.

Heuristics. Let us now formally justify the convergence of φε: injecting ansatz (1.10) in equation
(1.4), we find that φε solves the following Hamilton-Jacobi equation

(1.11) ∂tφ
ε +∇uφ

ε · bε + εdivu [bε]− ∂2vφ
ε − ρε0 =

1

ε
∂v

(

1

2
ρε0 |v − Vε|2 + φε

)

∂vφ
ε.

Keeping only the leading order in equation (1.11), we expect

φε ≈
ε→0

φ ,

where φ satisfies

∂v

(

1

2
ρε0 |v − Vε|2 + φ

)

∂vφ = 0 .

To determine φ, we reformulate the latter equation in the following equivalent form

(1.12) ∂v φ(t,x, v) = − δ(t,x, v) ρε0(x) (v − Vε(t,x)) , ∀ (t,x, v) ∈ R
+ ×K × R ,

where δ(t,x, v) takes values in {0, 1}. We fix some (t,x) ∈ R
+ ×K and suppose on the one hand

∂vφ(t,x, ·) to be smooth with respect to v and on the other hand ρε0(x) > 0. Since ∂vφ(t,x,Vε) = 0,
we may divide (1.12) by ρε0(x) (v − Vε(t,x)) and deduce that δ(t,x, ·) is a smooth function of v.
Together with the fact that it takes discrete values, this implies that it does not depend on v. After
integrating (1.12) with respect to v and passing to the limit ε→ 0, this yields

φε(t,x, v) −→
ε→0

− δ

2
(t,x) ρ0(x) |v − V(t,x)|2 + c(t,x).
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Furthermore, since our problem conserves mass, we expect for each (t,x) ∈ R
+ ×K

∫

v∈R
exp

(

− δ

2 ε
ρ0 |v − V|2 + c

ε

)

(t,x) dv =

√

2πε

ρ0(x)
,

for all ε. This forces δ(t,x) = 1 and c(t,x) = 0; thus we obtain

φε(t,x, v) −→
ε→0

− 1

2
ρ0(x) |v − V(t,x)|2 ,

where V is the solution to (1.9). This convergence is the object of our main result, Theorem 1.5
below, in which we provide explicit convergence rates with respect ε. Before going further, we shall
be precise about the mathematical framework of this article.

Mathematical framework. In this paragraph, we first state and motivate our assumptions on
the data of the problem: N , Ψ and f ε0 . Then we precise the notion of solution we consider for
equation (1.4). We suppose that the drift N ∈ C 2(R) satisfies

(1.13) lim sup
|v|→+∞

N(v)

sgn(v)|v|p < 0, sup
|v|≥1

∣

∣

∣

∣

N(v)

|v|p
∣

∣

∣

∣

< +∞,

for some p ≥ 2, and

(1.14) sup
|v|≥1

(∣

∣N ′′(v)
∣

∣+
∣

∣N ′(v)
∣

∣

)

|v|−p′ < +∞,

for some p′ ≥ 0.

Remark 1.1. On the one hand, assumption (1.13) is a key feature in the model proposed by R.
FitzHugh and J. Nagumo: it says that N has super-linear confining properties in the sense that it
decays super-linearly at infinity. On the other hand, assumption (1.14) is technical yet not restrictive
in our case since it is satisfied when N is given by

N(v) = v − v3,

which is the original choice in the FitzHugh-Nagumo model. More generally, (1.13)-(1.14) are
satisfied by all drifts P (v) given by

P (v) = Q(v) − Cv|v|p−1 ,

for some positive constant C > 0 and where Q is a polynomial function with degree less then p.

The connectivity kernel satisfies

(1.15) (Ψ : x 7−→ Ψ(x , ·)) ∈ C
0
(

K,L1 (K)
)

,

and

(1.16) sup
x′∈K

∫

K

∣

∣Ψ(x,x′)
∣

∣ dx < +∞, sup
x∈K

∫

K

∣

∣Ψ(x,x′)
∣

∣

r
dx′ < +∞,

for some r > 1; in the sequel we define r′ by 1
r + 1

r′ = 1. This set of assumptions on Ψ allows
for non-symmetric interactions between neurons [11], interactions following negative power law
[23, 31, 41, 50] as well as “nearest-neighbor” type interactions [41, 51, 52].

We now specify the notion of solution we consider for equation (1.4). To this end, we state our
assumptions on f ε0 . We suppose, for each ε > 0

(1.17) f ε0 ∈ C
0
(

K,L1
(

R
2
))

, f ε ≥ 0 and

∫

R2

f ε0 (x,u)dudx = 1,

which ensures ρε0 ∈ C 0 (K). We also suppose

(1.18) m∗ ≤ ρε0 ≤ 1/m∗,
5



for some positive constant m∗ independent of ε. On top of that, we assume the following condition:
there exist two positive constants mp and mp, independent of ε, such that

(1.19) sup
x∈K

∫

R2

|u|2(p+p′)f ε0 (x,u) du ≤ mp,

and such that

(1.20)

∫

K×R2

|u|2(p+p′)r′f ε0 (x,u) dudx ≤ mp,

where p, p′ and r′ are given in (1.13), (1.14) and (1.16).

Remark 1.2. Moment assumptions such as (1.19)-(1.20) are common in the literature of mean-
field description for neural networks (see [28, Assumption 2], [13, Theorem 2.2 and Corollary 2.4],
[54, Section 5.1]). In our context, it allows to propagate moments of the solution f ε to (1.4), which
in turn provides control over macroscopic quantities (Vε,Wε) and over the error term E (f ε) given
by (1.8) (see the second item of Theorem 2.4 for more details). The order of moment required is
related to the drift N through exponents p and p′ defined in (1.13)-(1.14): this is natural in order
to control E (f ε) which displays the drift N . These assumptions might not be optimal in the sense
that the order of moment may be lowered; however we do not investigate any further this technical
aspect since it is not our main interest here.

We consider the following solutions to (1.4)

Definition 1.3. For all ε > 0, we say that f ε solves (1.4) with initial condition f ε0 if f ε ∈
C 0
(

R
+ ×K,L1

(

R
2
))

and for all x ∈ K, t ≥ 0, and ϕ ∈ C
∞
c

(

R
2
)

, it holds
∫

R2

ϕ(u) (f ε (t,x,u)− f ε0 (x,u)) du =

∫ t

0

∫

R2

[(

∇uϕ · bε + ∂2vϕ
)

f ε
]

(s,x,u)duds

− ρε0(x)

ε

∫ t

0

∫

R2

[∂vϕ (v − Vε) f ε] (s,x,u)duds,

where Vε and bε are given by (1.3) and (1.4) respectively.

With this notion of solution, equation (1.4) is well-posed, the following result being proved in [7].

Theorem 1.4 ([7]). For any ε > 0, suppose that assumptions (1.13) on N , (1.16) on Ψ and
(1.17)-(1.18) on the initial condition are fulfilled and that f ε0 also verifies



















sup
x∈K

∫

R2

e|u|
2/2f ε0 (x,u)du < +∞,

sup
x∈K

∫

R2

ln [f ε0 (x,u)]f
ε
0 (x,u)du < +∞,

and

sup
x∈K

∥

∥

∥
∇u

√

f ε0

∥

∥

∥

2

L2(R2)
< +∞.

Then there exists a unique solution f ε to equation (1.4) with initial condition f ε0 , in the sense of
Definition 1.3 which verifies

sup
(t,x)∈[0,T ]×K

∫

R2

e|u|
2/2f ε(t,x,u)du < +∞,

for all T ≥ 0.

Let us now state our main result.
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Main result. The following theorem states that in the regime of strong local interactions, the
voltage distribution of the neural network described by (1.4) blows up into a Dirac distribution and
that concentration occurs with Gaussian profile. More specifically, we prove that the Hopf-Cole
transform φε of f ε defined by (1.10) converges to −ρ0 |v − V|2 /2 uniformly with respect to all
variables (t,x,u) as ε vanishes. Furthermore, we prove that convergence occurs at rate O (ε), which
is (at least formally) optimal.

Theorem 1.5. Assume (1.13)-(1.20) and the additional assumptions of Theorem 1.4 and Proposi-
tion 2.2. Suppose that there exists a positive constant C independent of ε such that the following
compatibility assumption holds

(1.21) ‖U0 − Uε
0‖L∞(K) + ‖ρ0 − ρε0‖L∞(K) ≤ Cε,

as well as the following set of “smallness assumptions”






















∣

∣

∣

∣

φε0 +
1

2
ρ0 |v − V0|2 − εn

∣

∣

∣

∣

≤ εC
(

1 + |u|2
)

, ∀(x,u) ∈ K × R
2,(1.22a)

∫

R2

(

|v − Vε
0 |2 + |v − Vε

0 |p
′+1
)

f ε0 (x,u)du ≤ Cε, ∀x ∈ K ,(1.22b)

for all ε > 0, where n is a primitive of N : n′(v) = N(v). Then the sequence (φε)ε>0 of Hopf-Cole
transforms of the solutions (f ε)ε>0 to (1.4) is well defined and it converges locally uniformly on

R
+ ×K × R

2 to −ρ0 |v − V|2 /2 with rate ε, where V is given by (1.9). More precisely, there exist
two positive constants C and ε0 such that for all ε ≤ ε0,

∣

∣

∣

∣

φε +
1

2
ρ0 |v − V|2 − εn

∣

∣

∣

∣

(t,x,u) ≤ εCeCt
(

1 + |u|2
)

, ∀(t,x) ∈ R
+ ×K, a.e. in u ∈ R

2.

As a consequence, f ε converges uniformly to 0 on the compact subsets of R
+×K×R

2\{v 6= V (t,x)}.
In the latter results, constants C and ε0 only depend on the data of our problem: f ε0 (only through
the constants appearing in assumptions (1.18)-(1.20) and (1.21)-(1.22b)), N , A and Ψ.

Before going further into our analysis, let us comment on our result. We first emphasize that
it deals with uniform convergence with respect to all variables, which is a great improvement in
comparison to former results obtained in [6, 7], where L1, L2 and weak convergence estimates were
obtained.
We also point out that the present article is in line with [56], where a compactness argument was
used to obtain the convergence of φε for truncated versions of the drift N . In the present article, we
take advantage of the particular structure of the problem, specifically of the confining properties of
N provided by assumption (1.13) to obtain a rate of convergence with respect to ε.
We emphasize that our result holds in a perturbative setting. To illustrate this remark, we consider
the following initial condition, which satisfies the assumptions of Theorem 1.5

f ε0 (x,u) = cε(x)
ρ0(x)

3

2

π
√
2ε

exp

(

−ρ0(x)
2 ε

|v − V0 (x)|2 − |w −W0(x)|2 + n(v)

)

,

where cε is a normalizing constant such that for all x ∈ K, it holds
∫

R2×K
f ε0 (u,x)du = ρ0(x),

In the latter example, we see that f ε0 is concentrated with respect to v. This restriction appears in
most of our references [3, 10, 29, 43, 44, 56] using the Hopf-Cole transform. We also outline that,
since N(v) decays super-linearly at ±∞, its primitive n(v) induces fast decay of f ε0 as v → ±∞.
This condition is natural since n(v) appears in the formal expansion of φε as ε→ 0 (see (3.3)).
To conclude, diffusion with respect to w in (1.4) is sometimes taken into account [40, 41, 56].
Whether our analysis extend to this case may depend on the scaling with respect to ε of the addi-
tional term. For example, adding ε∂2wf

ε to (1.4) should simplify the analysis, as stated in [56, page
7



5].

Comments on the strategy. Let us outline our strategy and the challenges in order to prove
Theorem 1.5. As identified in [56], the main difficulty is induced by the drift N , which is not
globally Lipschitz according to assumption (1.13). To bypass this difficulty, authors in [56] rely on a
regularization argument: they consider truncated versions NR, for R > 0, of N , in order to recover
global Lipschitz properties, allowing to prove uniform estimates in ε on the derivatives ∇uφ

ε,R of the
truncated problem thanks to the Bernstein method (see [2] for a general description of the method
and [3] for another application). Then, they conclude that φε,R converges as ε goes to zero relying
a compactness argument. The argument is robust and may apply to a wider range of problems. An
alternate mean to carry out the proof would be to use the method of half-relaxed limits (see [4] for a
general introduction to this method and [43] for an application) which applies without requiring any
regularity estimates, at the cost of loosing continuity and therefore uniqueness in the limit ε → 0.
To recover uniqueness, we may add the additional constraint

φ(t,x,V, w) = 0

on the limiting problem. However, proving that the limit provided by this method satisfies this
constraint also requires uniform regularity estimates on the derivatives of φε and we are back to our
initial problem, since N is not globally Lipschitz.
In this article, we take advantage of the particular structure of the problem, specifically of the
confining properties of N , to build a method which does not require regularity estimates and which
has the advantage of providing explicit convergence rates: instead of proving uniform estimates
on the derivatives of φε, we prove uniform estimates on the first term in the expansion of φε with
respect to ε. This is made possible since this first term takes into account the non-linear fluctuations
induced by N . Indeed, these non-linear variations induced by N are expected to be perturbations
of order ε, as it may be seen rewriting equation (1.11) on φε as follows

1

ε
∂v

(

−1

2
ρε0 |v − Vε|2 + εn(v)− φε

)

∂vφ
ε + . . . = 0,

where the correction n(v) is such that n′(v) = N(v) and where “. . .” gathers the lower order terms
with respect to v and w. Hence, at least formally as ε goes to zero, we expect

φε ≈
ε→0

−1

2
ρε0 |v − Vε|2 + εn(v).

Therefore, we consider the first term φε1 in the expansion of φε with respect to ε, that is

φε = −1

2
ρε0 |v − Vε|2 + εφε1,

and identify its formal equivalent φε1 as ε goes to zero, which displays n(v) and which depends on ε
only through the macroscopic quantities (Vε,Wε) (see Section 3). In Lemma 3.1, we look for super-
and sub-solutions to the equation solved by φε1 with the form χ± = φε1 ± ψ. Once this is done, we
apply a comparison principle in order to obtain χ− ≤ φε1 ≤ χ+, which in turns ensures

−1

2
ρε0 |v − Vε|2 + εχ− ≤ φε ≤ −1

2
ρε0 |v − Vε|2 + εχ+.

The last step consists in proving that −1
2ρ

ε
0 |v − Vε|2 and φε1 converge as ε→ 0. This is done relying

on previous results which ensure that the macroscopic quantities converge (see Theorem 2.4).

Comments and perspectives. Several perspectives arise from our work. First, our result holds
in a perturbative setting in the sense that we need the initial data to be concentrated in order for
our result to hold true. It would be interesting to treat general initial data without requiring any
well-preparedness condition. To achieve this, one possibility would be to adapt the strategy adopted
in [6], where was introduced a time dependent scaling, taking into account the initial layer induced
by ill-prepared initial data.
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Another natural continuation is to describe the limiting dynamics of the Hopf-Cole exponent φε

with respect to the adaptation variable w. This is challenging since equation (1.4) is not singular
in ε with respect to w, meaning that limiting dynamics with respect to the adaptation variable
correspond to fluctuations of φε of order O (ε). However, this article provides a glimpse of the
difficulties and potential outcomes related to such analysis. Indeed, referring to the beginning of
Section 3, the ε-correction of φε should be close to

φε1(t,x,u) + ψε
1(t,x, w) ,

as ε vanishes, where φε1 is defined by (3.3). The term ψε
1 gathers ε-fluctuations depending only on

w, it was already derived in [6, 7, Sections 1.2] where both weak and Lebesgue convergence were
rigorously proved. However, we surprisingly obtain additional cross terms between v and w as well
as higher order terms with respect to v, gathered in φε1, which at least to our knowledge, were
not known in the literature. This assesses the potential of the Hopf-Cole approach to provide new
insights for the model at hand. However, it also highlights the difficulties attached to this approach:
its precision and rigidity lead to intricate and technical analysis whereas other methods focusing
rather on the convergence at the level of densities yield coarser convergence result but are easier to
implement.

Structure of the paper. The remaining part of this article is organized as follows: in Section 2,
we prove some regularity estimates for equation (1.4) in order to make our further computations
rigorous: this is the object of Lemma 2.1 and Proposition 2.2. In Theorem 2.4 and Corollary 2.5,
we also we recall and prove some convergence results on the macroscopic quantities Uε and E (f ε).
Then we pass to Section 3, which is dedicated to the proof of Theorem 1.5. The proof relies on the
key Lemma 3.1, in which we construct sub- and super-solution for equation (1.11) on φε.

2. Preliminary estimates

First, we prove non-uniform in ε regularity estimates for the solutions to (1.4) in order to make
later computations rigorous. Second, we recall uniform in ε moment estimates for the solutions to
(1.4). We start with the following lemma, in which we prove regularity results for the macroscopic
quantities Uε and E(f ε)
Lemma 2.1. Consider the solution f ε to (1.4) provided by Theorem 1.4. For all function ϕ ∈
C 2
(

R
2
)

with polynomial growth of order l ≥ 0, that is

|ϕ(u)| + |∇uϕ(u)|+
∣

∣∇2
u
ϕ(u)

∣

∣ =
|u|→+∞

O
(

|u|l
)

,

the function

(

(t,x) 7→
∫

R2

ϕ(u)f ε (t,x,u) du

)

is continuous and has continuous time derivative

over R
+ × K. In particular, the macroscopic quantities Vε and Wε given by (1.3) and the error

E (f ε) given by (1.8) are continuous and have continuous time derivatives.

Proof. Consider such function ϕ. To simplify notations we write

ϕ (f ε) : (t,x) 7→
∫

R2

ϕ(u)f ε (t,x,u) du.

We start by proving that ϕ (f ε) is continuous. To do so, we fix some (t,x) ∈ R
+ ×K and prove

lim
(s,y)→(t,x)

ϕ (f ε) (s,y) = ϕ (f ε) (t,x).

For all (s,y) ∈ R
+ ×K, it holds

|ϕ (f ε) (t,x)− ϕ (f ε)(s,y)| ≤
∫

R2

|ϕ(u)| |f ε (t,x,u)− f ε (s,y,u)|1/2 |f ε (t,x,u)− f ε (s,y,u)|1/2 du.
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Applying Cauchy-Schwarz inequality to the latter estimate, we deduce

|ϕ (f ε) (t,x)− ϕ (f ε) (s,y)| ≤
(

ϕ2 (f ε) (t,x) + ϕ2 (f ε) (s,y)
)1/2 ‖f ε (t,x)− f ε (s,y) ‖1/2

L1(R2)
.

According to Theorem 1.4, ϕ2 (f ε) is locally bounded over R+×K since f ε has exponential moments
and ϕ has polynomial growth. Therefore, we obtain the result since f ε lies in C 0

(

R
+ ×K,L1

(

R
2
))

according to Definition 1.3.
We now prove that ϕ (f ε) has continuous time derivative. We multiply equation (1.4) by ϕ and

integrate with respect to u. After an integration by part, this yields

∂tϕ (f ε) = ξ1 (f
ε) +

(

1

ε
ρε0Vε +Ψ ∗ (ρε0 Vε)

)

∂vϕ (f ε)−
(

1

ε
ρε0 +Ψ ∗ ρε0

)

ξ2 (f
ε) ,

with






ξ1(u) = ∂vϕ(u) (N(v)− w) + ∂wϕ(u)A(u) + ∂2vϕ(u),

ξ2(u) = ∂vϕ(u)v.

Functions ξ1 (f
ε) , ξ2 (f

ε) , ∂vϕ (f ε) ,Vε are continuous according to the previous step. Furthermore,
we obtain that functions Ψ ∗ (ρε0 Vε) and Ψ ∗ ρε0 are continuous using continuity of Vε and ρε0 and
assumption (1.15) on Ψ. This yields the result. �

We prove that when the initial data f ε0 is smooth, the associated solution f ε to (1.4) is regular.

Proposition 2.2. Under the assumptions of Theorem 1.4, suppose in addition that f ε0 lies in
C 0
(

K,C ∞
c

(

R
2
))

and that N meets the following assumptions

(2.1) sup
|v|≥1

∣

∣N ′(v)
∣

∣ |v|1−p < +∞, sup
|v|≥1

∣

∣N ′′′(v)
∣

∣ |v|−p′ < +∞,

where p is given in assumption (1.13) and p′ in assumption (1.14). Then the solution f ε to equation
(1.4) provided by Theorem 1.4 verifies

f ε ∈ L∞
loc

(

R
+ ×K,W 2,1

(

R
2
))

, ∂tf
ε ∈ L∞

loc

(

R
+ ×K,L1

(

R
2
))

.

We postpone the proof to Appendix B: it is mainly technical and relies on moment estimates on
the derivatives of f ε.

Remark 2.3. Assumption (2.1) on N is purely technical but it does not constitute a limitation in
our context since it is satisfied by the general class of drifts described below assumptions (1.13)-
(1.14), which includes the original FitzHugh-Nagumo model.

For self-consistency, we recall a result from [7] about the control of the macroscopic quantities
(Vε,Wε) defined by (1.3) and the error term E (f ε) defined by (1.8). We also provide uniform
estimates with respect to ε for the moments of f ε and for the relative energy given by

(2.2)















Mq [f
ε] (t,x) :=

1

ρε0(x)

∫

R2

|u|qf ε(t,x,u)du,

Dq [f
ε] (t,x) :=

1

ρε0(x)

∫

R2

|v − Vε(t,x)|qf ε(t,x,u)du,

where q ≥ 2.

Theorem 2.4 ([7]). Under assumptions (1.13)-(1.20) and under the additional assumptions of
Theorem 1.4, consider the solutions f ε to (1.4) provided by Theorem 1.4 and the solution U to
(1.9). Furthermore, define the initial macroscopic error as

Emac = ‖U0 − Uε
0‖L∞(K) + ‖ρ0 − ρε0‖L∞(K).

There exists (C, ε0) ∈
(

R
+
∗

)2
such that
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(1) for all ε ≤ ε0, it holds

‖U(t)− Uε(t)‖L∞(K) ≤ Cmin
(

eCt (Emac + ε) , 1
)

, ∀t ∈ R
+,

where Uε and U are respectively given by (1.3) and (1.9).
(2) For all ε > 0 and all q in [2, 2(p + p′)] it holds

Mq[f
ε](t,x) ≤ C, ∀(t,x) ∈ R

+ ×K,

where exponent p is given in assumption (1.13) and p′ in assumption (1.14). In particular,
Uε, ∂t Uε and E(f ε) are uniformly bounded with respect to both (t,x) ∈ R

+×K and ε, where
E is defined by (1.8).

(3) For all ε > 0 and all q in [2, 2(p + p′)] it holds

Dq[f
ε](t,x) ≤ C

[

Dq[f
ε](0,x) exp

(

−qm∗
t

ε

)

+ ε
q

2

]

, ∀(t,x) ∈ R
+ ×K.

In this theorem, constants C and ε0 only depend on mp, mp, m∗ (see (1.18)-(1.20) ) and on the
data of the problem N , A and Ψ.

We deduce from this result an estimate on the derivative of the error term, that will be used later
in our proof.

Corollary 2.5. Under the assumptions of Theorem 2.4 and the additional assumption (1.22b) on
the sequence (f ε0 )ε>0, there exists a constant C > 0 such that

∣

∣

∣

∣

d

dt
E(f ε (t,x, ·))

∣

∣

∣

∣

≤ C,

for all ε > 0 and all (t,x) ∈ R
+ ×K, where E(f ε) is the macroscopic error given by (1.8). In this

result, constant C only depends on mp, mp, m∗ (see (1.18)-(1.20) ), on the data of the problem N ,
A and Ψ and on the constant in assumption (1.22b).

Proof. We compute the time derivative of E(f ε) taking the difference between equation (1.4) mul-
tiplied by N/ρε0 and integrated with respect to u, and the first line of (1.7) multiplied by N ′(Vε).
After integrating by part with respect to v, it yields

(2.3)
d

dt
E(f ε (t,x, ·)) = A+ B,

where A and B are given by














A = −1

ε

∫

R2

N ′(v) (v − Vε(t,x)) f ε(t,x,u)du,

B =
1

ρε0

∫

R2

[(

N ′Bε +N ′′
)

f ε
]

(t,x,u)du−N ′(Vε) (Bε (t,x,Uε) + E(f ε)) .

The main difficulty here consists in estimating the stiffer term A: this is what we start with.
According to the definition of Vε, we have

A = −1

ε

∫

R2

(

N ′(v) −N ′ (Vε)
)

(v − Vε) f ε(t,x,u)du.

To bound the term inside the latter integral, we distinguish two cases. On the one hand, since
N ∈ C 2(R) and since Vε is uniformly bounded with respect to (t,x) ∈ R

+ ×K and ε > 0 (see item
(2) in Theorem 2.4), it holds

(

N ′(v) −N ′ (Vε)
)

(v − Vε)1|v|≤2‖Vε‖L∞
≤ C |v − Vε|2 ,

where constant C is the uniform norm of N ′′ over the ball of radius 2 supε>0 ‖Vε‖L∞ . On the other
hand, using assumption (1.14) and since Vε is uniformly bounded, it holds

(

N ′(v)−N ′ (Vε)
)

(v − Vε)1|v|>2‖Vε‖L∞
≤ C |v − Vε|p′+1 .
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Taking the sum between the last two estimates, we obtain the following bound for A

A ≤ C

ε

(

Dp′+1[f
ε] +D2[f

ε]
)

,

where Dp′+1 and D2 are given by (2.2). Hence, we apply item (3) of Theorem 2.4 and deduce

A ≤ C

[

(

D2 +Dp′+1

)

[f ε](0,x)ε−1 exp

(

−2m∗
t

ε

)

+ 1

]

,

for all (t,x) ∈ R
+ ×K and ε > 0. To conclude this step, we use assumption (1.22b) which ensures

that:
(

D2 +Dp′+1

)

[f ε](0,x) = O(ε) as ε→ 0. Therefore, we deduce A ≤ C, for some constant C
independent of (t,x) ∈ R

+ ×K and ε.
Let us now estimate B. According to assumptions (1.16) and (1.18) on Ψ and ρε0, Ψ ∗ ρε0 is

uniformly bounded with respect to both x ∈ K and ε > 0. Furthermore, N , N ′ and N ′′ have
polynomial growth according to (1.13)-(1.14). Hence, we may bound B by moments of f ε up to
order 2(p+ p′), which are themselves uniformly bounded with respect to both (t,x) ∈ R

+ ×K and
ε > 0, according to item (2) of Theorem 2.4. Therefore, there exists a constant C such that

B ≤ C,

for all (t,x) ∈ R
+ ×K and ε > 0.

We obtain the expected result gathering the estimates obtained on A and B and taking the
absolute value in (2.3). �

3. Proof of Theorem 1.5

In this section, we derive uniform L∞ convergence estimates for the solution φε to equation
(1.11). To do so, our strategy consists in performing a Hilbert expansion of φε with respect to ε
and to prove that the higher order terms are uniformly bounded with respect to ε. Denote by φε1
the correction of order 1 in the expansion of φε with respect to ε

(3.1) φε = −1

2
ρε0 |v − Vε|2 + εφε1.

Plugging this ansatz in (1.11), we find that φε1 solves the following equation

(3.2) ∂tφ
ε
1 +∇uφ

ε
1 · bε + divu [bε]− ∂2vφ

ε
1 − |∂vφε1|2 +

1

ε
ρε0 (v − Vε) ∂v

(

φε1 − φε1
)

= 0,

where φε1 is given by

(3.3) φε1 (t,x,u) = n(v)− n(Vε)− (v − Vε)

(

N(Vε) + (w −Wε) + E(f ε) + 1

2
Ψ ∗ ρε0 (v − Vε)

)

,

and where n is the primitive of N defined in Theorem 1.5. Keeping the leading order, we expect
that φε1 will look like φε1 as ε→ 0. Therefore, we look for sub and super-solutions to equation (3.2)

with the form φε1 +ψ, where ψ needs to be determined. This is done in the following lemma, which
constitutes the keystone of our analysis.

Lemma 3.1. Consider some positive constant α0 and define ψ as follows

ψ (t,x,u) =
α0

2
|v − Vε(t,x)|2 + α(t)

2
|w −Wε(t,x)|2 ,

where α is given by

α(t) = α0e
2(|a|+b)t +

1

|a|+ b

(

e2(|a|+b)t − 1
)

,

where (a, b) are the coefficients in the definition (1.5) of A. The functions

χ+ = φε1 + ψ +m and χ− = φε1 − ψ −m

are respectively super and sub-solutions to equation (3.2), where (t 7→ m(t)) is given by

m(t) = m0 + C exp (6(a + b)t),
12



for all m0 ∈ R and where the constant C only depends on α0, the constants in (1.18)-(1.20) and
(1.22b), and the data of the problem N , A and Ψ.

Proof. In this proof, we fix some (t,x) ∈ R
+ × K and denote by C a generic constant depending

only on α0, the constants in (1.18)-(1.20) and (1.22b), and the data of the problem N , A and Ψ.
Furthermore we write Uε instead of Uε(t,x) for convenience.

The first step of the proof consists in proving that the following term, obtained when evaluating
equation (3.2) in φε1, is of order 0 with respect to ε

(3.4) A = ∂tφε1 +∇uφε1 · bε + divu [bε]− ∂2vφ
ε
1 −

∣

∣∂vφε1
∣

∣

2
.

To this aim, we compute the derivatives of φε1. To simplify the computations, we rewrite φε1 in a
more convenient way: we consider some (ṽ, w) ∈ R

2 and take the difference between Bε (t,x, ṽ, w)
given in (1.5) and the first line of the system (1.7)

(Bε − ∂tVε) (t,x, ṽ, w) = [N(ṽ)−N(Vε)− (w −Wε)− (ṽ − Vε) Ψ ∗ ρε0 − E(f ε)] (t,x) .
Integrating the latter relation between Vε and v with respect to ṽ, we deduce that φε1 verifies

φε1 (t,x,u) =

∫ v

Vε

(Bε − ∂tVε) (t,x, ṽ, w) dṽ .

Using the last two relations, we deduce that for all u ∈ R
2, it holds































∇uφε1(t,x,u) =

(

Bε(t,x,u) − ∂tVε

− (v − Vε)

)

,

∂2vφ
ε
1(t,x,u) = divu [bε] (x,u)− ∂wA(u) ,

∂t φε1(t,x,u) = ∂tVε (∂tVε −Bε (t,x,Vε, w))− (v − Vε)∂t (∂tVε −Ψ ∗ (ρε0 Vε)) .

Relying on the latter expressions for the derivatives of φε1 we deduce

A = ∂tVε (Bε (t,x,u)−Bε (t,x, (Vε, w)))−(v−Vε)∂t (∂tVε −Ψ ∗ (ρε0 Vε))+∂wA(u)−(v−Vε)A(u) .

On the one hand, since Bε is given by (1.5), it holds

Bε(t,x,u)−Bε(t,x, (Vε, w)) = N(v)−N(Vε)−Ψ ∗ ρε0(v − Vε) .

On the other hand, taking the time derivative in the first line of equation (1.7) we obtain

∂t (∂tVε −Ψ ∗ (ρε0 Vε)) = ∂t Vε
(

N ′ (Vε)−Ψ ∗ ρε0
)

−A (Uε) +
d

dt
E(f ε) .

Therefore, A may be expressed as follows

A = ∂tVε (N(v)−N (Vε))− (v − Vε)

(

∂tVεN ′ (Vε) + (A(u)−A(Uε)) +
d

dt
E(f ε)

)

+ ∂wA(u) .

On the one hand, ∂tVε and Vε are uniformly bounded according to item (2) in Theorem 2.4. On
the other hand, we apply Corollary 2.5 which ensures that under the smallness assumption (1.22b),
the time derivative of E (f ε) is uniformly bounded as well. Consequently, for all positive ε, it holds

(

|∂tVε|+ | Uε|+
∣

∣

∣

∣

d

dt
E(f ε)

∣

∣

∣

∣

)

(s,y) ≤ C , ∀ (s,y) ∈ R
+ ×K ,

for some constant C depending only on the constants in assumptions (1.18)-(1.20), (1.22b) and on
the data of the problem N , A and Ψ. Therefore, we deduce the following bound for A

|A| ≤ C
(

1 + |v − Vε|+ |v − Vε|2 + |N(v)−N(Vε)|
)

+ b |(v − Vε)(w −Wε)| .
13



Then we apply Young’s inequality to bound the crossed term between v and w and use assumption
(1.13) to bound N(v). In the end, it yields

(3.5) |A| ≤ C (1 + |v − Vε|p) + 1

2
|w −Wε|2 .

Building on this estimate, we can now pass to the heart of the proof and show that χ+ and χ− are
respectively super- and sub-solutions to (3.2). We evaluate equation (3.2) in χ+ and χ− and obtain

∂tχ± +∇uχ± · bε + divu [bε]− ∂2vχ± − |∂vχ±|2 +
1

ε
ρε0 (v − Vε) ∂vχ± = A±B ±m′(t)− |∂vψ|2 ,

where A is given by (3.4) and B is given by

(3.6) B = ∂tψ +∇uψ · bε − ∂2vψ − 2 ∂vψ ∂vφ
ε
1 +

1

ε
ρε0 (v − Vε) ∂vψ .

In order to conclude that χ+ and χ− are respectively sub- and super-solutions to (3.2), it is sufficient
to prove

B +m′(t)− |∂vψ|2 − |A| ≥ 0 .

Therefore, we focus on proving the latter inequality. To begin with, we have

B − |∂vψ|2

=− α0 (v − Vε) ∂tVε +
α′(t)

2
|w −Wε|2 − α(t) (w −Wε) ∂tWε

+ α0 (v − Vε)Bε(t,x,u) + α(t) (w −Wε)A(u)− α0 − 2α0 (v − Vε) (Bε(t,x,u) − ∂tVε)

+
ρε0
ε
α0 |v − Vε|2 − α2

0 |v − Vε|2

=
α′(t)

2
|w −Wε|2 − α0 (v − Vε) (Bε(t,x,u) − ∂t Vε)

+ α(t) (w −Wε) (A(u)−A(Uε))− α0 +

(

ρε0
ε
α0 − α2

0

)

|v − Vε|2

=
α′(t)

2
|w −Wε|2 − α0 (v − Vε) (Bε(t,x,u) −Bε(t,x,Uε)− E(f ε))

+ α(t) (w −Wε) (a (v − Vε)− b (w −Wε))− α0 +

(

ρε0
ε
α0 − α2

0

)

|v − Vε|2

≥
(

α′(t)

2
− α(t)(|a| + b)

)

|w −Wε|2 − α0 (v − Vε) (Bε(t,x,u)−Bε(t,x, Uε)− E(f ε))

− α0 +

(

ρε0
ε
α0 − α2

0 −
|a|
4
α(t)

)

|v − Vε|2 ,

where we have used the Young inequality at the last line. Gathering the latter estimate and (3.5)
we obtain

B +m′(t)− |∂vψ|2 − |A|

≥m′(t) +

(

α′(t)

2
− α(t)(|a| + b)

)

|w −Wε|2 − α0 (v − Vε) (Bε(t,x,u) −Bε(t,x,Uε)− E(f ε))

− α0 +

(

ρε0
ε
α0 − α2

0 −
|a|
4
α(t)

)

|v − Vε|2 − C (1 + |v − Vε|p)− |w −Wε|2 .

≥m′(t) +

(

α′(t)

2
− α(t)(|a| + b)− 1

)

|w −Wε|2 − α0 − α0 (v − Vε) (N(v)−N(Vε))

+

(

α0Ψ ∗ ρε0(x) +
ρε0
ε
α0 −

3

2
α2
0 −

|a|
4
α(t)−

(

|a|+ b

2
+

1

2

)

− 1

2
α0

)

|v − Vε|2

+ α0 (v − Vε) E(f ε)−C (1 + |v − Vε|p) ,
14



where we have used Young inequality and the following relation

Bε(t,x,u) −Bε(t,x,Uε) = N(v)−N(Vε)− (w −Wε)−Ψ ∗ ρε0(x)(v − Vε) .

To control the contribution of the term |w−Wε|2 in the latter expression, we choose α(t) such that
α′(t)

2
− α(t)(|a| + b)− 1 = 0, that is

α(t) = α0 exp (2(|a| + b)t) +
1

|a|+ b
(exp (2(|a|+ b)t)− 1) .

Furthermore, since E(f ε), ρε0 and Ψ ∗ ρε0 are uniformly bounded according to (respectively) item (2)
in Theorem 2.4, assumptions (1.18) and (1.16), we deduce

B +m′(t)− |∂vψ|2 − |A|

≥m′(t)− α0 (v − Vε) (N(v)−N(Vε))− C
(

1 + exp (2 (|a| + b) t) |v − Vε|2 + |v − Vε|p
)

,

for some constant C > 0. To control the terms of order |v − Vε|2 and |v − Vε|p in the latter
expression, we rely on the confining property (1.13) of N , which ensures

(v − Vε) (N(v)−N(Vε)) ≤ C − 1

C
|v − Vε|p+1 ,

for some constant C great enough. Hence, we obtain

B +m′(t)− |∂vψ|2 − |A|

≥m′(t) +
1

C
|v − Vε|p+1 − C

(

1 + exp (2 (|a| + b) t) |v − Vε|2 + |v − Vε|p
)

.

Then we find that

1

C
|v − Vε|p+1 − C

(

1 + exp (2 (|a| + b) t) |v − Vε|2 + |v − Vε|p
)

≥ − C̃ exp ( 6 (|a| + b) t ) .

Hence choosing the function (t 7→ m(t)) such that

m′(t) = C̃ exp ( 6 (|a| + b) t ) ,

we obtain

B +m′(t)− |∂vψ|2 − |A| ≥ 0,

which concludes the proof. �

We are now able to proceed to the proof of Theorem 1.5. Indeed, relying on Lemma 3.1 and
applying a comparison principle to equation (3.2), we deduce convergence estimates for the Hopf-
Cole transform φε of f ε.

Proof of Theorem 1.5. All along this proof, we consider some positive constants α0 (to be deter-
mined later on) and we work with the associated quantities ψ, χ+ and χ− defined in Proposition
3.1. We proceed in three steps

(1) we prove that under our set of assumptions, it holds uniformly in ε

χ−(0,x,u) ≤ φε1(0,x,u) ≤ χ+(0,x,u), ∀(x,u) ∈ K × R
2,

where χ+ and χ− are defined in Lemma 3.1,
(2) we apply Lemma 3.1 and prove a comparison principle to deduce that the latter inequality

holds for all positive time, that is

χ−(t,x,u) ≤ φε1(t,x,u) ≤ χ+(t,x,u), ∀(t,x) ∈ R
+ ×K, a.e. in u ∈ R

2,

(3) we conclude that φε converges locally uniformly to −1
2ρ0 |v − V|2.
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We start with step (1). Dividing (1.22a) by ε and replacing φε with φε1 according to (3.1) we
obtain the following bound for all positive ε

n(v)− C
(

1 + |u|2
)

≤
(

φε1 +
1

ε

(

−1

2
ρε0 |v − Vε|2 + 1

2
ρ0 |v − V|2

))

(0,x,u) ≤ n(v) + C
(

1 + |u|2
)

,

for all (x,u) ∈ K × R
2. On the one hand, according to assumptions (1.18), (1.19) and (1.21), it

holds
1

ε

∣

∣

∣

∣

−1

2
ρε0 |v − Vε

0(x)|2 +
1

2
ρ0 |v − V0(x)|2

∣

∣

∣

∣

≤ C
(

1 + |u− Uε
0 (x)|2

)

,

for all (x,u) ∈ K×R
2, for some constant C depending only on the initial condition f ε0 (only through

the constants appearing in assumptions (1.18), (1.19) and (1.21)). On the other hand, according to
assumptions (1.16) and (1.18), Ψ ∗ ρε0 is uniformly bounded with respect to both x ∈ K and ε > 0.
On top of that, Uε

0 and E (f ε0 ) are also uniformly bounded with respect to both x ∈ K and ε > 0
according to assumptions (1.13) and (1.19). Therefore, according to the definition (3.3) of φε1, it
holds

∣

∣n− φε1
∣

∣ (0,x,u) ≤ C
(

1 + |u− Uε
0 (x)|2

)

,

for all (x,u) ∈ K × R
2, for some constant C depending on the initial condition f ε0 (only through

the constants appearing in assumptions (1.18)-(1.19)) and N . Gathering these considerations and
writing

φε1 − φε1 =
1

ε

(

φε +
1

2
ρ0 |v − V|2 − εn

)

+
1

ε

(

−1

2
ρ0 |v − V|2 + 1

2
ρε0 |v − Vε|2

)

+ n− φε1,

we deduce that according to assumption (1.22a), for all positive ε, it holds

φε1(0,x,u) − C
(

1 + |u− Uε
0 (x)|2

)

≤ φε1(0,x,u) ≤ φε1(0,x,u) + C
(

1 + |u− Uε
0 (x)|2

)

,

for all (x,u) ∈ K × R
2. Therefore, taking α0/2 and m(0) greater than C, we conclude step (1),

indeed for all positive ε it holds

χ−(0,x,u) ≤ φε1(0,x,u) ≤ χ+(0,x,u), ∀(x,u) ∈ K × R
2,

where χ+ and χ− are given in Proposition 3.1.

Let us now turn to step (2), which consists in proving that the latter estimate holds true for all
positive time by applying a comparison principle. For technical reasons detailed in Appendix A,
we apply the comparison principle for the following linearized version of the kinetic equation (1.4),
instead of working directly on equation (3.2)

(3.7) ∂tf + divu [bεf ]− ∂2vf =
1

ε
ρε0∂v [(v − Vε)f ] .

Therefore, we define f+ and f− for all (t,x,u) ∈ R
+ ×K × R

2 as follows

f±(t,x,u) =

√

ρ0(x)

2πε
exp

(

− 1

2 ε
ρε0 |v − Vε (t,x)|2 + χ± (t,x,u)

)

.

We prove that these quantities are classical super- and sub-solutions of (3.7) applying jointly Lemma
3.1, to ensure that χ− and χ+ are respectively sub and super-solutions to equation (3.2) and Lemma
A.1, which ensures that under the regularity condition f±, ∂tf±,∇2

u
f± ∈ C 0

(

R
+ ×K × R

2
)

, f− and
f+ are respectively sub and super-solutions to (3.7) if and only if χ− and χ+ are respectively sub and
super-solutions to (3.2). To verify the regularity assumption, we apply Lemma 2.1 which ensures
that Uε and E(f ε) are continuous and have continuous time derivative over R+×K. Therefore, f±,
∂tf± and ∇2

u
f± lie in C 0

(

R
+ ×K × R

2
)

. To conclude, we rely on the previous step, which ensures

f−(0,x,u) ≤ f ε0 (x,u) ≤ f+(0,x,u), ∀(x,u) ∈ K × R
2.

Therefore, relying on the comparison principle proved in Lemma A.2, we deduce

f−(t,x,u) ≤ f ε(t,x,u) ≤ f+(t,x,u), ∀(t,x) ∈ R
+ ×K, a.e. in u ∈ R

2.
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Taking the logarithm of the latter relation, we deduce that the bound obtained in step (1), propa-
gates through time, that is, for all positive ε, it holds

χ−(t,x,u) ≤ φε1(t,x,u) ≤ χ+(t,x,u), ∀(t,x) ∈ R
+ ×K, a.e. in u ∈ R

2.

We can now turn to the last step and prove our main result. According to the definition of φε1
and the result of step (2), it holds

−1

2
ρε0 |v − Vε|2 + 1

2
ρ0 |v − V|2 + εχ− ≤ φε +

1

2
ρ0 |v − V|2 ≤ −1

2
ρε0 |v − Vε|2 + 1

2
ρ0 |v − V|2 + εχ+,

for all ∀(t,x) ∈ R
+ ×K, a.e. in u ∈ R

2. On the one hand, relying on item (1) in Theorem 2.4 and
since the initial condition f ε0 meets the compatibility assumption (1.21), there exists two positive
constants C and ε0 such that for all ε ≤ ε0, it holds

∣

∣

∣

∣

−1

2
ρε0 |v − Vε|2 + 1

2
ρ0 |v − V|2

∣

∣

∣

∣

(t,x,u) ≤ εCeCt
(

1 + |u|2
)

,

for all (t,x,u) ∈ R
+×K×R

2, where constants C and ε0 only depends on the data of our problem:
f ε0 (only through the constants appearing in assumptions (1.18)-(1.20) and (1.21)), N , A and Ψ.
On the other hand, according to assumption (1.18) and (1.16), Ψ ∗ ρε0 is uniformly bounded with
respect to both x ∈ K and ε > 0. On top of that, Uε and E (f ε) are also uniformly bounded with
respect to both (t,x) ∈ R

+×K and ε > 0 according item (2) in Theorem 2.4. Therefore, according
to the definitions of χ− and χ+ (see Lemma 3.1) and since N is continuous, it holds

|χ± − n| (t,x,u) ≤ CeCt
(

1 + |u|2
)

,

for all (t,x,u) ∈ K ×R
2, where the constant C only depends on the data of our problem: f ε0 (only

through the constants appearing in assumptions (1.18)-(1.20)), N , A and Ψ. Hence, we deduce the
result: for all ε ≤ ε0 it holds

ε
(

n(v)− CeCt
(

1 + |u|2
))

≤
(

φε +
1

2
ρ0 |v − V|2

)

(t,x,u) ≤ ε
(

n(v) + CeCt
(

1 + |u|2
))

,

for all ∀(t,x) ∈ R
+ ×K, a.e. in u ∈ R

2, where constants C and ε0 only depends on the data of our
problem: f ε0 (only through the constants appearing in assumptions (1.18)-(1.20) and (1.21)-(1.22b)),
N , A and Ψ. �
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Appendix A. Comparison principles

The object of this section is to prove a comparison principle for equation (3.2) in order to complete
step (2) in the proof of Theorem 1.5. More precisely, we prove that if the quantity φε1 defined by
(3.1) verifies

χ−(0,x,u) ≤ φε1(0,x,u) ≤ χ+(0,x,u), ∀(x,u) ∈ K × R
2,

where χ− an χ+ are respectively sub and super-solutions to (3.2), then the latter estimate propagates
through time, that is

χ−(t,x,u) ≤ φε1(t,x,u) ≤ χ+(t,x,u), ∀(t,x,u) ∈ R
+ ×K × R

2.

Instead of working directly on equation (3.2), our strategy consists in proving a comparison principle
for the linearized version (3.7) of the kinetic equation (1.4). Indeed, it is more convenient to work
on equation (3.7) since we can rely on the decaying properties of solutions to (1.4) provided by
Theorem 1.4. From the comparison principle on equation (3.7), we will easily deduce the expected
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result. This approach is made possible since, according to the following lemma, there is a direct
link between sub- and super-solutions to equations (3.7) and (3.2)

Lemma A.1. Consider some fixed ε > 0. Under the assumptions of Theorem 1.4, consider the
solution f ε to equation (1.4) and its associated macroscopic quantities (Vε,Wε) provided by The-
orem 1.4. Furthermore, consider a strictly positive function f such that f , ∂tf and ∇2

u
f lie in

C 0
(

R
+ ×K ×R

2
)

and define χ as follows

f(t,x,u) =

√

ρ0(x)

2πε
exp

((

− 1

2ε
ρε0 |v − Vε|2 + χ

)

(t,x,u)

)

, ∀(t,x,u) ∈ R
+ ×K × R

2.

Then the following statements are equivalent

(1) f is a super-solution (resp. sub-solution) to (3.7).
(2) χ is a super-solution (resp. sub-solution) to (3.2).

Proof. We consider f and χ as in Lemma A.1 and proceed in two steps. On the one hand, plugging
f in equation (3.7), one has the following relation

∂tf + divu [bεf ]− ∂2vf − 1

ε
ρε0∂v [(v − Vε)f ] =

1

ε
f A ,

for all (t,x,u) ∈ R
+×K×R

2 whereA gathers the terms obtained plugging φ := −1

2
ρε0 |v − Vε|2+εχ

into equation (1.11), that is

A = ∂tφ+∇uφ · bε + εdivu [b]− ∂2vφ− ρε0 −
1

ε

(

∂v

(

1

2
ρε0 |v − Vε|2 + φ

)

∂vφ

)

.

On the other hand, according to computations already detailed at the beginning of Section 3, A
also corresponds to the terms obtained plugging χ into equation (3.2), that is

A = ε

(

∂tχ+∇uχ · bε + divu [bε]− ∂2vχ− |∂vχ|2 +
1

ε
ρε0 (v − Vε) ∂v

(

χ− φε1
)

)

,

for all (t,x,u) ∈ R
+ ×K × R

2. Therefore, we deduce

∂tf + divu [bεf ]− ∂2vf − 1

ε
ρε0∂v [(v − Vε)f ] =

f

(

∂tχ+∇uχ · bε + divu [bε]− ∂2vχ− |∂vχ|2 +
1

ε
ρε0 (v − Vε) ∂v

(

χ− φε1
)

)

,

which yields the result since f is strictly positive. �

It is now left to prove that a comparison principle holds for equation (3.7). It is the object of the
following Lemma

Lemma A.2. Consider some fixed ε > 0. Under the assumptions of Theorem 1.4 and Proposition
2.2, consider the solution f ε to equation (1.4) and its associated macroscopic quantities (Vε,Wε)
provided by Theorem 1.4. Furthermore, consider a strictly positive function f such that f , ∂tf and
∇2

u
f lie in C 0

(

R
+ ×K × R

2
)

. Suppose that at initial time, it holds

f ε0 (x,u) ≤ f(0,x,u), ∀(x,u) ∈ K × R
2,

and that f is super-solution to equation (3.7), that is

0 ≤ ∂tf + divu [bεf ]− ∂2vf − 1

ε
ρε0∂v [(v − Vε)f ] ,

for all (t,x,u) ∈ R
+ ×K × R

2. Then it holds

f ε(t,x,u) ≤ f(t,x,u), ∀(t,x) ∈ R
+ ×K, a.e. in u ∈ R

2.

Furthermore, the latter statement is also true if we replace “super-solution” by “sub-solution” and
the symbol “≥” by “≤”.
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Proof. Since the proof of the comparison principle for super and sub-solutions is the same, we only
detail it for super-solutions. According to Proposition 2.2, f ε is a classical solution to (1.4), hence
it holds

∂t(f
ε − f) + divu [bε(f ε − f)]− ∂2v (f

ε − f)− 1

ε
ρε0∂v [(v − Vε)(f ε − f)] ≤ 0

a.e. with respect to (t,x,u) ∈ R
+ ×K × R

2. Therefore, multiplying the latter relation by 1fε≥f ,
we deduce that in the weak sense, it holds

∂t(f
ε − f)+ + divu [bε(f ε − f)+]− ∂2v (f

ε − f)+ − 1

ε
ρε0∂v [(v − Vε)(f ε − f)+] ≤ 0,

where (·)+ stands for the positive part and is defined by (·)+ = (| · |+ idR)/2. In order to derive the
latter relation, we follow a classical procedure which we do not detail here and which consists in
regularizing the positive part (·)+. Then we integrate the latter relation with respect to time and
u and obtain

∫

R2

(f ε − f)+(t,x,u)du ≤
∫

R2

(f ε − f)+(0,x,u)du.

The latter computations are justified since 0 ≤ (f ε − f)+ ≤ f ε and since, according to Theorem
1.4, f ε has moments up to any order with respect to u. Since f ε ≤ f at time t = 0, we deduce the
result. �

Appendix B. Regularity estimates

In this section, we derive regularity estimates for the solution f ε to equation (1.4) and therefore
prove Proposition 2.2. The main difficulty here consists in dealing with the contribution due to the
non-linear drift N . We bypass this difficulty by estimating the norm of f ε and its derivatives in the
following weighted L1 spaces

L1(ωq) =

{

f : R2 7→ R,

∫

R2

|f |ωq(u)du < +∞
}

,

where ωq(u) = 1 + |u|q, for q ≥ 2. The first step consists in estimating the norm of f ε in L1(ωq).
This step relies on previous results obtained in [7]. Then we adapt these computations to evaluate
the norm of the derivatives of f ε in L1(ωq). Indeed, the derivatives of f ε solve equation (1.4) with
additional source terms whose contribution can be controlled thanks to the confining properties of
the non-linear drift N . Let us outline the strategy in the case of the first order derivatives: equation
(1.4) on f ε reads as follows

∂tf
ε = A

εf ε,

where operator A ε is given by

A
εf = ∂2vf +

1

ε
ρε0∂v [(v − Vε)f ]− divu [bεf ] .

Relying the arguments developed in the proof of [7, Proposition 3.1] it holds

Lemma B.1. Consider some fixed ε and some q ≥ 2. Under the assumptions of Theorem 1.4,
consider the operator A ε associated to the solution f ε to equation (1.4). There exists a positive
constant C such that for all x ∈ K, it holds

∫

R2

sgn (f)A ε (f)ωq(u)du ≤ C‖f‖L1(ωq) + q

∫

R2

1|v|≥1
N(v)

v
|v|qf(u)du,

for all function f lying in W 2,1(ωp+q).

As a direct consequence of Lemma B.1, we deduce that for any smooth initial data f ε0 , the
solution f ε to equation (1.4) provided by Theorem 1.4 lies in L∞

loc

(

R
+ ×K,L1 (ωq)

)

for all exponent
q ≥ 2. Indeed, since N meets the confining assumption (1.13) we have: 1|v|≥1N(v)/v ≤ C for some
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constant C. Therefore, multiplying equation (1.4) by sgn (f ε)ωq(u), integrating with respect to u

and applying Lemma B.1, we obtain that for all exponent q, it holds

d

dt
‖f ε‖L1(ωq) ≤ C‖f ε‖L1(ωq).

Hence, applying Gronwall’s lemma and taking the supremum over all x ∈ K, we deduce

(B.1) ‖f ε(t)‖L∞(K,L1(ωq)) ≤ eCt‖f ε0‖L∞(K,L1(ωq)),

for all t ∈ R
+. We follow the same strategy for derivatives of f ε: writing (g, h) = (∂vf

ε, ∂wf
ε) and

differentiating equation (1.4) with respect to v and w we obtain

(B.2)











∂tg = A
εg −

(

N ′ −Ψ ∗ ρε0 −
1

ε
ρε0

)

g −N ′′f ε − ah,

∂th = A
εh+ g + bh.

Therefore, g and h solve the same equation as f ε with additional an high order term due to the
non-linear drift N . We control this additional term thanks to the confining properties of N .

Proof of Proposition 2.2. Let us consider some initial data f ε0 lying in C 0
(

K,C ∞
c

(

R
2
))

and the
associated solution f ε to (1.4) provided by Theorem 1.4. We start by proving that f ε lies in
L∞
loc

(

R
+ ×K,W 1,1

(

R
2
))

. We fix some x ∈ K, some exponent q ≥ 2 and integrate with respect to
u the sum between the first equation in (B.2) multiplied by sgn (g)ωq(u) and the second multiplied
by sgn (h)ωq(u). According to Lemma B.1, assumptions (1.16) on Ψ, (1.18) on ρε0 and (1.14) on
N , we obtain

d

dt

(

‖g‖L1(ωq) + ‖h‖L1(ωq)

)

≤C
(

‖g‖L1(ωq) + ‖h‖L1(ωq) + ‖f ε‖L1(ωp′)

)

+

∫

R2

(

q1|v|≥1
N(v)

v
−N ′(v)

)

|v|qg(u)du,

where p′ is given in assumption (1.14). Since N meets assumptions (1.13) and (2.1), we deduce that
for q great enough, it holds

d

dt

(

‖g‖L1(ωq) + ‖h‖L1(ωq)

)

≤ C
(

‖g‖L1(ωq) + ‖h‖L1(ωq) + ‖f ε‖L1(ωp′)

)

.

Therefore, applying Gronwall’s lemma, taking the supremum over all x ∈ K and replacing ‖f ε‖L1(ωp′)
according to estimate (B.1), we deduce

‖g(t)‖L∞(K,L1(ωq)) + ‖h(t)‖L∞(K,L1(ωq)) ≤

eCt
(

‖g0‖L∞(K,L1(ωq)) + ‖h0‖L∞(K,L1(ωq)) + ‖f ε0‖L∞(K,L1(ωq))

)

,

for all time t ∈ R
+. As a straightforward consequence, we obtain the expected result: f ε ∈

L∞
loc

(

R
+ ×K,W 1,1

(

R
2
))

.

We obtain that f ε ∈ L∞
loc

(

R
+ ×K,W 2,1

(

R
2
))

iterating the same procedure as before but this
time on the derivatives of g and h and using assumption (2.1), which ensures that N ′′′ has polyno-
mial growth.

To end with, we obtain ∂tf
ε ∈ L∞

loc

(

R
+ ×K,L1

(

R
2
))

noticing that according to the definition
of A ε, it holds

‖A εf ε‖L∞(K,L1(R2)) ≤ C‖f ε‖L∞(K,W 2,1(ωq)),

for q great enough. Then we apply the previous estimates to the relation

∂tf
ε = A

εf ε.
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