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In this paper we focus on a mean-field model for a spatially extended FitzHugh-Nagumo neural network. In the regime where strong and local interactions dominate, we quantify how the probability density of voltage concentrates into a Dirac distribution. Previous work investigating this question have provided relative bounds in integrability spaces. Using a Hopf-Cole framework, we derive precise L ∞ estimates using subtle explicit sub-and super-solutions which prove, with rates of convergence, that the blow up profile is Gaussian.

Introduction

The model. Understanding the complex dynamics induced by interactions in large assemblies of neurons constitute one of the great challenge in neuroscience. As described in neuroscience textbooks [START_REF] Kandel | Principles of Neural Science, Fifth Edition[END_REF], neurons behave and interact according to intricate chemical and electrical mechanisms. Due to the complexity of these mechanisms, it is mandatory to consider simplified models. A key step in this direction is the pioneering work of A. Hodgkin and A. Huxley [START_REF] Hodgkin | Action Potentials Recorded from Inside a Nerve Fibre[END_REF][START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF], who built an accurate model describing the membrane potential dynamics of a single nerve cell submitted to an external current. This model captures the main features of a neuron's membrane potential behaviour such as periodic patterns, relaxation toward equilibrium state as well as spiking behaviour also known as action potential. It falls into the category of so called "voltage-conductance based models" which describe the dynamics of the membrane potential through auxiliary variables taking into account ionic exchanges between a neuron and its extra-cellular environment (see [START_REF] Bressloff | Waves in Neural Media: From single Neurons to Neural Fields[END_REF][START_REF] Dayan | Theoretical neuroscience[END_REF][START_REF] Kandel | Principles of Neural Science, Fifth Edition[END_REF] for precise introductions to such models). Due to the complexity of this model, we focus on a simplified version introduced by R. FitzHugh and J. Nagumo [START_REF] Fitzhugh | Impulses and Physiological States in Theoretical Models of Nerve Membrane[END_REF][START_REF] Nagumo | An Active Pulse Transmission Line Simulating Nerve Axon[END_REF], which conserves the main features of the Hodgkin-Huxley model while remaining more tractable from a mathematical point of view

     dv t = (N (v t ) -w t + I ext ) dt + √ 2dB t , dw t = A (v t , w t ) dt,
where v t ∈ R is the membrane potential coupled whereas w t ∈ R is an adaptation variable. The non-linear drift N takes the form N (v) = v -v 3 in the original articles of R. FitzHugh and J. Nagumo but we shall consider a broader class of drifts here. Coefficient A is given by

A(v, w) = a v -b w + c ,
where a, c ∈ R and b > 0. The Brownian motion B t describes non deterministic fluctuations of the potential which are not taken into account by the model, whereas I ext stands for the current received by the neuron from its environment. Since our purpose is to describe interactions between neurons, we introduce coupling through the term I ext : we consider Ohmic interactions between neurons with spatially dependent conductance given by a connectivity kernel Φ : K × K → R, where K is a compact set of R d . Hence, in the case of m interacting neurons described by the triplet voltageadaptation-position (v i , w i , x i ) 1≤i≤m , the current received by neuron i from its neighbors is given by (1.1)

I ext = - 1 m m j=1 Φ(x i , x j ) (v i t -v j t ) .
Therefore, we obtain the following microscopic description of a FitzHugh-Nagumo neural network

         dv i t =   N (v i t ) -w i t - 1 m m j=1 Φ(x i , x j ) (v i t -v j t )   dt + √ 2 dB i t , dw i t = A v i t , w i t dt ,
where i ∈ {1, ..., m}. The mean-field limit, corresponding to m → +∞ in the latter system, was rigorously analysed in the case of FitzHugh-Nagumo neurons [START_REF] Crevat | Mean-field limit of a spatially-extended Fitzhugh-Nagumo neural network[END_REF][START_REF] Mischler | On a kinetic Fitzhugh-Nagumo model of neuronal network[END_REF] as well as in more general cases, including the Hodkin-Huxley case [START_REF] Baladron | Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons[END_REF][START_REF] Bossy | Clarification and complement to 'Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons[END_REF][START_REF] Luçon | Mean field limit for disordered diffusions with singular interactions[END_REF]; we also mention similar works for mean-field limits with non-exchangeable systems [START_REF] Jabin | Mean-field limit of non-exchangeable systems[END_REF][START_REF] Quiñinao | Limits and dynamics of randomly connected neuronal networks[END_REF] and [START_REF] Bolley | Stochastic mean-field limit: non-Lipschitz forces and swarming[END_REF] for a related model in collective dynamics. It was proved that the empirical measure associated to the latter system converges towards a distribution function f := f (t, x, u), with u = (v, w) ∈ R 2 , representing the density of neurons at time t, position x ∈ K, with membrane potential v and adaptation variable w ∈ R. The dynamics of the distribution function f are prescribed by the following mean-field equation

∂ t f + ∂ v ((N (v) -w -K Φ [f ]) f ) + ∂ w (A(v, w)f ) -∂ 2 v f = 0
, where the operator K Φ [f ] takes into account spatial interactions and is given by

K Φ [f ](t, x, v) = K×R 2 Φ(x, x ′ ) (v -v ′ ) f (t, x ′ , u ′ )dx ′ du ′ .
This model is a typical example of McKean-Vlasov equation including voltage and conductance variables; other models of this type are available in the literature [START_REF] Carrillo | A simplified voltage-conductance kinetic model for interacting neurons and its asymptotic limit[END_REF][START_REF] Perthame | On a voltage-conductance kinetic system for integrate and fire neural networks[END_REF] as well as other popular family of models including integrate-and-fire neural networks [START_REF] Càceres | Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states[END_REF][START_REF] Càceres | Global-in-time solutions and qualitative properties for the NNLIF neuron model with synaptic delay[END_REF][START_REF] Carrillo | Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience[END_REF] and time-elapsed neuronal models [START_REF] Chevallier | Mean-field limit of generalized Hawkes processes[END_REF][START_REF] Chevallier | Microscopic approach of a time elapsed neural model[END_REF][START_REF] Chevallier | Mean-field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels[END_REF][START_REF] Mischler | Relaxation in Time Elapsed Neuron Network Models in the Weak Connectivity Regime[END_REF][START_REF] Pakdaman | Dynamics of a structured neuron population[END_REF]. We mention that the discrete analog of K Φ [f ] given by (1.1) may be recovered replacing f in the definition of K Φ [f ] by the empirical distribution of the microscopic model.

The question at hand. In the present article, we are interested in the dynamics of the network when short-range interactions dominate: we consider a situation where the connectivity kernel Φ decomposes as follows

(1.2) Φ(x, x ′ ) = Ψ(x, x ′ ) + 1 ε δ 0 (x -x ′ ) ,
where the Dirac mass δ 0 accounts for short-range interactions whereas the interaction kernel Ψ models long-range interactions. The scaling parameter ε > 0 represents the magnitude of shortrange interactions: we now write f ε instead of f and focus on the regime ε ≪ 1. Such decomposition is biologically relevant since visual [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF] and sensory [START_REF] Mountcastle | Modality and topographic properties of single neurons of cat's somatic sensory cortex[END_REF][START_REF] Mountcastle | 11 Dynamic Neural Operations in Somatic Sensibility[END_REF] cortices are organized into sub-regions called cortical columns within which neuron strongly interact and have thus similar answers to external signals [START_REF] Lund | Anatomical substrates for functional columns in macaque monkey primary visual cortex[END_REF]. This structure has been studied both at mathematical and numerical levels [START_REF] Blaustein | Large coupling in a FitzHug-Nagumo neural network: quantitative and strong convergence results[END_REF][START_REF] Blaustein | Concentration phenomena in Fitzhugh-Nagumo equations: a mesoscopic approach[END_REF][START_REF] Bressloff | Spatially periodic modulation of cortical patterns by long-range horizontal connections[END_REF][START_REF] Crevat | Rigorous derivation of the nonlocal reaction-diffusion Fitzhugh-Nagumo system[END_REF][START_REF] Crevat | Asymptotic preserving schemes for the FitzHugh-Nagumo transport equation with strong local interactions[END_REF][START_REF] Quiñinao | Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model[END_REF]. We point out that it is possible to replace the Dirac mass approximation for short range interactions with a localized kernel [START_REF] Bressloff | Spatially periodic modulation of cortical patterns by long-range horizontal connections[END_REF][START_REF] Crevat | Asymptotic preserving schemes for the FitzHugh-Nagumo transport equation with strong local interactions[END_REF].

Let us present what is known in our particular context. To do so, we introduce the macroscopic quantities associated to the network: the spatial distribution of neurons (which is time-homogeneous, according to an integration of the mean-field equation with respect to u ∈ R 2 )

ρ ε 0 (x) = R 2 f ε (t, x, u)du,
as well as the averaged voltage and adaptation variable at spatial location x ∈ K

(1.3) U ε := (V ε , W ε ) , with        ρ ε 0 (x) V ε (t, x) = R 2 v f ε (t, x, u)du ρ ε 0 (x) W ε (t, x) = R 2 w f ε (t, x, u)du
.

We outline that the interaction term K Φ [f ε ] admits the following simple expression in terms of the macroscopic quantities

K Φ [f ε ](t, x, v) = Φ * ρ ε 0 (x) v -Φ * (ρ ε 0 V ε )(t, x)
, where * denotes the convolution on the right side of any function g with Φ

Φ * g(x) = K Φ(x, x ′ )g(x ′ )dx ′ .
According to (1.2), we substitute Φ with Ψ + δ 0 /ε in the latter expression of

K Φ [f ε ]; it yields K Φ [f ε ](t, x, v) = Ψ * ρ ε 0 (x) v -Ψ * (ρ ε 0 V ε )(t, x) + 1 ε ρ ε 0 (x) (v -V ε (t, x)) .
Therefore, the mean-field equation may be rewritten

(1.4) ∂ t f ε + div u [b ε f ε ] -∂ 2 v f ε = 1 ε ρ ε 0 ∂ v [(v -V ε )f ε ] ,
where coefficient b ε is defined for all (t, x, u

) ∈ R + × K × R 2 as (1.5) b ε (t, x, u) := B ε (t, x, u) A(u) = N (v) -w -v Ψ * ρ ε 0 + Ψ * (ρ ε 0 V ε ) av -bw + c .
To infer the asymptotic behaviour of the network in the regime of strong interactions, we look for the leading order in (1.4): in our case, it is induced by short-range interactions between neurons, and as ε → 0, we expect

(v -V ε )f ε → ε→0 0,
to make sure that no term is singular in (1.4). Since (1.4) conserves total mass, this means that f ε concentrates into a Dirac ditribution centered in V ε with respect to the v-variable, that is

(1.6) f ε (t, x, u) ≈ ε→0 δ 0 (v -V ε (t, x)) ⊗ F ε (t, x, w),
where V ε is given by (1.3) and F ε is defined as the marginal of f ε with respect to the voltage variable

F ε (t, x, w) = R f ε (t, x, u) dv.
Multiplying equation (1.4) by u/ρ ε 0 and integrating with respect to u, one finds that the couple (V ε , W ε ) solves the following system (1.7)

∂ t V ε = N (V ε ) -W ε -V ε Ψ * ρ ε 0 + Ψ * (ρ ε 0 V ε ) + E(f ε ), ∂ t W ε = A(V ε , W ε ),
where the error term E (f ε ) is given by

(1.8) E (f ε (t, x, •)) = 1 ρ ε 0 (x) R 2 N (v)f ε (t, x, u) du -N (V ε ) .
All this, in turn, implies that as ε vanishes, (V ε , W ε ) converges to the couple (V, W), which solves (1.9)

         ∂ t V = N (V) -W -VΨ * ρ 0 + Ψ * (ρ 0 V), ∂ t W = A(V, W), (V (0, •) , W (0, •)) = (V 0 , W 0 ) ,
where ρ 0 = lim ε→0 ρ ε 0 . As of the marginal F ε , it has been shown in [START_REF] Blaustein | Large coupling in a FitzHug-Nagumo neural network: quantitative and strong convergence results[END_REF][START_REF] Blaustein | Concentration phenomena in Fitzhugh-Nagumo equations: a mesoscopic approach[END_REF][START_REF] Crevat | Rigorous derivation of the nonlocal reaction-diffusion Fitzhugh-Nagumo system[END_REF] that it also converges. The reaction-diffusion system (1.9) has been extensively studied, especially since it features traveling waves solutions [START_REF] Carpenter | A geometric approach to singular perturbation problems with applications to nerve impulse equations[END_REF][START_REF] Hastings | On the existence of homoclinic and periodic orbits for the FitzHugh-Nagumo equations[END_REF][START_REF] Jones | Stability of the Travelling Wave Solution of the Fitzhugh-Nagumo System[END_REF]. In (1.9), the non-local term may be replaced by a diffusion operator, sometimes also acting on the adaptation variable [START_REF] Chen | Standing waves joining with Turing patterns in FitzHugh-Nagumo type systems[END_REF]. Macroscopic systems with diffusion operators may be obtained from (1.4) as ε → 0 taking localized instead of punctual interactions in (1.2), as shown in [START_REF] Crevat | Asymptotic preserving schemes for the FitzHugh-Nagumo transport equation with strong local interactions[END_REF].

In this article, we refine convergence (1.6) by investigating the concentration profile of the solution f ε when ε goes to 0. To this end, we perform the so-called Hopf-Cole transform of f ε

(1.10) φ ε (t, x, u) := ε ln 2πε ρ 0 f ε (t, x, u) , ∀ (t, x, u) ∈ R + × K × R 2 ,
and study the convergence of φ ε as ε goes to zero. This approach has been widely followed to study concentration phenomena occurring in selection-mutation models in population dynamics [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Barles | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Diekmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Leman | Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system[END_REF][START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF][START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF]. Quininao and Touboul have shown in [START_REF] Quiñinao | Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model[END_REF] that it can lead to fruitful results in the present context. Indeed, inverting (1.10), we obtain

f ε = ρ 0 2πε exp φ ε ε ,
and therefore expect φ ε ≤ 0 as ε → 0. Furthermore, we see that the concentration points of f ε are characterized by the level sets {φ ε = 0} . Here, we are specifically interested in the behavior of φ ε at v → +∞, which describes precisely the asymptotic tail of f ε with respect to v.

Heuristics. Let us now formally justify the convergence of φ ε : injecting ansatz (1.10) in equation (1.4), we find that φ ε solves the following Hamilton-Jacobi equation

(1.11) ∂ t φ ε + ∇ u φ ε • b ε + ε div u [b ε ] -∂ 2 v φ ε -ρ ε 0 = 1 ε ∂ v 1 2 ρ ε 0 |v -V ε | 2 + φ ε ∂ v φ ε .
Keeping only the leading order in equation (1.11), we expect

φ ε ≈ ε→0 φ ,
where φ satisfies

∂ v 1 2 ρ ε 0 |v -V ε | 2 + φ ∂ v φ = 0 .
To determine φ, we reformulate the latter equation in the following equivalent form

(1.12) ∂ v φ(t, x, v) = -δ(t, x, v) ρ ε 0 (x) (v -V ε (t, x)) , ∀ (t, x, v) ∈ R + × K × R
, where δ(t, x, v) takes values in {0, 1}. We fix some (t, x) ∈ R + × K and suppose on the one hand ∂ v φ(t, x, •) to be smooth with respect to v and on the other hand ρ ε 0 (x) > 0. Since ∂ v φ(t, x, V ε ) = 0, we may divide (1.12) by ρ ε 0 (x) (v -V ε (t, x)) and deduce that δ(t, x, •) is a smooth function of v. Together with the fact that it takes discrete values, this implies that it does not depend on v. After integrating (1.12) with respect to v and passing to the limit ε → 0, this yields

φ ε (t, x, v) -→ ε→0 - δ 2 (t, x) ρ 0 (x) |v -V(t, x)| 2 + c(t, x).
Furthermore, since our problem conserves mass, we expect for each (t,

x) ∈ R + × K v∈R exp - δ 2 ε ρ 0 |v -V| 2 + c ε (t, x) dv = 2πε ρ 0 (x) ,
for all ε. This forces δ(t, x) = 1 and c(t, x) = 0; thus we obtain

φ ε (t, x, v) -→ ε→0 - 1 2 ρ 0 (x) |v -V(t, x)| 2 ,
where V is the solution to (1.9). This convergence is the object of our main result, Theorem 1.5 below, in which we provide explicit convergence rates with respect ε. Before going further, we shall be precise about the mathematical framework of this article.

Mathematical framework. In this paragraph, we first state and motivate our assumptions on the data of the problem: N , Ψ and f ε 0 . Then we precise the notion of solution we consider for equation (1.4). We suppose that the drift N ∈ C 2 (R) satisfies

(1.13) lim sup |v|→+∞ N (v) sgn(v)|v| p < 0, sup |v|≥1 N (v) |v| p < +∞,
for some p ≥ 2, and

(1.14) sup |v|≥1 N ′′ (v) + N ′ (v) |v| -p ′ < +∞,
for some p ′ ≥ 0.

Remark 1.1. On the one hand, assumption (1.13) is a key feature in the model proposed by R. FitzHugh and J. Nagumo: it says that N has super-linear confining properties in the sense that it decays super-linearly at infinity. On the other hand, assumption (1.14) is technical yet not restrictive in our case since it is satisfied when N is given by

N (v) = v -v 3 ,
which is the original choice in the FitzHugh-Nagumo model. More generally, (1.13)-(1.14) are satisfied by all drifts P (v) given by

P (v) = Q(v) -Cv|v| p-1 ,
for some positive constant C > 0 and where Q is a polynomial function with degree less then p.

The connectivity kernel satisfies

(1.15) (Ψ : x -→ Ψ (x , •)) ∈ C 0 K, L 1 (K) ,

and

(1.16) sup

x ′ ∈K K Ψ(x, x ′ ) dx < +∞, sup x∈K K Ψ(x, x ′ ) r dx ′ < +∞,
for some r > 1; in the sequel we define r ′ by 1 r + 1 r ′ = 1. This set of assumptions on Ψ allows for non-symmetric interactions between neurons [START_REF] Bressloff | Spatially periodic modulation of cortical patterns by long-range horizontal connections[END_REF], interactions following negative power law [START_REF] Chowdhury | Synchronization of oscillators with long-range power law interactions[END_REF][START_REF] Gupta | One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial fourier modes[END_REF][START_REF] Luçon | Mean field limit for disordered diffusions with singular interactions[END_REF][START_REF] Oelschläger | A law of large numbers for moderately interacting diffusion processes[END_REF] as well as "nearest-neighbor" type interactions [START_REF] Luçon | Mean field limit for disordered diffusions with singular interactions[END_REF][START_REF] Omelchenko | Loss of coherence in dynamical networks: Spatial chaos and chimera states[END_REF][START_REF] Omelchenko | Transition from spatial coherence to incoherence in coupled chaotic systems[END_REF].

We now specify the notion of solution we consider for equation (1.4). To this end, we state our assumptions on f ε 0 . We suppose, for each ε > 0

(1.17)

f ε 0 ∈ C 0 K, L 1 R 2 , f ε ≥ 0 and R 2 f ε 0 (x, u)dudx = 1, which ensures ρ ε 0 ∈ C 0 (K). We also suppose (1.18) m * ≤ ρ ε 0 ≤ 1/m * ,
for some positive constant m * independent of ε. On top of that, we assume the following condition: there exist two positive constants m p and m p , independent of ε, such that

(1.19) sup x∈K R 2 |u| 2(p+p ′ ) f ε 0 (x, u) du ≤ m p ,
and such that (1.20)

K×R 2 |u| 2(p+p ′ )r ′ f ε 0 (x, u) dudx ≤ m p ,
where p, p ′ and r ′ are given in (1.13), (1.14) ). In our context, it allows to propagate moments of the solution f ε to (1.4), which in turn provides control over macroscopic quantities (V ε , W ε ) and over the error term E (f ε ) given by (1.8) (see the second item of Theorem 2.4 for more details). The order of moment required is related to the drift N through exponents p and p ′ defined in (1.13)-(1.14): this is natural in order to control E (f ε ) which displays the drift N . These assumptions might not be optimal in the sense that the order of moment may be lowered; however we do not investigate any further this technical aspect since it is not our main interest here.

We consider the following solutions to (1.4)

Definition 1.3. For all ε > 0, we say that f ε solves (1.4) with initial condition f ε 0 if f ε ∈ C 0 R + × K, L 1 R 2 and for all x ∈ K, t ≥ 0, and ϕ ∈ C ∞ c R 2 , it holds R 2 ϕ(u) (f ε (t, x, u) -f ε 0 (x, u)) du = t 0 R 2 ∇ u ϕ • b ε + ∂ 2 v ϕ f ε (s, x, u)duds - ρ ε 0 (x) ε t 0 R 2 [∂ v ϕ (v -V ε ) f ε ] (s, x, u)duds,
where V ε and b ε are given by (1.3) and (1.4) respectively.

With this notion of solution, equation (1.4) is well-posed, the following result being proved in [START_REF] Blaustein | Concentration phenomena in Fitzhugh-Nagumo equations: a mesoscopic approach[END_REF].

Theorem 1.4 ([7]

). For any ε > 0, suppose that assumptions (1.13) on N , (1.16) on Ψ and (1.17)-(1.18) on the initial condition are fulfilled and that f ε 0 also verifies

         sup x∈K R 2 e |u| 2 /2 f ε 0 (x, u)du < +∞, sup x∈K R 2 ln [f ε 0 (x, u)]f ε 0 (x, u)du < +∞, and 
sup x∈K ∇ u f ε 0 2 L 2 (R 2 ) < +∞.
Then there exists a unique solution f ε to equation (1.4) with initial condition f ε 0 , in the sense of Definition 1.3 which verifies

sup (t,x)∈[0,T ]×K R 2 e |u| 2 /2 f ε (t, x, u)du < +∞, for all T ≥ 0.
Let us now state our main result.

Main result. The following theorem states that in the regime of strong local interactions, the voltage distribution of the neural network described by (1.4) blows up into a Dirac distribution and that concentration occurs with Gaussian profile. More specifically, we prove that the Hopf-Cole transform φ ε of f ε defined by (1.10) converges to -ρ 0 |v -V| 2 /2 uniformly with respect to all variables (t, x, u) as ε vanishes. Furthermore, we prove that convergence occurs at rate O (ε), which is (at least formally) optimal.

Theorem 1.5. Assume (1.13)-(1.20) and the additional assumptions of Theorem 1.4 and Proposition 2.2. Suppose that there exists a positive constant C independent of ε such that the following compatibility assumption holds

(1.21) U 0 -U ε 0 L ∞ (K) + ρ 0 -ρ ε 0 L ∞ (K)
≤ Cε, as well as the following set of "smallness assumptions"

           φ ε 0 + 1 2 ρ 0 |v -V 0 | 2 -εn ≤ εC 1 + |u| 2 , ∀(x, u) ∈ K × R 2 , (1.22a) R 2 |v -V ε 0 | 2 + |v -V ε 0 | p ′ +1 f ε 0 ( x, u)du ≤ Cε, ∀x ∈ K , (1.22b)
for all ε > 0, where n is a primitive of N : n ′ (v) = N (v). Then the sequence (φ ε ) ε>0 of Hopf-Cole transforms of the solutions (f ε ) ε>0 to (1.4) is well defined and it converges locally uniformly on R + × K × R 2 to -ρ 0 |v -V| 2 /2 with rate ε, where V is given by (1.9). More precisely, there exist two positive constants C and ε 0 such that for all ε ≤ ε 0 ,

φ ε + 1 2 ρ 0 |v -V| 2 -εn (t, x, u) ≤ εCe Ct 1 + |u| 2 , ∀(t, x) ∈ R + × K, a.e. in u ∈ R 2 .
As a consequence, f ε converges uniformly to 0 on the compact subsets of R + ×K×R 2 \{v = V (t, x)}.

In the latter results, constants C and ε 0 only depend on the data of our problem: f ε 0 (only through the constants appearing in assumptions Before going further into our analysis, let us comment on our result. We first emphasize that it deals with uniform convergence with respect to all variables, which is a great improvement in comparison to former results obtained in [START_REF] Blaustein | Large coupling in a FitzHug-Nagumo neural network: quantitative and strong convergence results[END_REF][START_REF] Blaustein | Concentration phenomena in Fitzhugh-Nagumo equations: a mesoscopic approach[END_REF], where L 1 , L 2 and weak convergence estimates were obtained. We also point out that the present article is in line with [START_REF] Quiñinao | Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model[END_REF], where a compactness argument was used to obtain the convergence of φ ε for truncated versions of the drift N . In the present article, we take advantage of the particular structure of the problem, specifically of the confining properties of N provided by assumption (1.13) to obtain a rate of convergence with respect to ε. We emphasize that our result holds in a perturbative setting. To illustrate this remark, we consider the following initial condition, which satisfies the assumptions of Theorem 1.5

f ε 0 (x, u) = c ε (x) ρ 0 (x) 3 2 π √ 2ε exp - ρ 0 (x) 2 ε |v -V 0 (x)| 2 -|w -W 0 (x)| 2 + n(v) ,
where c ε is a normalizing constant such that for all x ∈ K, it holds

R 2 ×K f ε 0 (u, x)du = ρ 0 (x),
In the latter example, we see that f ε 0 is concentrated with respect to v. This restriction appears in most of our references [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Diekmann | The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF][START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF][START_REF] Quiñinao | Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model[END_REF] using the Hopf-Cole transform. We also outline that, since N (v) decays super-linearly at ±∞, its primitive n(v) induces fast decay of f ε 0 as v → ±∞. This condition is natural since n(v) appears in the formal expansion of φ ε as ε → 0 (see (3.3)). To conclude, diffusion with respect to w in (1.4) is sometimes taken into account [START_REF] Luçon | Emergence of oscillatory behaviors for excitable systems with noise and mean-field interaction: a slow-fast dynamics approach[END_REF][START_REF] Luçon | Mean field limit for disordered diffusions with singular interactions[END_REF][START_REF] Quiñinao | Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model[END_REF]. Whether our analysis extend to this case may depend on the scaling with respect to ε of the additional term. For example, adding ε∂ 2 w f ε to (1.4) should simplify the analysis, as stated in [56, page 5].

Comments on the strategy. Let us outline our strategy and the challenges in order to prove Theorem 1.5. As identified in [START_REF] Quiñinao | Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model[END_REF], the main difficulty is induced by the drift N , which is not globally Lipschitz according to assumption (1.13). To bypass this difficulty, authors in [START_REF] Quiñinao | Clamping and synchronization in the strongly coupled FitzHugh-Nagumo model[END_REF] rely on a regularization argument: they consider truncated versions N R , for R > 0, of N , in order to recover global Lipschitz properties, allowing to prove uniform estimates in ε on the derivatives ∇ u φ ε,R of the truncated problem thanks to the Bernstein method (see [START_REF] Barles | A weak Bernstein method for fully nonlinear elliptic equations[END_REF] for a general description of the method and [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF] for another application). Then, they conclude that φ ε,R converges as ε goes to zero relying a compactness argument. The argument is robust and may apply to a wider range of problems. An alternate mean to carry out the proof would be to use the method of half-relaxed limits (see [START_REF] Barles | Discontinuous solutions of deterministic optimal stopping time problems[END_REF] for a general introduction to this method and [START_REF] Méléard | Singular limits for reaction-diffusion equations with fractional Laplacian and local or nonlocal nonlinearity[END_REF] for an application) which applies without requiring any regularity estimates, at the cost of loosing continuity and therefore uniqueness in the limit ε → 0.

To recover uniqueness, we may add the additional constraint

φ(t, x, V, w) = 0
on the limiting problem. However, proving that the limit provided by this method satisfies this constraint also requires uniform regularity estimates on the derivatives of φ ε and we are back to our initial problem, since N is not globally Lipschitz.

In this article, we take advantage of the particular structure of the problem, specifically of the confining properties of N , to build a method which does not require regularity estimates and which has the advantage of providing explicit convergence rates: instead of proving uniform estimates on the derivatives of φ ε , we prove uniform estimates on the first term in the expansion of φ ε with respect to ε. This is made possible since this first term takes into account the non-linear fluctuations induced by N . Indeed, these non-linear variations induced by N are expected to be perturbations of order ε, as it may be seen rewriting equation (1.11) on φ ε as follows

1 ε ∂ v - 1 2 ρ ε 0 |v -V ε | 2 + εn(v) -φ ε ∂ v φ ε + . . . = 0,
where the correction n(v) is such that n ′ (v) = N (v) and where ". . ." gathers the lower order terms with respect to v and w. Hence, at least formally as ε goes to zero, we expect

φ ε ≈ ε→0 - 1 2 ρ ε 0 |v -V ε | 2 + εn(v).
Therefore, we consider the first term φ ε 1 in the expansion of φ ε with respect to ε, that is

φ ε = - 1 2 ρ ε 0 |v -V ε | 2 + εφ ε 1 ,
and identify its formal equivalent φ ε 1 as ε goes to zero, which displays n(v) and which depends on ε only through the macroscopic quantities (V ε , W ε ) (see Section 3). In Lemma 3.1, we look for superand sub-solutions to the equation solved by φ ε 1 with the form χ ± = φ ε 1 ± ψ. Once this is done, we apply a comparison principle in order to obtain χ -≤ φ ε 1 ≤ χ + , which in turns ensures

- 1 2 ρ ε 0 |v -V ε | 2 + ε χ -≤ φ ε ≤ - 1 2 ρ ε 0 |v -V ε | 2 + ε χ + .
The last step consists in proving that -1 2 ρ ε 0 |v -V ε | 2 and φ ε 1 converge as ε → 0. This is done relying on previous results which ensure that the macroscopic quantities converge (see Theorem 2.4).

Comments and perspectives. Several perspectives arise from our work. First, our result holds in a perturbative setting in the sense that we need the initial data to be concentrated in order for our result to hold true. It would be interesting to treat general initial data without requiring any well-preparedness condition. To achieve this, one possibility would be to adapt the strategy adopted in [START_REF] Blaustein | Large coupling in a FitzHug-Nagumo neural network: quantitative and strong convergence results[END_REF], where was introduced a time dependent scaling, taking into account the initial layer induced by ill-prepared initial data.

Another natural continuation is to describe the limiting dynamics of the Hopf-Cole exponent φ ε with respect to the adaptation variable w. This is challenging since equation (1.4) is not singular in ε with respect to w, meaning that limiting dynamics with respect to the adaptation variable correspond to fluctuations of φ ε of order O (ε). However, this article provides a glimpse of the difficulties and potential outcomes related to such analysis. Indeed, referring to the beginning of Section 3, the ε-correction of φ ε should be close to

φ ε 1 (t, x, u) + ψ ε 1 (t,
x, w) , as ε vanishes, where φ ε 1 is defined by (3.3). The term ψ ε 1 gathers ε-fluctuations depending only on w, it was already derived in [6, 7, Sections 1.2] where both weak and Lebesgue convergence were rigorously proved. However, we surprisingly obtain additional cross terms between v and w as well as higher order terms with respect to v, gathered in φ ε

1 , which at least to our knowledge, were not known in the literature. This assesses the potential of the Hopf-Cole approach to provide new insights for the model at hand. However, it also highlights the difficulties attached to this approach: its precision and rigidity lead to intricate and technical analysis whereas other methods focusing rather on the convergence at the level of densities yield coarser convergence result but are easier to implement.

Structure of the paper. The remaining part of this article is organized as follows: in Section 2, we prove some regularity estimates for equation (1.4) in order to make our further computations rigorous: this is the object of Lemma 2.1 and Proposition 2.2. In Theorem 2.4 and Corollary 2.5, we also we recall and prove some convergence results on the macroscopic quantities U ε and E (f ε ). Then we pass to Section 3, which is dedicated to the proof of Theorem 1.5. The proof relies on the key Lemma 3.1, in which we construct sub-and super-solution for equation (1.11) on φ ε .

Preliminary estimates

First, we prove non-uniform in ε regularity estimates for the solutions to (1.4) in order to make later computations rigorous. Second, we recall uniform in ε moment estimates for the solutions to (1.4). We start with the following lemma, in which we prove regularity results for the macroscopic quantities U ε and E(f ε ) Lemma 2.1. Consider the solution f ε to (1.4) provided by Theorem 1.4. For all function ϕ ∈ C 2 R 2 with polynomial growth of order l ≥ 0, that is

|ϕ(u)| + |∇ u ϕ(u)| + ∇ 2 u ϕ(u) = |u|→+∞ O |u| l , the function (t, x) → R 2
ϕ(u)f ε (t, x, u) du is continuous and has continuous time derivative over R + × K. In particular, the macroscopic quantities V ε and W ε given by (1.3) and the error E (f ε ) given by (1.8) are continuous and have continuous time derivatives.

Proof. Consider such function ϕ. To simplify notations we write

ϕ (f ε ) : (t, x) → R 2 ϕ(u)f ε (t, x, u) du.
We start by proving that ϕ (f ε ) is continuous. To do so, we fix some (t, x) ∈ R + × K and prove lim

(s,y)→(t,x) ϕ (f ε ) (s, y) = ϕ (f ε ) (t, x). For all (s, y) ∈ R + × K, it holds |ϕ (f ε ) (t, x) -ϕ (f ε )(s, y)| ≤ R 2 |ϕ(u)| |f ε (t, x, u) -f ε (s, y, u)| 1/2 |f ε (t, x, u) -f ε (s, y, u)| 1/2 du.
Applying Cauchy-Schwarz inequality to the latter estimate, we deduce

|ϕ (f ε ) (t, x) -ϕ (f ε ) (s, y)| ≤ ϕ 2 (f ε ) (t, x) + ϕ 2 (f ε ) (s, y) 1/2 f ε (t, x) -f ε (s, y) 1/2 L 1 (R 2 )
. According to Theorem 1.4, ϕ 2 (f ε ) is locally bounded over R + ×K since f ε has exponential moments and ϕ has polynomial growth. Therefore, we obtain the result since f ε lies in C 0 R + × K, L 1 R 2 according to Definition 1.3.

We now prove that ϕ (f ε ) has continuous time derivative. We multiply equation (1.4) by ϕ and integrate with respect to u. After an integration by part, this yields

∂ t ϕ (f ε ) = ξ 1 (f ε ) + 1 ε ρ ε 0 V ε + Ψ * (ρ ε 0 V ε ) ∂ v ϕ (f ε ) - 1 ε ρ ε 0 + Ψ * ρ ε 0 ξ 2 (f ε ) , with    ξ 1 (u) = ∂ v ϕ(u) (N (v) -w) + ∂ w ϕ(u)A(u) + ∂ 2 v ϕ(u), ξ 2 (u) = ∂ v ϕ(u)v. Functions ξ 1 (f ε ) , ξ 2 (f ε ) , ∂ v ϕ (f ε
) , V ε are continuous according to the previous step. Furthermore, we obtain that functions Ψ * (ρ ε 0 V ε ) and Ψ * ρ ε 0 are continuous using continuity of V ε and ρ ε 0 and assumption (1.15) on Ψ. This yields the result.

We prove that when the initial data f ε 0 is smooth, the associated solution f ε to (1.4) is regular. Proposition 2.2. Under the assumptions of Theorem 1.4, suppose in addition that f ε 0 lies in C 0 K, C ∞ c R 2 and that N meets the following assumptions

(2.1) sup |v|≥1 N ′ (v) |v| 1-p < +∞, sup |v|≥1 N ′′′ (v) |v| -p ′ < +∞,
where p is given in assumption (1.13) and p ′ in assumption (1.14). Then the solution f ε to equation (1.4) provided by Theorem 1.4 verifies

f ε ∈ L ∞ loc R + × K, W 2,1 R 2 , ∂ t f ε ∈ L ∞ loc R + × K, L 1 R 2 .
We postpone the proof to Appendix B: it is mainly technical and relies on moment estimates on the derivatives of f ε . Remark 2.3. Assumption (2.1) on N is purely technical but it does not constitute a limitation in our context since it is satisfied by the general class of drifts described below assumptions (1.13)- (1.14), which includes the original FitzHugh-Nagumo model.

For self-consistency, we recall a result from [START_REF] Blaustein | Concentration phenomena in Fitzhugh-Nagumo equations: a mesoscopic approach[END_REF] about the control of the macroscopic quantities (V ε , W ε ) defined by (1.3) and the error term E (f ε ) defined by (1.8). We also provide uniform estimates with respect to ε for the moments of f ε and for the relative energy given by (2.2)

       M q [f ε ] (t, x) := 1 ρ ε 0 (x) R 2 |u| q f ε (t, x, u)du, D q [f ε ] (t, x) := 1 ρ ε 0 (x) R 2 |v -V ε (t, x)| q f ε (t, x, u)du,
where q ≥ 2.

Theorem 2.4 ([7]

). Under assumptions (1.13)-(1.20) and under the additional assumptions of Theorem 1.4, consider the solutions f ε to (1.4) provided by Theorem 1.4 and the solution U to (1.9). Furthermore, define the initial macroscopic error as

E mac = U 0 -U ε 0 L ∞ (K) + ρ 0 -ρ ε 0 L ∞ (K) .
There exists (C, ε 0 ) ∈ R + * 2 such that (1) for all ε ≤ ε 0 , it holds

U (t) -U ε (t) L ∞ (K) ≤ C min e Ct (E mac + ε) , 1 , ∀t ∈ R + ,
where U ε and U are respectively given by (1.3) and (1.9). (2) For all ε > 0 and all q in [2, 2(p + p ′ )] it holds

M q [f ε ](t, x) ≤ C, ∀(t, x) ∈ R + × K,
where exponent p is given in assumption (1.13) and p ′ in assumption (1.14). In particular, U ε , ∂ t U ε and E(f ε ) are uniformly bounded with respect to both (t, x) ∈ R + × K and ε, where E is defined by (1.8).

(3) For all ε > 0 and all q in [2, 2(p + p ′ )] it holds

D q [f ε ](t, x) ≤ C D q [f ε ](0, x) exp -qm * t ε + ε q 2 , ∀(t, x) ∈ R + × K.
In this theorem, constants C and ε 0 only depend on m p , m p , m * (see (1.18)-(1.20) ) and on the data of the problem N , A and Ψ.

We deduce from this result an estimate on the derivative of the error term, that will be used later in our proof. Proof. We compute the time derivative of E(f ε ) taking the difference between equation (1.4) multiplied by N/ρ ε 0 and integrated with respect to u, and the first line of (1.7) multiplied by N ′ (V ε ). After integrating by part with respect to v, it yields

(2.3) d dt E(f ε (t, x, •)) = A + B,
where A and B are given by

       A = - 1 ε R 2 N ′ (v) (v -V ε (t, x)) f ε (t, x, u)du, B = 1 ρ ε 0 R 2 N ′ B ε + N ′′ f ε (t, x, u)du -N ′ (V ε ) (B ε (t, x, U ε ) + E(f ε )) .
The main difficulty here consists in estimating the stiffer term A: this is what we start with. According to the definition of V ε , we have

A = - 1 ε R 2 N ′ (v) -N ′ (V ε ) (v -V ε ) f ε (t, x, u)du.
To bound the term inside the latter integral, we distinguish two cases. On the one hand, since N ∈ C 2 (R) and since V ε is uniformly bounded with respect to (t, x) ∈ R + × K and ε > 0 (see item (2) in Theorem 2.4), it holds

N ′ (v) -N ′ (V ε ) (v -V ε ) 1 |v|≤2 V ε L ∞ ≤ C |v -V ε | 2
, where constant C is the uniform norm of N ′′ over the ball of radius 2 sup ε>0 V ε L ∞ . On the other hand, using assumption (1.14) and since V ε is uniformly bounded, it holds

N ′ (v) -N ′ (V ε ) (v -V ε ) 1 |v|>2 V ε L ∞ ≤ C |v -V ε | p ′ +1 .
Taking the sum between the last two estimates, we obtain the following bound for

A A ≤ C ε D p ′ +1 [f ε ] + D 2 [f ε ] ,
where D p ′ +1 and D 2 are given by (2.2). Hence, we apply item (3) of Theorem 2.4 and deduce

A ≤ C D 2 + D p ′ +1 [f ε ](0, x)ε -1 exp -2m * t ε + 1 ,
for all (t, x) ∈ R + × K and ε > 0. To conclude this step, we use assumption (1.22b) which ensures that:

D 2 + D p ′ +1 [f ε ](0, x) = O(ε)
as ε → 0. Therefore, we deduce A ≤ C, for some constant C independent of (t, x) ∈ R + × K and ε.

Let us now estimate B. According to assumptions (1.16) and (1.18) on Ψ and ρ ε 0 , Ψ * ρ ε 0 is uniformly bounded with respect to both x ∈ K and ε > 0. Furthermore, N , N ′ and N ′′ have polynomial growth according to (1.13)- (1.14). Hence, we may bound B by moments of f ε up to order 2(p + p ′ ), which are themselves uniformly bounded with respect to both (t, x) ∈ R + × K and ε > 0, according to item (2) of Theorem 2.4. Therefore, there exists a constant C such that

B ≤ C, for all (t, x) ∈ R + × K and ε > 0.
We obtain the expected result gathering the estimates obtained on A and B and taking the absolute value in (2.3).

Proof of Theorem 1.5

In this section, we derive uniform L ∞ convergence estimates for the solution φ ε to equation (1.11). To do so, our strategy consists in performing a Hilbert expansion of φ ε with respect to ε and to prove that the higher order terms are uniformly bounded with respect to ε. Denote by φ ε 1 the correction of order 1 in the expansion of φ ε with respect to ε

(3.1) φ ε = - 1 2 ρ ε 0 |v -V ε | 2 + εφ ε 1 .
Plugging this ansatz in (1.11), we find that φ ε 1 solves the following equation

(3.2) ∂ t φ ε 1 + ∇ u φ ε 1 • b ε + div u [b ε ] -∂ 2 v φ ε 1 -|∂ v φ ε 1 | 2 + 1 ε ρ ε 0 (v -V ε ) ∂ v φ ε 1 -φ ε 1 = 0,
where φ ε 1 is given by

(3.3) φ ε 1 (t, x, u) = n(v) -n(V ε ) -(v -V ε ) N (V ε ) + (w -W ε ) + E(f ε ) + 1 2 Ψ * ρ ε 0 (v -V ε ) ,
and where n is the primitive of N defined in Theorem 1.5. Keeping the leading order, we expect that φ ε 1 will look like φ ε 1 as ε → 0. Therefore, we look for sub and super-solutions to equation (3.2) with the form φ ε 1 + ψ, where ψ needs to be determined. This is done in the following lemma, which constitutes the keystone of our analysis. Lemma 3.1. Consider some positive constant α 0 and define ψ as follows

ψ (t, x, u) = α 0 2 |v -V ε (t, x)| 2 + α(t) 2 |w -W ε (t, x)| 2 ,
where α is given by

α(t) = α 0 e 2(|a|+b)t + 1 |a| + b e 2(|a|+b)t -1 ,
where (a, b) are the coefficients in the definition (1.5) of A. The functions 

χ + = φ ε 1 + ψ + m and χ -= φ ε 1 -ψ -m
m(t) = m 0 + C exp (6(a + b)t),
Then we apply Young's inequality to bound the crossed term between v and w and use assumption (1.13) to bound N (v). In the end, it yields

(3.5) |A| ≤ C (1 + |v -V ε | p ) + 1 2 |w -W ε | 2 .
Building on this estimate, we can now pass to the heart of the proof and show that χ + and χ -are respectively super-and sub-solutions to (3.2). We evaluate equation (3.2) in χ + and χ -and obtain

∂ t χ ± + ∇ u χ ± • b ε + div u [b ε ] -∂ 2 v χ ± -|∂ v χ ± | 2 + 1 ε ρ ε 0 (v -V ε ) ∂ v χ ± = A ± B ± m ′ (t) -|∂ v ψ| 2 ,
where A is given by (3.4) and B is given by

(3.6) B = ∂ t ψ + ∇ u ψ • b ε -∂ 2 v ψ -2 ∂ v ψ ∂ v φ ε 1 + 1 ε ρ ε 0 (v -V ε ) ∂ v ψ .
In order to conclude that χ + and χ -are respectively sub-and super-solutions to (3.2), it is sufficient to prove B + m ′ (t) -|∂ v ψ| 2 -|A| ≥ 0 . Therefore, we focus on proving the latter inequality. To begin with, we have

B -|∂ v ψ| 2 = -α 0 (v -V ε ) ∂ t V ε + α ′ (t) 2 |w -W ε | 2 -α(t) (w -W ε ) ∂ t W ε + α 0 (v -V ε ) B ε (t, x, u) + α(t) (w -W ε ) A(u) -α 0 -2α 0 (v -V ε ) (B ε (t, x, u) -∂ t V ε ) + ρ ε 0 ε α 0 |v -V ε | 2 -α 2 0 |v -V ε | 2 = α ′ (t) 2 |w -W ε | 2 -α 0 (v -V ε ) (B ε (t, x, u) -∂ t V ε ) + α(t) (w -W ε ) (A(u) -A(U ε )) -α 0 + ρ ε 0 ε α 0 -α 2 0 |v -V ε | 2 = α ′ (t) 2 |w -W ε | 2 -α 0 (v -V ε ) (B ε (t, x, u) -B ε (t, x, U ε ) -E(f ε )) + α(t) (w -W ε ) (a (v -V ε ) -b (w -W ε )) -α 0 + ρ ε 0 ε α 0 -α 2 0 |v -V ε | 2 ≥ α ′ (t) 2 -α(t)(|a| + b) |w -W ε | 2 -α 0 (v -V ε ) (B ε (t, x, u) -B ε (t, x, U ε ) -E(f ε )) -α 0 + ρ ε 0 ε α 0 -α 2 0 - |a| 4 α(t) |v -V ε | 2 ,
where we have used the Young inequality at the last line. Gathering the latter estimate and (3.5) we obtain

B + m ′ (t) -|∂ v ψ| 2 -|A| ≥ m ′ (t) + α ′ (t) 2 -α(t)(|a| + b) |w -W ε | 2 -α 0 (v -V ε ) (B ε (t, x, u) -B ε (t, x, U ε ) -E(f ε )) -α 0 + ρ ε 0 ε α 0 -α 2 0 - |a| 4 α(t) |v -V ε | 2 -C (1 + |v -V ε | p ) -|w -W ε | 2 . ≥ m ′ (t) + α ′ (t) 2 -α(t)(|a| + b) -1 |w -W ε | 2 -α 0 -α 0 (v -V ε ) (N (v) -N (V ε )) + α 0 Ψ * ρ ε 0 (x) + ρ ε 0 ε α 0 - 3 2 α 2 0 - |a| 4 α(t) -|a| + b 2 + 1 2 - 1 2 α 0 |v -V ε | 2 + α 0 (v -V ε ) E(f ε ) -C (1 + |v -V ε | p ) ,
where we have used Young inequality and the following relation

B ε (t, x, u) -B ε (t, x, U ε ) = N (v) -N (V ε ) -(w -W ε ) -Ψ * ρ ε 0 (x)(v -V ε ) .
To control the contribution of the term |w -W ε | 2 in the latter expression, we choose α(t) such that α

′ (t) 2 -α(t)(|a| + b) -1 = 0, that is α(t) = α 0 exp (2(|a| + b)t) + 1 |a| + b (exp (2(|a| + b)t) -1) .
Furthermore, since E(f ε ), ρ ε 0 and Ψ * ρ ε 0 are uniformly bounded according to (respectively) item (2) in Theorem 2.4, assumptions (1.18) and (1.16), we deduce

B + m ′ (t) -|∂ v ψ| 2 -|A| ≥ m ′ (t) -α 0 (v -V ε ) (N (v) -N (V ε )) -C 1 + exp (2 (|a| + b) t) |v -V ε | 2 + |v -V ε | p ,
for some constant C > 0. To control the terms of order |v -V ε | 2 and |v -V ε | p in the latter expression, we rely on the confining property (1.13) of N , which ensures

(v -V ε ) (N (v) -N (V ε )) ≤ C - 1 C |v -V ε | p+1 ,
for some constant C great enough. Hence, we obtain

B + m ′ (t) -|∂ v ψ| 2 -|A| ≥ m ′ (t) + 1 C |v -V ε | p+1 -C 1 + exp (2 (|a| + b) t) |v -V ε | 2 + |v -V ε | p .
Then we find that 1 We are now able to proceed to the proof of Theorem 1.5. Indeed, relying on Lemma 3.1 and applying a comparison principle to equation (3.2), we deduce convergence estimates for the Hopf-Cole transform φ ε of f ε .

C |v -V ε | p+1 -C 1 + exp (2 (|a| + b) t) |v -V ε | 2 + |v -V ε | p ≥ -C exp ( 6 (|a| + b) t ) .
Proof of Theorem 1.5. All along this proof, we consider some positive constants α 0 (to be determined later on) and we work with the associated quantities ψ, χ + and χ -defined in Proposition 3.1. We proceed in three steps [START_REF] Baladron | Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons[END_REF] we prove that under our set of assumptions, it holds uniformly in ε χ -(0, x, u) ≤ φ ε 1 (0, x, u) ≤ χ + (0, x, u), ∀(x, u) ∈ K × R 2 , where χ + and χ -are defined in Lemma 3.1, (2) we apply Lemma 3.1 and prove a comparison principle to deduce that the latter inequality holds for all positive time, that is

χ -(t, x, u) ≤ φ ε 1 (t, x, u) ≤ χ + (t, x, u), ∀(t, x) ∈ R + × K, a.e. in u ∈ R 2 , (3) 
we conclude that φ ε converges locally uniformly to -1 2 ρ 0 |v -V| 2 .

result. This approach is made possible since, according to the following lemma, there is a direct link between sub-and super-solutions to equations (3.7) and (3.2)

Lemma A.1. Consider some fixed ε > 0. Under the assumptions of Theorem 1.4, consider the solution f ε to equation (1.4) and its associated macroscopic quantities (V ε , W ε ) provided by Theorem 1.4. Furthermore, consider a strictly positive function f such that f , ∂ t f and ∇ 2 u f lie in C 0 R + × K × R 2 and define χ as follows

f (t, x, u) = ρ 0 (x) 2πε exp - 1 2ε ρ ε 0 |v -V ε | 2 + χ (t, x, u) , ∀(t, x, u) ∈ R + × K × R 2 .
Then the following statements are equivalent (1) f is a super-solution (resp. sub-solution) to (3.7).

(2) χ is a super-solution (resp. sub-solution) to (3.2).

Proof. We consider f and χ as in Lemma A.1 and proceed in two steps. On the one hand, plugging f in equation (3.7), one has the following relation

∂ t f + div u [b ε f ] -∂ 2 v f - 1 ε ρ ε 0 ∂ v [(v -V ε )f ] = 1 ε f A ,
for all (t, x, u) ∈ R + ×K×R 2 where A gathers the terms obtained plugging φ := -

1 2 ρ ε 0 |v -V ε | 2 +εχ into equation (1.11), that is A = ∂ t φ + ∇ u φ • b ε + εdiv u [b] -∂ 2 v φ -ρ ε 0 - 1 ε ∂ v 1 2 ρ ε 0 |v -V ε | 2 + φ ∂ v φ .
On the other hand, according to computations already detailed at the beginning of Section 3, A also corresponds to the terms obtained plugging χ into equation (3.2), that is

A = ε ∂ t χ + ∇ u χ • b ε + div u [b ε ] -∂ 2 v χ -|∂ v χ| 2 + 1 ε ρ ε 0 (v -V ε ) ∂ v χ -φ ε 1 ,
for all (t, x, u) ∈ R + × K × R 2 . Therefore, we deduce

∂ t f + div u [b ε f ] -∂ 2 v f - 1 ε ρ ε 0 ∂ v [(v -V ε )f ] = f ∂ t χ + ∇ u χ • b ε + div u [b ε ] -∂ 2 v χ -|∂ v χ| 2 + 1 ε ρ ε 0 (v -V ε ) ∂ v χ -φ ε 1 ,
which yields the result since f is strictly positive.

It is now left to prove that a comparison principle holds for equation (3.7). It is the object of the following Lemma Lemma A.2. Consider some fixed ε > 0. Under the assumptions of Theorem 1.4 and Proposition 2.2, consider the solution f ε to equation (1.4) and its associated macroscopic quantities (V ε , W ε ) provided by Theorem 1.4. Furthermore, consider a strictly positive function f such that f , ∂ t f and

∇ 2 u f lie in C 0 R + × K × R 2 . Suppose that at initial time, it holds f ε 0 (x, u) ≤ f (0, x, u), ∀(x, u) ∈ K × R 2 , and that f is super-solution to equation (3.7), that is 0 ≤ ∂ t f + div u [b ε f ] -∂ 2 v f - 1 ε ρ ε 0 ∂ v [(v -V ε )f ] , for all (t, x, u) ∈ R + × K × R 2 . Then it holds f ε (t, x, u) ≤ f (t, x, u), ∀(t, x) ∈ R + × K, a.e. in u ∈ R 2 .
Furthermore, the latter statement is also true if we replace "super-solution" by "sub-solution" and the symbol "≥" by "≤".

Proof. Since the proof of the comparison principle for super and sub-solutions is the same, we only detail it for super-solutions. According to Proposition 2.2, f ε is a classical solution to (1.4), hence it holds

∂ t (f ε -f ) + div u [b ε (f ε -f )] -∂ 2 v (f ε -f ) - 1 ε ρ ε 0 ∂ v [(v -V ε )(f ε -f )] ≤ 0
a.e. with respect to (t, x, u) ∈ R + × K × R 2 . Therefore, multiplying the latter relation by 1 f ε ≥f , we deduce that in the weak sense, it holds

∂ t (f ε -f ) + + div u [b ε (f ε -f ) + ] -∂ 2 v (f ε -f ) + - 1 ε ρ ε 0 ∂ v [(v -V ε )(f ε -f ) + ] ≤ 0,
where (•) + stands for the positive part and is defined by (

•) + = (| • | + id R )/2.
In order to derive the latter relation, we follow a classical procedure which we do not detail here and which consists in regularizing the positive part (•) + . Then we integrate the latter relation with respect to time and u and obtain

R 2 (f ε -f ) + (t, x, u)du ≤ R 2 (f ε -f ) + (0, x, u)du.
The latter computations are justified since 0 ≤ (f ε -f ) + ≤ f ε and since, according to Theorem 1.4, f ε has moments up to any order with respect to u. Since f ε ≤ f at time t = 0, we deduce the result.

Appendix B. Regularity estimates

In this section, we derive regularity estimates for the solution f ε to equation (1.4) and therefore prove Proposition 2.2. The main difficulty here consists in dealing with the contribution due to the non-linear drift N . We bypass this difficulty by estimating the norm of f ε and its derivatives in the following weighted L 1 spaces

L 1 (ω q ) = f : R 2 → R, R 2 |f | ω q (u)du < +∞ ,
where ω q (u) = 1 + |u| q , for q ≥ 2. The first step consists in estimating the norm of f ε in L 1 (ω q ). This step relies on previous results obtained in [START_REF] Blaustein | Concentration phenomena in Fitzhugh-Nagumo equations: a mesoscopic approach[END_REF]. Then we adapt these computations to evaluate the norm of the derivatives of f ε in L 1 (ω q ). Indeed, the derivatives of f ε solve equation (1.4) with additional source terms whose contribution can be controlled thanks to the confining properties of the non-linear drift N . Let us outline the strategy in the case of the first order derivatives: equation (1.4) on f ε reads as follows

∂ t f ε = A ε f ε ,
where operator A ε is given by

A ε f = ∂ 2 v f + 1 ε ρ ε 0 ∂ v [(v -V ε )f ] -div u [b ε f ] .
Relying the arguments developed in the proof of [7, Proposition 3.1] it holds Lemma B.1. Consider some fixed ε and some q ≥ 2. Under the assumptions of Theorem 1.4, consider the operator A ε associated to the solution f ε to equation (1.4). There exists a positive constant C such that for all x ∈ K, it holds

R 2 sgn (f )A ε (f ) ω q (u)du ≤ C f L 1 (ωq) + q R 2 1 |v|≥1 N (v) v |v| q f (u)du,
for all function f lying in W 2,1 (ω p+q ).

As a direct consequence of Lemma B.1, we deduce that for any smooth initial data f ε 0 , the solution f ε to equation (1.4) provided by Theorem 1.4 lies in L ∞ loc R + × K, L 1 (ω q ) for all exponent q ≥ 2. Indeed, since N meets the confining assumption (1.13) we have: 1 |v|≥1 N (v)/v ≤ C for some constant C. Therefore, multiplying equation (1.4) by sgn (f ε )ω q (u), integrating with respect to u and applying Lemma B.1, we obtain that for all exponent q, it holds d dt f ε L 1 (ωq) ≤ C f ε L 1 (ωq) .

Hence, applying Gronwall's lemma and taking the supremum over all x ∈ K, we deduce (B.1) f ε (t) L ∞ (K,L 1 (ωq)) ≤ e Ct f ε 0 L ∞ (K,L 1 (ωq)) , for all t ∈ R + . We follow the same strategy for derivatives of f ε : writing (g, h) = (∂ v f ε , ∂ w f ε ) and differentiating equation (1.4) with respect to v and w we obtain (B.2)

     ∂ t g = A ε g -N ′ -Ψ * ρ ε 0 - 1 ε ρ ε 0 g -N ′′ f ε -ah, ∂ t h = A ε h + g + bh.
Therefore, g and h solve the same equation as f ε with additional an high order term due to the non-linear drift N . We control this additional term thanks to the confining properties of N .

Proof of Proposition 2.2. Let us consider some initial data f ε 0 lying in C 0 K, C ∞ c R 2 and the associated solution f ε to (1.4) provided by Theorem 1.4. We start by proving that f ε lies in L ∞ loc R + × K, W 1,1 R 2 . We fix some x ∈ K, some exponent q ≥ 2 and integrate with respect to u the sum between the first equation in (B.2) multiplied by sgn (g)ω q (u) and the second multiplied by sgn (h)ω q (u). According to Lemma B. 

+ f ε L 1 (ω p ′ ) + R 2 q1 |v|≥1 N (v) v -N ′ (v) |v| q g(u)du,
where p ′ is given in assumption (1.14). Since N meets assumptions (1.13) and (2.1), we deduce that for q great enough, it holds d dt g L 1 (ωq) + h L 1 (ωq) ≤ C g L 1 (ωq) + h L 1 (ωq) + f ε L 1 (ω p ′ ) . Therefore, applying Gronwall's lemma, taking the supremum over all x ∈ K and replacing f ε L 1 (ω p ′ ) according to estimate (B.1), we deduce g(t) L ∞ (K,L 1 (ωq)) + h(t) L ∞ (K,L 1 (ωq)) ≤ e Ct g 0 L ∞ (K,L 1 (ωq)) + h 0 L ∞ (K,L 1 (ωq)) + f ε 0 L ∞ (K,L 1 (ωq)) , for all time t ∈ R + . As a straightforward consequence, we obtain the expected result:

f ε ∈ L ∞ loc R + × K, W 1,1 R 2 .
We obtain that f ε ∈ L ∞ loc R + × K, W 2,1 R 2 iterating the same procedure as before but this time on the derivatives of g and h and using assumption (2.1), which ensures that N ′′′ has polynomial growth.

To end with, we obtain ∂ t f ε ∈ L ∞ loc R + × K, L 1 R 2 noticing that according to the definition of A ε , it holds

A ε f ε L ∞ (K,L 1 (R 2 )) ≤ C f ε L ∞ (K,W 2,1 ( 
ωq)) , for q great enough. Then we apply the previous estimates to the relation 

∂ t f ε = A ε f ε .

  (1.18)-(1.20) and (1.21)-(1.22b)), N , A and Ψ.

Corollary 2 . 5 .

 25 Under the assumptions of Theorem 2.4 and the additional assumption (1.22b) on the sequence (f ε 0 ) ε>0 , there exists a constantC > 0 such that d dt E(f ε (t, x, •)) ≤ C,for all ε > 0 and all (t, x) ∈ R + × K, where E(f ε ) is the macroscopic error given by (1.8). In this result, constant C only depends on m p , m p , m * (see(1.18)-(1.20) ), on the data of the problem N , A and Ψ and on the constant in assumption (1.22b).

  are respectively super and sub-solutions to equation(3.2), where (t → m(t)) is given by

  Hence choosing the function (t → m(t)) such thatm ′ (t) = C exp ( 6 (|a| + b) t ) , we obtain B + m ′ (t) -|∂ v ψ| 2 -|A| ≥ 0,which concludes the proof.

20

 20 

  and (1.16). Remark 1.2. Moment assumptions such as (1.19)-(1.20) are common in the literature of meanfield description for neural networks (see [28, Assumption 2], [13, Theorem 2.2 and Corollary 2.4], [54, Section 5.1]

  1, assumptions (1.16) on Ψ, (1.18) on ρ ε 0 and (1.14) on N , we obtain d dt g L 1 (ωq) + h L 1 (ωq) ≤C g L 1 (ωq) + h L 1 (ωq)
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for all m 0 ∈ R and where the constant C only depends on α 0 , the constants in (1.18)- (1.20) and (1.22b), and the data of the problem N , A and Ψ.

Proof. In this proof, we fix some (t, x) ∈ R + × K and denote by C a generic constant depending only on α 0 , the constants in (1.18)- (1.20) and (1.22b), and the data of the problem N , A and Ψ. Furthermore we write U ε instead of U ε (t, x) for convenience.

The first step of the proof consists in proving that the following term, obtained when evaluating equation (3.2) in φ ε 1 , is of order 0 with respect to ε

To this aim, we compute the derivatives of φ ε 1 . To simplify the computations, we rewrite φ ε 1 in a more convenient way: we consider some (ṽ, w) ∈ R 2 and take the difference between B ε (t, x, ṽ, w) given in (1.5) and the first line of the system (1.7)

Integrating the latter relation between V ε and v with respect to ṽ, we deduce that φ ε 1 verifies

x, ṽ, w) dṽ .

Using the last two relations, we deduce that for all u ∈ R 2 , it holds

Relying on the latter expressions for the derivatives of φ ε 1 we deduce

. On the one hand, since B ε is given by (1.5), it holds

) . On the other hand, taking the time derivative in the first line of equation (1.7) we obtain

Therefore, A may be expressed as follows

On the one hand, ∂ t V ε and V ε are uniformly bounded according to item (2) in Theorem 2.4. On the other hand, we apply Corollary 2.5 which ensures that under the smallness assumption (1.22b), the time derivative of E (f ε ) is uniformly bounded as well. Consequently, for all positive ε, it holds

for some constant C depending only on the constants in assumptions (1.18)-(1.20), (1.22b) and on the data of the problem N , A and Ψ. Therefore, we deduce the following bound for

We start with step (1). Dividing (1.22a) by ε and replacing φ ε with φ ε 1 according to (3.1) we obtain the following bound for all positive ε

for all (x, u) ∈ K × R 2 . On the one hand, according to assumptions (1.18), (1. [START_REF] Chen | Standing waves joining with Turing patterns in FitzHugh-Nagumo type systems[END_REF]) and (1.21), it holds

for all (x, u) ∈ K ×R 2 , for some constant C depending only on the initial condition f ε 0 (only through the constants appearing in assumptions (1.18), (1. [START_REF] Chen | Standing waves joining with Turing patterns in FitzHugh-Nagumo type systems[END_REF]) and (1.21)). On the other hand, according to assumptions (1. [START_REF] Carrillo | A simplified voltage-conductance kinetic model for interacting neurons and its asymptotic limit[END_REF]) and (1.18), Ψ * ρ ε 0 is uniformly bounded with respect to both x ∈ K and ε > 0. On top of that, U ε 0 and E (f ε 0 ) are also uniformly bounded with respect to both x ∈ K and ε > 0 according to assumptions (1.13) and (1.19). Therefore, according to the definition

for some constant C depending on the initial condition f ε 0 (only through the constants appearing in assumptions (1.18)-(1.19)) and N . Gathering these considerations and writing

we deduce that according to assumption (1.22a), for all positive ε, it holds

Therefore, taking α 0 /2 and m(0) greater than C, we conclude step (1), indeed for all positive ε it holds

, where χ + and χ -are given in Proposition 3.1.

Let us now turn to step (2), which consists in proving that the latter estimate holds true for all positive time by applying a comparison principle. For technical reasons detailed in Appendix A, we apply the comparison principle for the following linearized version of the kinetic equation (1.4), instead of working directly on equation (3.2)

Therefore, we define f + and f -for all (t, x, u

We prove that these quantities are classical super-and sub-solutions of (3.7) applying jointly Lemma 3.1, to ensure that χ -and χ + are respectively sub and super-solutions to equation (3.2) and Lemma A.1, which ensures that under the regularity condition

, f -and f + are respectively sub and super-solutions to (3.7) if and only if χ -and χ + are respectively sub and super-solutions to (3.2). To verify the regularity assumption, we apply Lemma 2.1 which ensures that U ε and E(f ε ) are continuous and have continuous time derivative over

To conclude, we rely on the previous step, which ensures

Therefore, relying on the comparison principle proved in Lemma A.2, we deduce

Taking the logarithm of the latter relation, we deduce that the bound obtained in step (1), propagates through time, that is, for all positive ε, it holds

We can now turn to the last step and prove our main result. According to the definition of φ ε 1 and the result of step (2), it holds

for all ∀(t, x) ∈ R + × K, a.e. in u ∈ R 2 . On the one hand, relying on item (1) in Theorem 2.4 and since the initial condition f ε 0 meets the compatibility assumption (1.21), there exists two positive constants C and ε 0 such that for all ε ≤ ε 0 , it holds

, where constants C and ε 0 only depends on the data of our problem: f ε 0 (only through the constants appearing in assumptions (1.18)-(1.20) and (1.21)), N , A and Ψ. On the other hand, according to assumption (1.18) and (1.16), Ψ * ρ ε 0 is uniformly bounded with respect to both x ∈ K and ε > 0. On top of that, U ε and E (f ε ) are also uniformly bounded with respect to both (t, x) ∈ R + × K and ε > 0 according item (2) in Theorem 2.4. Therefore, according to the definitions of χ -and χ + (see Lemma 3.1) and since N is continuous, it holds

for all (t, x, u) ∈ K × R 2 , where the constant C only depends on the data of our problem: f ε 0 (only through the constants appearing in assumptions (1.18)-(1.20)), N , A and Ψ. Hence, we deduce the result: for all ε ≤ ε 0 it holds

for all ∀(t, x) ∈ R + × K, a.e. in u ∈ R 2 , where constants C and ε 0 only depends on the data of our problem: f ε 0 (only through the constants appearing in assumptions (1.18)-(1.20) and (1.21)-(1.22b)), N , A and Ψ.

Appendix A. Comparison principles

The object of this section is to prove a comparison principle for equation (3.2) in order to complete step (2) in the proof of Theorem 1.5. More precisely, we prove that if the quantity φ ε 1 defined by (3.1) verifies χ -(0, x, u) ≤ φ ε 1 (0, x, u) ≤ χ + (0, x, u), ∀(x, u) ∈ K × R 2 , where χ -an χ + are respectively sub and super-solutions to (3.2), then the latter estimate propagates through time, that is χ -(t, x, u) ≤ φ ε 1 (t, x, u) ≤ χ + (t, x, u), ∀(t, x, u) ∈ R + × K × R 2 . Instead of working directly on equation (3.2), our strategy consists in proving a comparison principle for the linearized version (3.7) of the kinetic equation (1.4). Indeed, it is more convenient to work on equation (3.7) since we can rely on the decaying properties of solutions to (1.4) provided by Theorem 1.4. From the comparison principle on equation (3.7), we will easily deduce the expected