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A DICHOTOMY FOR COUNTABLE UNIONS OF
SMOOTH BOREL EQUIVALENCE RELATIONS

N. DE RANCOURT AND B. D. MILLER

Abstract. We show that if an equivalence relation E on a Polish
space is a countable union of smooth Borel subequivalence rela-
tions, then there is either a Borel reduction of E to a countable
Borel equivalence relation on a Polish space or a continuous em-
bedding of E1 into E. We also establish related results concerning
countable unions of more general Borel equivalence relations.

Introduction

A homomorphism from a binary relation R on a set X to a binary
relation S on a set Y is a function φ : X → Y with the property that
(φ × φ)(R) ⊆ S. More generally, a homomorphism from a sequence
(Ri)i∈I of binary relations on X to a sequence (Si)i∈I of binary relations
on Y is a function φ : X → Y that is a homomorphisms from Ri

to Si for all i ∈ I. A cohomomorphism is a homomorphism of the
corresponding complements, a reduction is a homomorphism that is
also a cohomorphism, and an embedding is an injective reduction.

A Polish space is a second countable topological space that admits
a compatible complete metric. A subset of a topological space is Borel
if it is in the smallest σ-algebra containing the open sets. A function
between topological spaces is Borel if preimages of open sets are Borel.

Following the usual abuse of language, we say that an equivalence
relation is countable if each of its classes is countable. A Borel equiv-
alence relation E on a Polish space is smooth if there is a Borel re-
duction of E to equality on a Polish space, hypersmooth if it is the
union of an increasing sequence (En)n∈N of smooth Borel subequiv-
alence relations, and σ-smooth if it is a countable union of smooth
Borel subequivalence relations. A well-known example of a hyper-
smooth Borel equivalence relation on (2N)N that is not Borel reducible
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to a countable Borel equivalence relation on a Polish space is given by
c E1 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m).

Our primary result here is the following analog of the Kechris–Lou-
veau dichotomy for hypersmooth Borel equivalence relations on Polish
spaces (see [KL97, Theorem 1] or Theorem 6.10):

Theorem 1. Suppose that E is a σ-smooth Borel equivalence relation
on a Polish space. Then exactly one of the following holds:

(1) There is a Borel reduction of E to a countable Borel equivalence
relation on a Polish space.

(2) There is a continuous embedding of E1 into E.

A σ-ideal on a set X is a family I of subsets of X that is closed under
containment and countable unions. When X is a Polish space, we say
that such a σ-ideal is weakly ccc-on-Borel if there is no uncountable
family of pairwise disjoint Borel subsets of X that are not in I. Given
sets X and Y , the horizontal section of a set R ⊆ X × Y at a point
y of Y is given by Ry := {x ∈ X | x R y}, and the vertical section of
R at point x of X is given by Rx := {y ∈ Y | x R y}. An assignment
x 7→ Ix, sending each point of X to a σ-ideal on X, is Borel-on-Borel if
{x ∈ X | Rx ∈ Ix} is Borel for all Borel sets R ⊆ X ×X, and strongly
Borel-on-Borel if {(x, y) ∈ X × Y | R(x,y) ∈ Ix} is Borel for all Polish
spaces Y and Borel sets R ⊆ (X×Y )×X. A Borel equivalence relation
E on a Polish space X is idealistic if there is an E-invariant Borel-on-
Borel assignment x 7→ Ix sending each point in X to a σ-ideal on X for
which [x]E /∈ Ix. We say that E is ccc idealistic if each Ix can be taken
to be weakly ccc-on-Borel, strongly idealistic if the assignment x 7→ Ix
can be taken to be strongly Borel-on-Borel, and strongly ccc idealistic
if x 7→ Ix can be taken to be a strongly Borel-on-Borel assignment of
weakly ccc-on-Borel σ-ideals.

Recall that the orbit equivalence relation induced by a group action
Γ ↷ X is the equivalence relation EX

Γ on X given by x EX
Γ y ⇐⇒

∃γ ∈ Γ x = γ · y. The Feldman–Moore theorem ensures that ev-
ery countable Borel equivalence relation on a Polish space is the orbit
equivalence relation induced by a Borel action of a countable discrete
group (see [FM77, Theorem 1]), and the proof of [Kec92, §1.II.i] shows
that every Borel orbit equivalence relation induced by a Borel action of
a Polish group on a Polish space is strongly ccc idealistic. By [KL97,
Theorem 4.1], the equivalence relation E1 is not Borel reducible to a
ccc-idealistic Borel equivalence relation on a Polish space.

Much as the Kechris–Louveau dichotomy can be used to show that
a hypersmooth Borel equivalence relation on a Polish space is Bor-
el reducible to a ccc-idealistic Borel equivalence relation on a Polish
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space if and only if it is Borel reducible to the orbit equivalence relation
induced by a Borel action of Z on a Polish space, Theorem 1 yields:

Theorem 2. Suppose that E is a σ-smooth Borel equivalence relation
on a Polish space. Then the following are equivalent:

(1) There is a Borel reduction of E to a ccc-idealistic Borel equiv-
alence relation on a Polish space.

(2) There is a Borel reduction of E to the orbit equivalence relation
induced by a Borel action of a countable discrete group on a
Polish space.

A subset of a topological space is Fσ if it is a countable union of
closed sets, and a binary relation R on a Polish space X is potentially
Fσ if there is a Polish topology on X, generating the same Borel sets as
the given topology, with respect to which R is Fσ. Standard change of
topology results and the Lusin–Novikov uniformization theorem (see,
for example, [Kec95, §13 and Theorem 18.10]) easily imply that count-
able Borel equivalence relations on Polish spaces are potentially Fσ.

Kechris–Louveau have asked whether a Borel equivalence relation E
on a Polish space is Borel reducible to a ccc-idealistic Borel equivalence
relation on a Polish space if and only if there is no continuous embed-
ding of E1 into E. Much as the Kechris–Louveau dichotomy yields a
positive answer to this question in the hypersmooth case, Theorem 1
yields the extension to the σ-smooth case, and the underlying argument
can be used to obtain a further generalization:

Theorem 3. Suppose that E is an equivalence relation on a Polish
space that is a countable union of subequivalence relations that are Bor-
el reducible to strongly-ccc-idealistic potentially-Fσ equivalence relations
on Polish spaces. Then exactly one of the following holds:

(1) There is a Borel reduction of E to a ccc-idealistic Borel equiv-
alence relation on a Polish space.

(2) There is a continuous embedding of E1 into E.

As the proof of the Feldman-Moore theorem ensures that countable
Borel equivalence relations on Polish spaces are countable unions of
finite Borel subequivalence relations, it is not difficult to see that a
Borel equivalence relation on a Polish space is σ-smooth if and only
if it is a countable union of subequivalence relations that are Borel
reducible to countable Borel equivalence relations on Polish spaces, so
Theorem 1 also yields:

Theorem 4. Suppose that E is an equivalence relation on a Polish
space that is Borel reducible to a ccc-idealistic Borel equivalence relation
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on a Polish space. If E is a countable union of subequivalence relations
that are Borel reducible to countable Borel equivalence relations on Po-
lish spaces, then E is Borel reducible to a countable Borel equivalence
relation on a Polish space.

An equivalence relation E on a set X has countable index over a
subequivalence relation F if every E-class is a countable union of F -
classes. Generalizing Theorem 4 in the spirit of [Kit08, Theorem 1.1],
we show:

Theorem 5. Suppose that E is an equivalence relation on a Polish
space that is Borel reducible to a ccc-idealistic Borel equivalence rela-
tion on a Polish space and F is a class of strongly-idealistic potentially-
Fσ equivalence relations on Polish spaces that is closed under countable
disjoint unions and countable-index Borel superequivalence relations.
If E is a countable union of subequivalence relations that are Borel re-
ducible to relations in F , then E is Borel reducible to a relation in F .

The saturation of a set Y ⊆ X with respect to an equivalence relation
E on X is given by [Y ]E := {x ∈ X | ∃y ∈ Y x E y}, the diagonal
on X is given by ∆(X) := {(x, y) ∈ X × X | x = y}, the product of
equivalence relations E and F on X and Y is the equivalence relation
on X × Y given by (x, y) E × F (x′, y′) ⇐⇒ (x E x′ and y F y′), the
Friedman–Stanley jump of E is the equivalence relation on XN given
by x E+ y ⇐⇒ [x(N)]E = [y(N)]E, and we use E∩ to denote the
binary relation on XN given by x E∩ y ⇐⇒ [x(N)]E ∩ [y(N)]E ̸= ∅.
Theorem 5 yields:

Theorem 6. Suppose that E is an equivalence relation on a Polish
space that is Borel reducible to a ccc-idealistic Borel equivalence re-
lation on a Polish space and F is a strongly-idealistic potentially-Fσ
equivalence relation on a Polish space. Then the following are equiva-
lent:

(1) The equivalence relation E is a countable union of subequiva-
lence relations that are Borel reducible to F ×∆(N).

(2) There is a Borel reduction of E to (F ×∆(N))∩.
(3) There is a Borel reduction of E to a countable-index Borel su-

perequivalence relation of F ×∆(N).
(4) There is a Borel homomorphism from (E,∼E) to ((F×∆(N))+,

∼(F ×∆(N))∩).
In particular, if there is a Borel reduction of E to (F ×∆(N))∩, then
there is a Borel reduction of E to (F ×∆(N))+.
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In §1, we introduce basic notation and definitions. In §2, we review
the compact-open topology. In §3, we establish several preliminaries
concerning Borel equivalence relations. In §4, we characterize the ex-
istence of small definable cores for appropriate families of finite sets.
In §5, we consider approximations to embeddings of E1 into itself. In
§6, we establish a pair of technical dichotomies, and provide an alter-
nate proof of the Kechris–Louveau dichotomy. And in §7, we derive
Theorems 1–6 from a single common generalization.

1. Notation and definitions

Given a set Z and a function f : X×Y → Z, define f y : X → Z and
fx : Y → Z by f y(x) := fx(y) := f(x, y) for all x ∈ X and y ∈ Y .

The restriction of a binary relation R on a set X to a set Y ⊆ X
is the binary relation on Y given by R ↾ Y := R ∩ (Y × Y ). When
considering properties of R ↾ Y that depend on the ambient space, it
will be understood that this ambient space is Y . For instance, if X
is a topological space, then we will say that R ↾ Y is meager, or R is
meager on Y , if it is meager when viewed as a subset of Y × Y .
Given a topological space X and a property φ of elements of X, we

use ∀∗x ∈ X φ(x) to indicate that {x ∈ X | φ(x)} is comeager, and
∃∗x ∈ X φ(x) to indicate that {x ∈ X | φ(x)} is not meager.

The complete equivalence relation on X is given by I(X) = X ×X.
We refer the reader to [Kec95] for basic descriptive set-theoretic back-

ground on Baire category and analytic sets.

2. The compact-open topology

Let X and Y be topological spaces. We use C(X, Y ) to denote the
set of all continuous mappings f : X → Y . For A ⊆ X and B ⊆ Y ,
let M(A,B) := {f ∈ C(X, Y ) | f(A) ⊆ B} (we will denote this set
by MC(X,Y )(A,B) in case of potential ambiguity). We endow C(X, Y )
with the compact-open topology, that is, the topology generated by the
the sets of the form M(K,U), where K ranges over compact subsets
of X and U ranges over open subsets of Y .

We summarize below some classical properties of the compact-open
topology. Most of them can be found, for example, in [Eng89].

Proposition 2.1. Let X and Z be topological spaces and Y ⊆ Z and
view C(X, Y ) as a subset of C(X,Z). Then the compact-open topology
on C(X, Y ) coincides with the topology induced by the compact-open
topology on C(X,Z).
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Proof. This immediately follows from the fact that, forK ⊆ X compact
and U ⊆ Z open, we have MC(X,Y )(K,U ∩ Y ) = MC(X,Z)(K,U) ∩
C(X, Y ).

Proposition 2.2 (see [Eng89, Theorem 3.4.2]). Let X, Y , and Z be
topological spaces, with Y being locally compact. Then the composition
mapping C(Y, Z) × C(X, Y ) → C(X,Z), given by (f, g) 7→ f ◦ g, is
continuous.

Proposition 2.3. Let Y and Z be topological spaces, with Y being
locally compact. Then the evaluation mapping C(Y, Z)×Y → Z, given
by (f, x) 7→ f(x), is continuous.

Proof. Apply Proposition 2.2 with X being a singleton.

Proposition 2.4 (see [Eng89, Theorems 3.4.3 and 3.4.8]). Let X, Y ,
and Z be topological spaces, with X being locally compact and Y being
Hausdorff.

(1) For every f ∈ C(X × Y, Z), the mapping Λ(f) : Y → C(X,Z),
given by y 7→ f y, is continuous.

(2) The mapping Λ: C(X × Y, Z) → C(Y,C(X,Z)) hence defined
is a homeomorphism.

Proposition 2.5 (see [Eng89, Exercise 3.4.B]). Let X1, X2, Y1, and
Y2 be topological spaces, with X1 and X2 being Hausdorff. Then the
mapping C(X1, Y1) × C(X2, Y2) → C(X1 × X2, Y1 × Y2), given by
(f1, f2) 7→ f1 × f2, is a homeomorphic embedding.

Let X be a compact topological space and (Y, d) be a metric space.
The uniform metric on C(X, Y ) associated with d is given by d∞(f, g) :=
supx∈X d(f(x), g(x)).

Proposition 2.6 (see [Eng89, Theorems 4.2.17 and 4.3.13]). Let X be
a compact topological space and (Y, d) be a metric space. Then d∞ is a
metric on C(X, Y ) that is compatible with the compact-open topology.
Moreover, if (Y, d) is complete, then so too is (C(X, Y ), d∞).

Proposition 2.7 (see [Eng89, Theorem 3.4.16 and Exercise 4.3.F]).
Let X and Y be topological spaces, with X being locally compact and
second countable.

(1) If Y is second countable, then C(X, Y ) is second countable.
(2) If Y is completely metrizable, then C(X, Y ) is completely metriz-

able.

In particular, if Y is Polish, then C(X, Y ) is Polish.

Given topological spaces X, Y , and Z and A ⊆ C(X,Z), we denote
by A→Y the set of all f ∈ C(X×Y, Z) such that, for all y ∈ Y , f y ∈ A.
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Lemma 2.8. Let X, Y , and Z be topological spaces, with X being
locally compact and Y being compact Hausdorff. Let U ⊆ C(X,Z) be
an open set. Then U→Y is an open subset of C(X × Y, Z).

Proof. Keeping the notation from the statement of Proposition 2.4, we
have U→Y = Λ−1(M(Y,U)), hence Proposition 2.4 immediately gives
the desired result.

Given a natural number n, a set X, and a sequence (Yi)i∈N, we
identify (X ×

∏
i<n Yi)×

∏
i≥n Yi with X ×

∏
i∈N Yi.

Lemma 2.9. Let X be a locally-compact second-countable topological
space, (Yn)n∈N be a sequence of compact Hausdorff spaces, and Z be a
completely metrizable topological space. Then there are compatible com-
plete metrics dn on C(X ×

∏
i<n Yi, Z) such that diamN(A→

∏
i≥n Yi) ≤

diamn(A) for all n ∈ N and A ⊆ C(X ×
∏

i<n Yi, Z), where diamn

denotes the diameter relative to dn for all n ∈ N ∪ {N}.

Proof. We first deal with the special case when X is a singleton. Fix
a compatible complete metric d on Z. For all n ∈ N ∪ {N}, iden-
tify X ×

∏
i<n Yi with

∏
i<n Yi and let dn be the uniform metric on

C(
∏

i<n Yi, Z). Suppose now that n ∈ N and A ⊆ C(
∏

i<n Yi, Z), and

observe that if f, g ∈ A→
∏

i≥n Yi , then

dN(f, g) = sup
y∈

∏
i∈N Yi

d(f(y), g(y))

= sup
v∈

∏
i≥n Yi

sup
u∈

∏
i<n Yi

d(f v(u), gv(u))

= sup
v∈

∏
i≥n Yi

dn(f
v, gv)

≤ diamn(A),

so diamN(A→
∏

i≥n Yi) ≤ diamn(A).
We now deal with the general case. Let Z ′ = C(X,Z). By Proposi-

tion 2.4, for every n ∈ N∪{N}, the mapping Λn : C(X×
∏

i<n Yi, Z) →
C(

∏
i<n Yi, Z

′), defined by Λn(f)(y) := f y, is a homeomorphism. More-
over, it is easy to verify that, for every f ∈ C(X ×

∏
i∈N Yi, Z), n ∈ N,

and y ∈
∏

i≥n Yi, we have Λn(f
y) = ΛN(f)

y. It follows that, for ev-

ery n ∈ N and A ⊆ C(X ×
∏

i<n Yi, Z), we have ΛN(A→
∏

i≥n Yi) =

Λn(A)→
∏

i≥n Yi .
By Proposition 2.7, Z ′ is completely metrizable, so we can apply the

special case to find, for every n ∈ N ∪ {N}, a complete metric d′n on
C(

∏
i<n Yi, Z

′) such that, for every n ∈ N and A′ ⊆ C(
∏

i<n Yi, Z
′),

we have diamN((A′)→
∏

i≥n Yi) ≤ diamn(A′). We define, for every n ∈
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N ∪ {N}, the metric dn on C(X ×
∏

i<n Yi, Z) as the pullback of d′n
through Λn. Hence, for n ∈ N and A ⊆ C(X ×

∏
i<n Yi, Z), we have

diamN(A→
∏

i≥n Yi) = diamN(ΛN(A→
∏

i≥n Yi))

= diamN(Λn(A)→
∏

i≥n Yi)

≤ diamn(Λn(A))

= diamn(A),

which completes the proof.

Lemma 2.10. Let X be a zero-dimensional compact Polish space, Ω ⊆
X be an open subset, Y be a topological space, and B be a basis of open
subsets of Y that is closed under finite intersection. Then the sets
of the form

⋂
i<nM(Ki, Ui), where n ∈ N, (Ki)i<n is a sequence of

nonempty pairwise disjoint clopen subsets of X that are contained in
Ω, and (Ui)i<n is a sequence of nonempty elements of B, form a basis
of nonempty open subsets of C(Ω, Y ).

In the special case when Ω = X, the sets as above, but where we,
moreover, require that (Ki)i<n is a partition of X, form a basis of
nonempty open subsets of C(X, Y ).

Proof. Keeping the notation from the statement of the lemma and tak-
ing yi ∈ Ui for all i < n when n > 0, the mapping f : Ω → Y , defined
by f(x) = yi for all x ∈ Ki and f(x) = y0 for all x /∈

⋃
i<nKi, is an

element of
⋂
i<nM(Ki, Ui), which is hence nonempty. We now show

that these sets form a basis of open sets of C(Ω, Y ).
Let U be an open subset of C(Ω, Y ) and f ∈ U . We can find k ∈ N,

nonempty compact sets L0, . . . , Lk−1 ⊆ Ω, and open sets V0, . . . , Vk−1 ⊆
Y such that f ∈

⋂
i<kM(Li, Vi) ⊆ U . In particular, for every i < k,

we have f(Li) ⊆ Vi. Fix i < k. For every x ∈ Li, there exists W x
i ∈ B

such that f(x) ∈ W x
i ⊆ Vi. We can find a clopen subset Cx

i of X,
contained in Ω, such that x ∈ Cx

i ⊆ f−1(W x
i ). Since Li is compact, we

can find x0i , . . . , x
li
i ∈ Li such that Li ⊆

⋃
j≤li C

xji
i . Then

f ∈
⋂
i<k

⋂
j≤li

M(C
xji
i ,W

xji
i ) ⊆ U .

This shows that, by shrinking U if necessary, we can assume that the
Li’s are clopen in X and the Vi’s are elements of B.

For every set s ⊆ k, let Ks = (
⋂
i∈s Li)\(

⋃
i∈k\s Li) and Us =

⋂
i∈s Vi.

Let S = {s ⊆ k | Ks ̸= ∅} \ {∅}. For every s ∈ S, Ks is contained
in one of the Li’s, and is therefore a subset of Ω; clearly, the Ks’s are
pairwise disjoint and clopen. Moreover, we have

⋂
s∈SM(Ks, Us) =
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i<kM(Li, Vi). Thus the latter set is an open neighborhood of f of

the desired form that is contained in U .
In the special case when Ω = X, a basic open subset

⋃
i<nM(Ki, Ui)

of C(X, Y ), where n ∈ N, (Ki)i<n is a sequence of nonempty pairwise
disjoint clopen subsets of X, and (Ui)i<n is a sequence of nonempty
elements of B, can be rewritten as

⋃
i≤nM(Ki, Ui), where Kn = X \⋃

i<nKi and Un = X.

Let X and Y be topological spaces and U be an open subset of
C(X, Y ). We say that U is right stable when there exists a neighbor-
hood V of the identity in C(X,X) such that U ◦ V = U .

Corollary 2.11. Let X be a zero-dimensional second-countable com-
pact topological space, Ω ⊆ X be an open set, and Y be a second-
countable topological space. Then C(Ω, Y ) admits a countable basis of
open subsets whose elements are right stable.

Proof. Fix a countable basis B for Y that is closed under finite intersec-
tion. Then, by Lemma 2.10, the sets of the form U :=

⋂
i<nM(Ki, Ui),

where n ∈ N, (Ki)i<n is a sequence of nonempty pairwise disjoint
clopen subsets of X that are contained in Ω, and (Ui)i<n is a sequence
of nonempty elements of B, form a basis for C(Ω, Y ). Moreover, this
basis is countable. It remains to show that every such set is right sta-
ble. Keeping the notation as above, the set V :=

⋂
i<nM(Ki, Ki) is an

open neighborhood of the identity in C(Ω,Ω) and U ◦ V = U .

3. Preliminaries

Clearly the family of sets Y ⊆ X on which E has countable index
over F is closed under containment and F -saturation.

Lemma 3.1. Suppose that X and Y are sets, E ⊆ E ′ are equivalence
relations on X, F ⊆ F ′ are equivalence relations on Y , and φ : X → Y
is a homomorphism from (E,∼E ′) to (F,∼F ′). If E ′ has countable
index over E, then F ′ has countable index over F on φ(X).

Proof. It is sufficient to show that if φ(x) = y and [x]E′ =
⋃
n∈N[xn]E,

then [y]F ′↾φ(X) ⊆
⋃
n∈N[φ(xn)]F . Towards this end, suppose that y′ ∈

[y]F ′↾φ(X), and fix x′ ∈ X for which φ(x′) = y′. As φ is a cohomomor-
phism from E ′ to F ′, it follows that x E ′ x′, so there exists n ∈ N for
which xn E x′, and since φ is a homomorphism from E to F , it follows
that y′ ∈ [φ(xn)]F .

The following fact will prove useful in complexity calculations:
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Proposition 3.2. Suppose that X is a Polish space, E is an analytic
equivalence relation on X, and F is a co-analytic equivalence relation
on X. Then exactly one of the following holds:

(1) The equivalence relation E has countable index over E ∩ F .
(2) There is a continuous function φ : 2N → X with the property

that (φ× φ)−1(E \ F ) is comeager.

Proof. To see (2) =⇒ ¬(1), suppose that R := (φ × φ)−1(E \ F )
is comeager, appeal to Mycielski’s theorem (see, for example, [Kec95,
Theorem 19.1]) to obtain a continuous homomorphism ψ : 2N → 2N

from ∼∆(2N) to R, and observe that φ ◦ ψ is a continuous homomor-
phism from ∼∆(2N) to E \ F , thus condition (1) fails.
To see ¬(1) =⇒ (2), suppose that there exists x ∈ X for which

F ↾ [x]E has uncountably many classes, appeal to the straightforward
generalization of Silver’s perfect set theorem (see [Sil80]) to analytic
subsets of Polish spaces to obtain a continuous embedding φ : 2N → [x]E
of ∆(2N) into F ↾ [x]E, and observe that (φ× φ)−1(E \ F ) = ∼∆(2N),
thus condition (2) holds.

Given a binary relation R on a set X, let ⟨R⟩ denote the smallest
equivalence relation on X containing R.

Proposition 3.3. Suppose that X and Y are Polish spaces, R ⊆ (X×
X) × Y is analytic, and F is a co-analytic equivalence relation on X.
Then {y ∈ Y | ⟨Ry⟩ has countable index over ⟨Ry⟩ ∩F} is co-analytic.

Proof. If y ∈ Y , then Proposition 3.2 ensures that ⟨Ry⟩ has countable
index over ⟨Ry⟩ ∩ F if and only if there is no continuous function
φ : 2N → X for which (φ×φ)−1(⟨Ry⟩\F ) is comeager. But Proposition
2.3 and [Kec95, Theorem 29.22] imply that the set of y for which this
holds is co-analytic.

Corollary 3.4. Suppose that X and Y are Polish spaces, E is an
analytic equivalence relation on X, F is a co-analytic equivalence re-
lation on X, and R ⊆ X × Y is an analytic set. Then {y ∈ Y |
E has countable index over E ∩ F on Ry} is co-analytic.

Proof. Set S := {((w, x), y) ∈ E × Y | w, x ∈ Ry}. If y ∈ Y , then
⟨Sy⟩ = (E ↾ Ry) ∪∆(X), so ⟨Sy⟩ has countable index over ⟨Sy⟩ ∩ F if
and only if E has countable index over E ∩ F on Ry, thus Proposition
3.3 yields the desired result.

Corollary 3.5. Suppose that X and Y are Polish spaces, F is a co-
analytic equivalence relation on X, and R ⊆ X × Y is analytic. Then
{y ∈ Y | F has only countably many classes on Ry} is co-analytic.
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Proof. If y ∈ Y , then I(X) has countable index over F on Ry if and
only if F has only countably many classes on Ry, so Corollary 3.4 yields
the desired result. (Recall that I(X) denotes the complete equivalence
relation on X, as defined in §1.)

We say that a property Φ of subsets of a Polish space X is Π1
1-on-Σ

1
1

if {y ∈ Y | Φ(Ry)} is co-analytic for every Polish space Y and analytic
set R ⊆ X × Y .

Corollary 3.6. Suppose that X is a Polish space, E is an analytic
equivalence relation on X, F is a co-analytic equivalence relation on
X, and A ⊆ X is an analytic set on which E has countable index over
E ∩ F . Then there is a Borel set B ⊇ A on which E has countable
index over E ∩ F .
Proof. By Corollary 3.4, the property (of A) that E ↾ A has countable
index over (E∩F ) ↾ A is Π1

1-on-Σ
1
1, so the first reflection theorem (see,

for example, [Kec95, Theorem 35.10]) yields the desired result.

Proposition 3.7. Suppose that X is a Polish space, E is an analytic
equivalence relation on X, F is a Borel equivalence relation on X con-
tained in E, and A ⊆ X is an analytic set on which E has countable
index over F . Then there is an F -invariant Borel set B ⊇ A on which
E has countable index over F .

Proof. Set A0 := [A]F . Given an analytic set An ⊆ X on which E has
countable index over F , appeal to Corollary 3.6 to obtain a Borel set
Bn ⊇ An on which E has countable index over F , and set An+1 :=
[Bn]F . Define B :=

⋃
n∈NAn =

⋃
n∈NBn.

Proposition 3.8. Suppose that X and Y are Polish spaces, E and
F are Borel equivalence relations on X and Y , φ : X → Y is a Borel
reduction of E to F , and E ′ is a countable-index Borel superequivalence
relation of E. Then there is a countable-index Borel superequivalence
relation F ′ of F for which φ is a reduction of E ′ to F ′.

Proof. Define F0 := (φ× φ)(E ′).

Claim 3.9. The relation F0 is transitive.

Proof. Suppose that y1 F0 y2 F0 y3. Then there exist (w1, w2), (x2, x3) ∈
E ′ such that φ(wi) = yi for all i ∈ {1, 2} and φ(xi) = yi for all
i ∈ {2, 3}. As φ is a cohomomorphism from E to F , it follows that
w1 E

′ w2 E x2 E
′ x3, so w1 E

′ x3, thus y1 F0 y3.

It follows that F0 is an equivalence relation on φ(X).

Claim 3.10. The function φ is a cohomomorphism from E ′ to F0.
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Proof. Suppose that φ(x1) F0 φ(x2). Then there exists (w1, w2) ∈ E ′

such that φ(wi) = φ(xi) for all i ∈ {1, 2}. As φ is a cohomomorphism
from E to F , it follows that x1 E w1 E

′ w2 E x2, so x1 E
′ x2.

Set F ′
0 := ⟨F ∪ F0⟩, and note that F0 = F ′

0 ↾ φ(X), so φ is a
cohomomorphism from E ′ to F ′

0. As E ′ has countable index over E,
Proposition 3.1 ensures that F0 has countable index over F ↾ φ(X),
and since [y]F ̸= [y]F ′

0
=⇒ [y]F ∩ φ(X) ̸= ∅ for all y ∈ Y , it follows

that F ′
0 has countable index over F .

Suppose now that n ∈ N and F ′
n is an analytic superequivalence

relation of F ′
0 such that φ is a cohomomorphism from E ′ to F ′

n and F ′
n

has countable index over F . As Proposition 3.3 ensures that this is a
Π1

1-on-Σ
1
1 property (of F ′

n), the first reflection theorem yields a Borel
superrelation Rn of F ′

n for which φ is a cohomomorphism from E ′ to
⟨Rn⟩ and ⟨Rn⟩ has countable index over F . Set F ′

n+1 := ⟨Rn⟩.
Clearly F ′ :=

⋃
n∈N F

′
n =

⋃
n∈NRn is a Borel superequivalence re-

lation of F . To see that φ is a cohomomorphism from E ′ to F ′, and
therefore a reduction of E ′ to F ′, note that if φ(w) F ′ φ(x), then there
exists n ∈ N for which φ(w) F ′

n φ(x), so w E ′ x. To see that F ′ has
countable index over F , note that [y]F ′ =

⋃
n∈N[y]F ′

n
for all y ∈ Y and

F has only countably many classes on [y]F ′
n
for all n ∈ N and y ∈ Y .

For equivalence relations E and F on sets X and Y , we say that
a set R ⊆ X × Y induces a partial injection of X/E into Y/F if
x E x′ ⇐⇒ y F y′ for all (x, y), (x′, y′) ∈ R.

Proposition 3.11. Suppose that X and Y are Polish spaces, E and
F are Borel equivalence relations on X and Y , and R ⊆ X × Y is an
analytic set inducing a partial injection of X/E into Y/F . Then there
is an (E × F )-invariant Borel set S ⊇ R inducing a partial injection
of X/E into Y/F .

Proof. Set R0 := R. Given an analytic set Rn ⊆ X × Y inducing a
partial injection ofX/E into Y/F , appeal to the first reflection theorem
to obtain a Borel set Sn ⊇ Rn inducing a partial injection of X/E into
Y/F , and set Rn+1 := [Sn]E×F . Define S :=

⋃
n∈NRn =

⋃
n∈N Sn.

As a first corollary of this result, we have the following:

Proposition 3.12. Suppose that X and Y are Polish spaces, E is a
Borel equivalence relation on X, F is a strongly-idealistic Borel equiv-
alence relation on Y , and A ⊆ X is an analytic set on which E is
Borel reducible to F . Then there is an E-invariant Borel set B ⊇ A
on which E is Borel reducible to F .
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Proof. As the graph of any Borel reduction π : A→ Y of E ↾ A to F is
necessarily analytic (see, for example, the proof of [Kec95, Proposition
12.4]), the proposition follows from an application of Proposition 3.11
to the graph of π followed by an application of [dRM, Proposition
2.8].

Recall that to every equivalence relation E on a set X, one associates
two binary relations E+ and E∩ on XN as defined in the introduction,
before the statement of Theorem 6.

Proposition 3.13. Suppose that X and Y are Polish spaces, E is an
equivalence relation on X, F is a strongly-idealistic Borel equivalence
relation on Y , and there is a Borel reduction π : X → Y of E to a
countable-index Borel superequivalence relation F ′ of F . Then there is
a Borel homomorphism φ : X → Y N from (E,∼E) to (F+,∼F∩).

Proof. By [dRM, Theorem 2.12], there are Borel functions φn : Y → Y
such that [y]F ′ =

⋃
n∈N[φn(y)]F for all y ∈ Y . Then the function

φ : X → Y N, given by φ(x)(n) = (φn ◦ π)(x), is as desired.

Remark 3.14. Proposition 3.8 easily implies the generalization of the
converse of Proposition 3.13 in which F need not be strongly idealistic.

We will use Proposition 3.13 in conjunction with the following:

Proposition 3.15. Suppose that X and Y are Polish spaces, E and
F are Borel equivalence relations on X and Y , and there is a Borel
reduction π : X → Y N of E to F∩. Then E is a countable union of
subequivalence relations that are Borel reducible to F .

Proof. We can assume, without loss of generality, that X is a subset of
2N and that the Borel subsets ofX are the Borel subsets of 2N contained
in X. Define φ : X → Y N×N×N by

φ(x)(i, j, k) =

{
π(x)(i) if x(k) = 0 and

π(x)(j) if x(k) = 1.

For all i, j, k ∈ N, let Ei,j,k be the equivalence relation on X given by
x Ei,j,k y ⇐⇒ φ(x)(i, j, k) F φ(y)(i, j, k). The fact that π is a coho-
momorphism from E to F∩ ensures that each Ei,j,k is a subequivalence
relation of E. To see that the union of these equivalence relations is E,
suppose that x and y are distinct E-related points of X, and fix k ∈ N
for which x(k) ̸= y(k). By reversing the roles of x and y if necessary,
we can assume that x(k) = 0. As π is a homomorphism from E to
F∩, there exist i, j ∈ N for which π(x)(i) F π(y)(j), in which case
φ(x)(i, j, k) = π(x)(i) F π(y)(j) = φ(y)(i, j, k), thus x Ei,j,k y.
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Remark 3.16. Conversely, a straightforward argument shows that if E
is a countable union of subequivalence relations that are Borel reducible
to F ×∆(N), then E is Borel reducible to (F ×∆(N))∩.

We also obtain a useful closure property of the class of strongly-
idealistic potentially-Fσ Borel equivalence relations on Polish spaces:

Proposition 3.17. Suppose that X is a Polish space and E is a Borel
equivalence relation on X that has a countable-index strongly(-ccc)-
idealistic potentially-Fσ subequivalence relation F . Then E is strongly
(ccc) idealistic and potentially Fσ.

Proof. By [dRM, Theorem 2.12], there are Borel functions φn : X → X
with the property that [x]E =

⋃
n∈N[φn(x)]F for all x ∈ X.

To see that E is potentially Fσ, appeal to standard change of topol-
ogy results to obtain a Polish topology on X, generating the same
Borel sets as the given topology, with respect to which F is Fσ and φn
is continuous for all n ∈ N. As E =

⋃
n∈N(φn × idX)

−1(F ), it is Fσ
with respect to any such topology.

To see that E is strongly (ccc) idealistic, fix a witness x 7→ Jx to the
strong (ccc) idealisticity of F .

Claim 3.18. Suppose that φ : X → X is Borel. Then x 7→ Jφ(x) is
strongly Borel-on-Borel.

Proof. Given a Polish space Y and a Borel set R ⊆ (X × Y )×X, set
S := {((x, (w, y)), z) ∈ (X× (X×Y ))×X | φ(w) = x and (w, y) R z},
define ψ : X × Y → X × (X × Y ) by ψ(w, y) := (φ(w), (w, y)), and
observe that

{(w, y) ∈ X × Y | R(w,y) ∈ Iφ(w)}
= ψ−1({(φ(w), (w, y)) | (w, y) ∈ X × Y and R(w,y) ∈ Iφ(w)})
= ψ−1({(x, (w, y)) ∈ X × (X × Y ) | φ(w) = x and R(w,y) ∈ Ix})
= ψ−1({(x, (w, y)) ∈ X × (X × Y ) | S(x,(w,y)) ∈ Ix}),

which is Borel.

If x ∈ X, then Ix :=
⋂
n∈N Jφn(x) is a (weakly-ccc-on-Borel) σ-ideal

for which [x]E /∈ Ix. Clearly x 7→ Ix is E-invariant, and Claim 3.18
ensures that it is strongly Borel-on-Borel.

4. Cores

Given n ∈ N and a set X, we use [X]n to denote the set of all subsets
of X of cardinality n. A partial transversal of an equivalence relation
F on X is a set Y ⊆ X whose intersection with each F -class consists
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of at most one point. Given a superequivalence relation E of F , we
use [X]nE,F to denote the set of all partial transversals a ∈ [X]n of F

that are contained in a single E-class. Define [X]≤n :=
⋃
i≤n[X]i and

[X]≤nE,F :=
⋃
i≤n[X]iE,F .

If X is a standard Borel space, then [X]n can be viewed as the
quotient of the set of injective sequences in Xn by the equivalence
relation of enumerating the same set, and equipped with the quotient
Borel structure. The latter is standard: If ≺ is a Borel strict linear
ordering of X, then it is easy to see that the quotient mapping induces
a Borel isomorphism between {x ∈ Xn | x(0) ≺ · · · ≺ x(n − 1)}
and [X]n. We equip [X]≤n with the disjoint union Borel structure.
Complexities of subsets of [X]nE,F and [X]≤nE,F will always be considered

relative to the ambient spaces [X]n and [X]≤n, respectively.
We say that a, b ∈ [X]≤n are F -disjoint if [a]F ∩ [b]F = ∅. We

abuse notation by using [F ]≤n to denote the equivalence relation on
[X]≤n given by a [F ]≤n b ⇐⇒ [a]F = [b]F . If F is Borel, then so
too is [F ]≤n. Finally, we say that a set C ⊆ X is a core for a family
A ⊆ [X]≤n if it intersects every element of A. In this section, we
describe the circumstances under which suitable subfamilies of [X]≤n

admit sufficiently small definable cores.
The following result is essentially a special case of [CCCM11, The-

orem 12] (although the formalism is quite different and condition (2)
appears in a slightly weaker form in [CCCM11, Theorem 12], the proof
given there yields the result stated below):

Theorem 4.1 (Caicedo–Clemens–Conley–Miller). Let n ≥ 1, X be a
standard Borel space, F be a co-analytic equivalence relation on X, and
A ⊆ [X]≤n be an analytic family of nonempty sets. Then exactly one
of the following holds:

(1) There is an F -invariant core C ⊆ X for A on which F has only
countably many classes.

(2) There is an uncountable Borel family P ⊆ A consisting of pair-
wise F -disjoint sets.

The following result is essentially the analog of [CCM16, Proposition
2.3.1] in which bounded finite index is replaced with countable index,
and the idea underlying the proof of the former is essentially the same
as that underlying the proof of the latter:

Proposition 4.2. Let n ≥ 1, X be a standard Borel space, E be an
analytic equivalence relation on X, F be a Borel equivalence relation on
X contained in E, and A ⊆ [X]≤nE,F be an analytic family of nonempty



16 N. DE RANCOURT AND B. D. MILLER

sets such that there is a core for A∩ [[x]E]
≤n that intersects only count-

ably many F -classes for all x ∈ X. Then there is an F -invariant Borel
core C ⊆ X for A on which E has countable index over F .

Proof. We proceed by induction on n. For the case n = 1, define
A := {x ∈ X | {x} ∈ A}, note that E ↾ A has countable index over
F ↾ A, appeal to Proposition 3.7 to obtain an F -invariant Borel set
C ⊇ A on which E has countable index over F , and observe that C is
a core for A.

We now suppose n ≥ 2. Given F ⊆ [X]≤n and a ∈ [X]≤n, we let
[a,F ]F := {[b]F | b ∈ F and a ⊆ [b]F}. We build, by reverse recursion,
analytic families Ak ⊆ [X]≤nE,F and A′

k ⊆ [X]kE,F for every k ≤ n and
an F -invariant Borel set Bk ⊆ X for every 1 ≤ k ≤ n satisfying the
following conditions:

(1) For all k < n, Ak = {a ∈ Ak+1 | a ∩Bk+1 = ∅}.
(2) For all k ≤ n, A′

k = {a ∈ [X]kE,F | |[a,Ak]F | > ℵ0}.
(3) For all 1 ≤ k ≤ n, Bk is a core for A′

k on which E has countable
index over F .

We start with An = A. For k ≤ n, condition (2) uniquely defines
A′
k from Ak. Moreover, since [X]kE,F is analytic and A′

k is the set of

a ∈ [X]kE,F for which [F ]≤n ↾ {b ∈ Ak | a ⊆ [b]F} has uncountably many
classes, Corollary 3.5 ensures that A′

k is analytic. Similarly, for k < n,
condition (1) uniquely defines Ak from Ak+1 and Bk+1, and ensures
that it is analytic. So it only remains to describe the construction of
the Bk’s. From now on, we fix 1 ≤ k ≤ n, assume that the Al’s and
the A′

l’s have been constructed for all k ≤ l ≤ n and the Bl’s have
been constructed for k < l ≤ n, and describe the construction of Bk.
In the case when k = n, we clearly have A′

n = ∅, so we can take
Bn = ∅. Thus we can assume that 1 ≤ k < n. We begin with several
preliminary claims. The first of these, Claim 4.3, is also true when
k = 0, and will later be used in this case.

Claim 4.3. Let a ∈ A′
k and x ∈ X be such that a ∪ {x} ∈ [X]k+1

E,F .
Then [a ∪ {x},Ak]F is countable.

Proof. Suppose [a ∪ {x},Ak]F ̸= ∅. Then there is b ∈ Ak such that
a ∪ {x} ⊆ [b]F . By condition (1), we have b ∩ Bk+1 = ∅. Since Bk+1

is F -invariant, we have [b]F ∩ Bk+1 = ∅, hence (a ∪ {x}) ∩ Bk+1 = ∅.
Since Bk+1 is a core for A′

k+1, we deduce that a ∪ {x} /∈ A′
k+1. Hence,

condition (2) ensures that [a ∪ {x},Ak+1]F is countable. Since Ak ⊆
Ak+1, we deduce that [a ∪ {x},Ak]F is also countable.
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Claim 4.4. Let a ∈ A′
k and M ⊆ [a]E be a set intersecting only count-

ably many F -classes. Then there exists b ∈ Ak such that a ⊆ [b]F and
M ∩ [b]F \ [a]F = ∅.

Proof. By Claim 4.3, for all x ∈ M \ [a]F , the set [a ∪ {x},Ak]F is
countable. Since this set only depends on [x]F and M intersects only
countably many F -classes, we deduce that

⋃
x∈M\[a]F [a ∪ {x},Ak]F is

countable. Since [a,Ak]F is uncountable, we deduce that [a,Ak]F \⋃
x∈M\[a]F [a ∪ {x},Ak]F is nonempty. An element of this set has the

form [b]F , where b ∈ Ak, a ⊆ [b]F , and x /∈ [b]F for all x ∈ M \ [a]F .
From this last condition, we deduce that M ∩ [b]F \ [a]F = ∅.

Claim 4.5. For every x ∈ X, there exists a core for A′
k ∩ [[x]E]

k that
intersects only countably many F -classes.

Proof. Fix x ∈ X. By the hypotheses of the proposition, there exists
a core D ⊆ X for A ∩ [[x]E]

≤n that intersects only countably many
F -classes. Without loss of generality, we can assume that D is F -
invariant. We will show that it is also a core for A′

k ∩ [[x]E]
k.

Towards this end, fix a ∈ A′
k ∩ [[x]E]

k. Then F := {b \ [a]F | b ∈
Ak and a ⊆ [b]F} is an analytic subset of [X]≤n contained in [[x]E]

≤n.
If ∅ ∈ F , then there exists b ∈ Ak such that [a]F = [b]F ; since b ∈
A ∩ [[x]E]

≤n, we have b ∩ D ̸= ∅, and since D is F -invariant, we also
have a ∩D ̸= ∅. So, from now on, we will assume that ∅ /∈ F . Hence,
we can apply Theorem 4.1 to F . There are two cases.

Case 1: There is a coreM ⊆ X for F on which F has only countably
many classes. We can assume thatM ⊆ [x]E. We apply Claim 4.4 to a
and M , which yields b ∈ Ak such that a ⊆ [b]F and M ∩ [b]F \ [a]F = ∅.
It follows that b \ [a]F is in F and does not intersect M , contradicting
the fact that M is a core for F .

Case 2: There is an uncountable family P ⊆ F consisting of pairwise
F -disjoint sets. Since D intersects only countably many F -classes, we
can find c ∈ P such that c ∩ D = ∅. Fix b ∈ Ak such that a ⊆ [b]F
and c = b \ [a]F . Then b ∈ A∩ [[x]E]

≤n; hence b∩D ̸= ∅. But we have
seen that b \ [a]F ∩D = ∅, so it follows that [a]F ∩D ̸= ∅. Since D is
F -invariant, we deduce that a ∩D ̸= ∅.

Claim 4.5 allows us to apply the induction hypothesis to the family
A′
k; this gives us the desired Borel set Bk and completes the recursive

construction. We now let A :=
⋃
A0.

Claim 4.6. The relation E has countable index over F on A.
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Proof. If ∅ /∈ A′
0, then condition (2) implies that [∅,A0]F is countable.

Observe that [A]F =
⋃
[∅,A0]F , so F has only countably many classes

on [A]F , and we are done. We can therefore assume that ∅ ∈ A′
0.

Fix x ∈ X; we will show that A∩[x]E intersects only countably many
F -classes. The hypotheses of the proposition give us a core D ⊆ X
for A ∩ [[x]E]

≤n that intersects only countably many F -classes. Since
∅ ∈ A′

0, Claim 4.3 ensures that, for every y ∈ D, the set [{y},A0]F is
countable, hence the set

⋃
[{y},A0]F intersects only countably many F -

classes. Since this set only depends on [y]F andD intersects only count-
ably many F -classes, we deduce that the set H :=

⋃
y∈D

⋃
[{y},A0]F

intersects only countably many F -classes.
It only remains to show that A ∩ [x]E ⊆ H. Let z ∈ A ∩ [x]E. Then

there exists a ∈ A0 ∩ [[x]E]
≤n such that z ∈ a. Since D is a core

for A0 ∩ [[x]E]
≤n, there exists y ∈ a ∩ D. Then [a]F ∈ [{y},A0]F , so

z ∈
⋃
[{y},A0]F , thus z ∈ H.

We can now complete the proof of the proposition: By Proposition
3.7, there exists an F -invariant Borel set B ⊇ A on which E has
countable index over F . This set is a core for A0. By condition (1),
Bk+1 is a core for Ak+1 \ Ak for every k < n. We deduce that C :=
B ∪

(⋃
1≤k≤nBk

)
is a core for A, and it is clear that C is a Borel set

on which E has countable index over F .

Combining Proposition 4.2 and Theorem 4.1, we obtain:

Corollary 4.7. Let n ≥ 1, X be a standard Borel space, E be an
analytic equivalence relation on X, F be a Borel equivalence relation on
X contained in E, and A ⊆ [X]≤nE,F be an analytic family of nonempty
sets. Then exactly one of the following holds:

(1) There exists an F -invariant Borel core C ⊆ X for A on which
E has countable index over F .

(2) There exists an uncountable Borel set P ⊆ A of pairwise F -
disjoint subsets of a single E-class.

Proof. To see that the two conditions are mutually exclusive, suppose
that we are in case (2) and fix a core C for A. Then C contains
uncountably many pairwise F -inequivalent elements of

⋃
P . But

⋃
P

is contained in an E-class, so E does not have countable index over F
on C.
Suppose now that we are not in case (2). Then, for every x ∈ X, The-

orem 4.1 applied toA∩[[x]E]≤n yields a core forA∩[[x]E]≤n intersecting
only countably many F -classes. Hence, we can apply Proposition 4.2,
which ensures that we are in case (1).



A DICHOTOMY FOR COUNTABLE UNIONS 19

We now state and prove a technical consequence of Corollary 4.7
that will be useful later. Given sets X and Y , an equivalence relation
F on X×Y , and y ∈ Y , we use F (y) to denote the equivalence relation
on X given by x F (y) x′ ⇐⇒ (x, y) F (x′, y).

Lemma 4.8. Let X and Y be Polish spaces, A ⊆ Y be an analytic
set, E be an analytic equivalence relation on X × Y , and F be a Borel
equivalence relation on X × Y contained in E such that:

(a) For every y ∈ A, X × {y} is contained in a single E-class.
(b) There exists n ≥ 1 such that, for every y ∈ A, the equivalence

relation F (y) has at most n non-meager classes.

Then at least one of the following conditions holds:

(1) There is an F -invariant Borel set C ⊆ X × Y , on which E has
countable index over F , such that Cy is non-meager for every
y ∈ A.

(2) There is a continuous mapping ψ : 2N → A such that X×ψ(2N)
is contained in a single E-class and ((idX×ψ)×(idX×ψ))−1(F )
is meager.

Proof. Let R be the set of (y, a) ∈ A × [X × Y ]≤nE,F with the property
that [a]F = {z ∈ X × Y | [z]yF is non-meager}. The inclusion [a]F ⊆
{z ∈ X × Y | [z]yF is non-meager} can be written as

∀z ∈ a∃∗x ∈ X (x, y) F z,

so, by [Kec95, Theorem 16.1], the set of (y, a) ∈ Y × [X × Y ]≤nE,F
satisfying it is Borel. Similarly, the reverse inclusion can be written as

∀∗x ∈ X (∃∗x′ ∈ X (x, y) F (x′, y) =⇒ ∃z ∈ a (x, y) F z),

so the set of (y, a) ∈ Y ×[X×Y ]≤nE,F satisfying it is also Borel. It follows

that R is an analytic subset of Y × [X ×Y ]≤n, so A := proj[X×Y ]≤n(R)

is an analytic subset of [X × Y ]≤nE,F .
Suppose that ∅ ∈ A. Then there exists y0 ∈ A such that (y0, ∅) ∈ R,

that is, [z]y0F is meager for all z ∈ X×Y . Let ψ : 2N → A be the constant
mapping with value y0 and F

′ := ((idX ×ψ)× (idX ×ψ))−1(F ). Then,
for all (x, u) ∈ X × 2N and u′ ∈ 2N, we have [(x, u)]u

′

F ′ = [(x, y0)]
y0
F , so

[(x, u)]u
′

F ′ is meager; by Kuratowski–Ulam’s theorem (see, for example,
[Kec95, Theorem 8.41]), it follows that [(x, u)]F ′ is meager, hence F ′ is
meager. It also follows from condition (a) that X ×ψ(2N) is contained
in a single E-class, so ψ witnesses that we are in case (2).
So, from now on, we can assume that ∅ /∈ A, and therefore apply

Corollary 4.7 to the family A. There are two cases.
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Case 1: There is an F -invariant Borel core C ⊆ X × Y for A on
which E has countable index over F . We will show that C witnesses
that we are in case (1). Let y ∈ A; we will show that Cy is non-
meager. By condition (b), the equivalence relation F (y) has at most n
non-meager classes; we fix a set ã of representatives for these classes
and let a := ã×{y}. Elements of a are clearly pairwise F -inequivalent
and pairwise E-equivalent by condition (a), so a ∈ [X]≤nE,F . Moreover,
[a]F is the union of all F -classes [z]F for which [z]yF is non-meager, so
(y, a) ∈ R, thus a ∈ A. Since C is a core for A, we can find x ∈ X
such that (x, y) ∈ C ∩ a. It follows that [(x, y)]yF is non-meager, and
since C is F -invariant, we have [(x, y)]F ⊆ C, so Cy is non-meager.

Case 2: There exists an uncountable Borel set P ⊆ A of pairwise F -
disjoint subsets of a single E-class. Endow [X × Y ]≤n with any Polish
topology compatible with its standard Borel structure. We can assume
that P is homeomorphic to Cantor space. By Jankov–von Neumann’s
uniformization theorem (see, for example, [Kec95, Theorem 18.1]), we
can find a Baire measurable mapping f : P → Y such that, for all
a ∈ P , (f(a), a) ∈ R. The mapping f is continuous on a comeager
subset of P , so, by shrinking P if necessary, we can assume that f
is continuous on P . Since elements of P are nonempty, pairwise F -
disjoint, and contained in the same E-class, it follows that the sets

{z ∈ X ×Y | [z]f(a)F is non-meager}, for a ∈ P , are nonempty, pairwise
disjoint, and contained in the same E-class. In particular, the mapping
f is one-to-one, so P := f(P) is homeomorphic to Cantor space. It is
clear that P ⊆ A; moreover, the sets {z ∈ X×Y | [z]yF is non-meager},
for y ∈ P , are nonempty, pairwise F -disjoint, and contained in the same
E-class. Since, for all y ∈ P , the set {z ∈ X × Y | [z]yF is non-meager}
intersects X × {y} and X × {y} is contained in a single E-class, we
deduce that X × P is contained in a single E-class.

We now let ψ : 2N → P be a homeomorphism and show that ψ
witnesses that we are in case (2), or equivalently, that F ↾ (X × P )
is meager. Suppose not. Then, by Kuratowski–Ulam’s theorem, there
exist z ∈ X × P for which [z]F is non-meager in X × P and distinct
y0, y1 ∈ P for which [z]y0F and [z]y1F are non-meager, contradicting the
fact that the sets of the form {z ∈ X × Y | [z]yF is non-meager}, for
y ∈ P , are pairwise disjoint.

5. Aligned mappings

In this section and the next, we will often work with spaces of the
form (2m)n where m,n ∈ N ∪ {N}. If m ≤ m′, n ≤ n′, s ∈ (2m)n,
and t ∈ (2m

′
)n

′
, then we write s ⊑ t to indicate that s(j)(i) = t(j)(i)
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for all i < m and j < n. Let Ns := {x ∈ (2N)n | s ⊑ x} for all
m,n ∈ N and s ∈ (2m)n. The family {Ns | m ∈ N and s ∈ (2m)n}
forms a basis of clopen subsets of (2N)n. If n ∈ N, m,n′ ∈ N ∪ {N},
s ∈ (2m)n, and t ∈ (2m)n

′
, then we denote by s ⌢ t the horizontal

concatenation of s and t, that is, the element of (2m)n+n
′
given by

(s ⌢ t)(j)(i) = s(j)(i) for (i, j) ∈ m× n and (s ⌢ t)(n+ j)(i) = t(j)(i)
for (i, j) ∈ m×n′. When n′ = 1, we identify (2m)1 with 2m, so that, for
s ∈ (2m)n and t ∈ 2m, the horizontal concatenation can be written as
s ⌢ t. Similarly, for m ∈ N, m′, n ∈ N∪{N}, s ∈ (2m)n, and t ∈ (2m

′
)n,

we denote by s ⊕ t the vertical concatenation of s and t, that is, the
element of (2m+m′

)n given by (s ⊕ t)(j)(i) = s(j)(i) for (i, j) ∈ m × n
and (s⊕ t)(j)(m+ i) = t(j)(i) for (i, j) ∈ m′ × n.
For f : (2m)n → (2p)q and g : (2m

′
)n

′ → (2p
′
)q

′
, where m ≤ m′, n ≤

n′, p ≤ p′, and q ≤ q′, we write f ⊑ g when, for all s ∈ (2m)n and
t ∈ (2m

′
)n

′
, we have s ⊑ t =⇒ f(s) ⊑ g(t). In the special case when

m,n, p, q ∈ N, f : (2m)n → (2p)q, and g : (2N)n → (2N)q, we have f ⊑ g
if and only if g(Ns) ⊆ Nf(s) for all s ∈ (2m)n.
For m,n ∈ N∪{N} and k ∈ N, let Fk((2m)n) denote the equivalence

relation on (2m)n given by s Fk((2m)n) t ⇐⇒ ∀k ≤ l < n s(l) = t(l).
Note that this is equality when k = 0 and the complete equivalence
relation on (2m)n when k ≥ n. In the special case when m = n = N,
we use Fk to denote the corresponding equivalence relation. Observe
that E1 =

⋃
k∈N Fk.

For n ∈ N, an n-dimensional aligned mapping is a continuous reduc-
tion φ : (2N)n → (2N)n of (Fk((2N)n))k<n to itself. We denote by Aln
the set of all such mappings.

It is clear that Aln contains the identity and is closed under com-
position. In the rest of the paper, Aln will be viewed as a subset of
C((2N)n, (2N)n) and endowed with the subspace topology.
For all m,n ∈ N, we let Un

m := {φ ∈ Aln | id(2m)n ⊑ φ}. In other
words, a mapping φ : (2N)n → (2N)n belongs to Un

m if and only if φ ∈ Aln
and φ(Ns) ⊆ Ns for all s ∈ (2m)n.

Lemma 5.1. Fix n ∈ N. Then (Un
m)m∈N is a basis of neighborhoods of

the identity in Aln and the Un
m’s are closed under composition.

Proof. The fact that Un
m contains the identity and is closed under

composition is clear from the definition. Moreover, we have Un
m =

Aln ∩
⋂
s∈(2m)n M(Ns,Ns), so Un

m is open.

To see that (Un
m)m∈N is a basis of neighborhoods of the identity,

take any neighborhood U of the identity in Aln. By Lemma 2.10,
we can assume that U = Aln ∩

⋂
i∈IM(Ki, Ui), where (Ki)i∈I is a
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finite partition of (2N)n into nonempty clopen subsets and (Ui)i∈I is a
sequence of open subsets of (2N)n. Subdividing the Ki’s if necessary,
we can assume that I = (2m)n for some m ∈ N, and Ks = Ns for all
s ∈ (2m)n. Since id(2N)m ∈ U , we have Ns ⊆ Us for all s ∈ (2m)n; it
follows that Un

m ⊆ U .

The following lemma is a special case of [CLM14, Proposition 2.6]:

Lemma 5.2. Let m,n ∈ N and Ω be a family of open subsets of (2N)n

which is downwards closed under inclusion and has the property that⋃
Ω is dense in (2N)n. Then there exist m′ ≥ m and a reduction

ψ : (2m)n → (2m
′
)n of (Fk((2m)n))k<n to (Fk((2m

′
)n))k<n, with id(2m)n ⊑

ψ, such that Nψ(s) ∈ Ω for all s ∈ (2m)n.

Corollary 5.3. Let m,n ∈ N and Ω be a family of open subsets of
(2N)n which is downwards closed under inclusion and has the property
that

⋃
Ω is dense in (2N)n. Then there exists an open mapping φ ∈ Un

m

such that φ(Ns) ∈ Ω for all s ∈ (2m)n.

Proof. Fix m′ and ψ as given by Lemma 5.2. Define φ : (2N)n → (2N)n

by φ(s ⊕ x) := ψ(s) ⊕ x for all s ∈ (2m)n and x ∈ (2N)n. Then φ
satisfies the desired conditions.

The next lemma gives an example of a situation where families Ω
satisfying the hypotheses of Lemma 5.2 and Corollary 5.3 naturally
appear. It will be used in conjunction with the latter in the proof of
our first dichotomy.

Lemma 5.4. Let X be a Polish space, E be a Baire measurable equiva-
lence relation on X, and Ω be the set of all open sets U ⊆ X for which
E ↾ U is meager or comeager. Then

⋃
Ω is dense in X.

Proof. Suppose not. Then we can find a nonempty open set U ⊆ X
such that no further nonempty subset of U belongs to Ω. In particular,
E ↾ U is non-meager, so, by Kuratowski–Ulam’s theorem, there exists
x ∈ U such that the class [x]E ∩ U is Baire measurable and non-
meager. So we can find a nonempty open subset V ⊆ U such that [x]E
is comeager in V . Hence V ∈ Ω, a contradiction.

The following result is a version of Mycielski’s theorem for aligned
mappings. It is a particular case of [CLM14, Proposition 2.10], al-
though one should note that the statement of the latter is missing the
hypothesis that φ is a reduction of (Fk((2m)n))k<n to (Fk((2m

′
)n))k<n,

which holds in the special case we require.
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Proposition 5.5. Let m ∈ N, n ≥ 1, and R be a comeager bi-
nary relation on (2N)n. Then there is a homomorphism φ ∈ Un

m from
∼Fn−1((2

N)n) to R.

6. Two dichotomies

In this section, we prove our two technical dichotomies—Theorems
6.2 and 6.8—and use the second to prove the Kechris–Louveau di-
chotomy. We start by recalling the following well-known fact:

Proposition 6.1 (see [CLM14, Proposition 2.2]). Fix k ∈ N and a
Baire measurable set B ⊆ (2N)N. If Fk+1 has countable index over Fk
on B, then B is meager.

Theorem 6.2. Let X be a Polish space, E be an analytic equivalence
relation on X, and (En)n∈N be a sequence of Borel subequivalence rela-
tions of E. Then exactly one of the following holds:

(1) There exists a cover (Bn)n∈N of X with the property that Bn is
an En-invariant Borel set on which E has countable index over
En for all n ∈ N.

(2) There is a continuous homomorphism φ : (2N)N → X from (E1\
Fn)n∈N to (E \

⋃
i≤nEi)n∈N.

Proof. We first show that the two conditions are mutually exclusive.
Suppose, towards a contradiction, that both hold. For every n ∈ N,
define B′

n := φ−1(Bn). Then (B′
n)n∈N is a covering of (2N)N, so there

exists n0 ∈ N such that B′
n0

is non-meager. By Proposition 6.1, Fn0+1

does not have countable index over Fn0 on B′
n0
, so neither does E1. As

φ ↾ B′
n0

is a homomorphism from (E1 \ Fn0) ↾ B
′
n0

to (E \ En0) ↾ Bn0 ,
it follows that E does not have countable index over En0 on Bn0 , the
desired contradiction.

We now show that at least one of the two conditions holds. We begin
by fixing some notation, definitions, and conventions. For every k ∈ N,
let Rk :=

⋃
i≤k Ei and fix a Polish space Yk and a continuous surjection

πk : Yk → E \Rk.
Note that the mapping ((x, x′), y) 7→ (x ⌢ y, x′ ⌢ y) is a home-

omorphism from ∼Fk((2N)k+1) × (2N)n−k−1 to Fk+1((2
N)n) \ Fk((2N)n)

for all n ∈ N ∪ {N} and k < n. In the rest of the proof, we will
identify these spaces via this homeomorphism. As a consequence, for
instance, if k < m ≤ n and g : Fk+1((2

N)n) \ Fk((2N)n) → Yk, then it
is consistent with our earlier notation to use gy to denote the mapping
gy : Fk+1((2

N)m)\Fk((2N)m) → Yk given by gy(x, x′) := g(x ⌢ y, x′ ⌢ y)
for all (x, x′) ∈ Fk+1((2

N)m) \ Fk((2N)m) and y ∈ (2N)n−m.
Suppose that n ∈ N ∪ {N} and m ≤ n.
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• For f ∈ C((2N)m, X), define f→n ∈ C((2N)n, X) by f→n(x) :=
f(x ↾ m).

• For A ⊆ C((2N)m, X), we abuse notation by using A→n to
denote the set of all f ∈ C((2N)n, X) such that f y ∈ A for all
y ∈ (2N)n−m. Note that if f ∈ A, then f→n ∈ A→n.

• For k < m and g ∈ C(Fk+1((2
N)m)\Fk((2N)m), Yk), define g→n ∈

C(Fk+1((2
N)n)\Fk((2N)n), Yk) by g→n(x, x′) := g(x ↾ m,x′ ↾ m).

• For k < m and A ⊆ C(Fk+1((2
N)m) \ Fk((2N)m), Yk), we abuse

notation by using A→n to denote the set of g ∈ C(Fk+1((2
N)n)\

Fk((2N)n), Yk) such that gy ∈ A for all y ∈ (2N)n−m. Note that
if g ∈ A, then g→n ∈ A→n.

By Lemma 2.9, we can find compatible complete metrics dn on
C((2N)n, X) such that diamN(A→N) ≤ diamn(A) for all n ∈ N and A ⊆
C((2N)n, X). Similarly, for all k ∈ N, we can find compatible complete
metrics dnk on C(Fk+1((2

N)n) \ Fk((2N)n), Yk) such that diamN
k (A→N) ≤

diamn
k(A) for all n > k and A ⊆ C(Fk+1((2

N)n) \ Fk((2N)n), Yk). As it
should not lead to confusion, we will use d to denote these metrics and
diam to denote the corresponding diameters.

Using Corollary 2.11 and the fact that Fk+1((2
N)n) \ Fk((2N)n) can

be identified with an open subset of the compact zero-dimensional
Polish space ((2N)k+1 × (2N)k+1) × (2N)n−k−1, we can fix countable
bases of nonempty open subsets of C((2N)n, X) and C(Fk+1((2

N)n) \
Fk((2N)n), Yk) whose elements are right stable for all n ∈ N and k < n.
These bases will not be given a name, but we will refer to them by
talking about basic open subsets of these spaces.

An approximation is a triple of the form a := (na,Ua, (Vak )k<na),
where na ∈ N, Ua ⊆ C((2N)n

a
, X) is a basic open set with diam(Ua) ≤

1/na, and Vak ⊆ C(Fk+1((2
N)n

a
) \ Fk((2N)n

a
), Yk) is a basic open set

with diam(Vak ) ≤ 1/na for all k < na. Given approximations a and b,

we say that b extends a if na < nb, U b ⊆ (Ua)→nb
, and Vbk ⊆ (Vak )→nb

for
all k < na. We say that b is an immediate successor of a if it extends
a and nb = na + 1.

A configuration is a triple of the form γ := (nγ, fγ, (gγk)k<nγ ), where
nγ ∈ N, fγ : (2N)nγ → X is continuous, and gγk : Fk+1((2

N)n
γ
)\Fk((2N)n

γ
)

→ Yk is a continuous mapping such that (fγ(x), fγ(x′)) = πk(g
γ
k(x, x

′))
for all (x, x′) ∈ Fk+1((2

N)n
γ
) \ Fk((2N)n

γ
) and k < nγ. An immediate

consequence of this definition is that if γ is a configuration, then fγ is a
homomorphism from (Fk+1((2

N)n
γ
)\Fk((2N)n

γ
))k<nγ to (E\Rk)k<nγ ; in

particular, it is injective and its range is contained in a single E-class.
We say that a configuration γ is compatible with an approximation a
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if nγ = na, fγ ∈ Ua, and gγk ∈ Vak for all k < nγ. We say that a con-
figuration γ is generically compatible with a set B ⊆ X if (fγ)−1(B) is
comeager in (2N)n

γ
.

For all n ∈ N, the set of all configurations γ such that nγ = n
can be identified with a subset Confn of the space C((2N)n, X) ×∏

k<nC(Fk+1((2
N)n) \ Fk((2N)n), Yk). The latter space is Polish by

Proposition 2.7, and Proposition 2.3 ensures that Confn is closed, thus
Polish. For an approximation a and B ⊆ X, define Comp(a,B) as
the set of all configurations that are compatible with a and generically
compatible with B. By definition, being compatible with an approxi-
mation is an open condition. Moreover, if B is Borel, then it follows
from [Kec95, Theorem 16.1] and Proposition 2.3 that the set of all
γ ∈ Confna that are generically compatible with B is Borel. Hence,
Comp(a,B) is a Borel subset of Confna .
For a configuration γ and φ ∈ Alnγ , we abuse notation by using γ ◦φ

to denote the triple δ := (nδ, f δ, (gδk)k<nδ), where nδ := nγ, f δ := fγ ◦φ,
and gδk := gγk ◦ (φ × φ) ↾ Fk+1((2

N)n
γ
) \ Fk((2N)n

γ
) for all k < nδ. It

follows from the definition of an aligned mapping that γ ◦ φ is a well-
defined configuration. Given configurations γ, δ and m ∈ N, we write
δ ≼m γ if there exists φ ∈ Unγ

m such that δ = γ ◦ φ. It follows from
Lemma 5.1 that ≼m is a quasi-ordering of the set of all configurations.

Claim 6.3. Let a be an approximation. Then there exists m ∈ N such
that the set Comp(a,X) of all configurations that are compatible with
a is downwards closed under ≼m.

Proof. Since Ua is a basic open set of C((2N)n
a
, X), hence right sta-

ble, we can find p ∈ N with the property that Ua ◦ Una

p = Ua. Sim-
ilarly, for every k < na, since Vak is a right-stable open subset of
C(Fk+1((2

N)n
a
) \ Fk((2N)n

a
), Yk), there is a neighborhood Wk of the

identity in C(Fk+1((2
N)n

a
) \Fk((2N)n

a
),Fk+1((2

N)n
a
) \Fk((2N)n

a
)) such

that Vak ◦ Wk = Vak . By Propositions 2.5, 2.2, and 2.1, the mapping
Aln → C(Fk+1((2

N)n
a
)\Fk((2N)n

a
),Fk+1((2

N)n
a
)\Fk((2N)n

a
)), given by

φ 7→ (φ × φ) ↾ Fk+1((2
N)n

a
) \ Fk((2N)n

a
), is continuous; hence we can

find mk ∈ N such that (φ× φ) ↾ Fk+1((2
N)n

a
) \ Fk((2N)n

a
) is in Wk for

all φ ∈ Una

mk
. Then m := max(p,m0, . . . ,mna−1) is as desired.

Claim 6.4. Let n ≥ 1 and Γ: 2N → Confn be a continuous mapping
and define F : (2N)n+1 → X by F (x ⌢ y) := fΓ(y)(x) for all x ∈ (2N)n

and y ∈ 2N. Then (F × F )−1(Rn−1) is meager in (2N)n+1 × (2N)n+1.

Proof. Suppose not. Then there exists i < n such that (F × F )−1(Ei)
is non-meager. By Proposition 2.3, the mapping F is continuous, so
(F×F )−1(Ei) is Borel. Hence, by Kuratowski–Ulam’s theorem, we can
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find (u, x, z) ∈ (2N)n+1 × (2N)n−1 × 2N such that the set A := {y ∈ 2N |
F (u) Ei F (x ⌢ y ⌢ z)} is non-meager in 2N. Let y, y′ ∈ A be distinct.
Then ¬x ⌢ y Fn−1 x ⌢ y′, so fΓ(z)(x ⌢ y) E \Rn−1 f

Γ(z)(x ⌢ y′), thus
¬F (x ⌢ y ⌢ z) Ei F (x ⌢ y′ ⌢ z). Since Ei is an equivalence relation,
this contradicts the fact that both F (x ⌢ y ⌢ z) and F (x ⌢ y′ ⌢ z)
are Ei-related to F (u).

We will recursively build a decreasing sequence (Xα)α<ω1 of Borel
subsets of X. We start with X0 := X, and for limit ordinals λ, we
let Xλ :=

⋂
α<λXα. We now fix α < ω1 and assume Xα has been

constructed; we describe how to construct Xα+1. We denote by Sα the
set of all approximations a for which Comp(a,Xα) ̸= ∅. We say that
an approximation a is α-terminal if a has no immediate successor in
Sα; we denote by Tα the set of all α-terminal approximations.

Claim 6.5. Let a be an α-terminal approximation. Then there exists
an Ena-invariant Borel set B ⊆ X, on which E has countable index
over Ena, such that Comp(a,Xα \B) = ∅.

Proof. Proposition 2.3 ensures that the function eval : (2N)n
a×Confna →

X, given by eval(x, γ) := fγ(x), is continuous. Fix m ∈ N as given by
Claim 6.3 applied to the approximation a. Let B be the set of all
γ ∈ Comp(a,Xα) such that (fγ × fγ)−1(Ena) ↾ Ns is either meager
or comeager for all s ∈ (2m)n

a
. The continuity of eval and [Kec95,

Theorem 16.1] ensures that B is a Borel subset of Confna . For all
γ ∈ B and s ∈ (2m)n

a
, Kuratowski–Ulam’s theorem implies that

each class of (fγ × fγ)−1(Ena) is either meager or comeager in Ns,
so (fγ × fγ)−1(Ena) has at most 2mn

a
non-meager classes. Along with

the fact that fγ((2N)n
a
) is contained in a single E-class for all γ ∈ B,

this ensures that we can apply Lemma 4.8 to the spaces X ′ := (2N)n
a

and Y ′ := Confna , the set B ⊆ Y ′, and the equivalence relations
E ′ := (eval × eval)−1(E) and E ′

na := (eval × eval)−1(Ena). There are
two cases.

Case 1: There is an E ′
na-invariant Borel set B′ ⊆ (2N)n

a×Confna, on
which E ′ has countable index over E ′

na, such that (B′)γ is non-meager
in (2N)n

a
for all γ ∈ B. Lemma 3.1 ensures that E has countable index

over Ena on eval(B′), and since the latter set is analytic, Proposition
3.7 yields an Ena-invariant Borel set B ⊇ eval(B′) on which E has
countable index over Ena . Observe that (B′)γ ⊆ (fγ)−1(B) for all γ ∈
B, so (fγ)−1(B) is non-meager, thus no γ ∈ B is generically compatible
with Xα \B. It remains to show that this holds of every configuration
γ that is compatible with a.
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We can assume, without loss of generality, that γ ∈ Comp(a,Xα).
Let Ω be the set of all open subsets U ⊆ (2N)n

a
with the property that

(fγ × fγ)−1(Ena) ↾ U is either meager or comeager. By Lemma 5.4,⋃
Ω is dense in (2N)n

a
. Hence, we can apply Corollary 5.3 to find an

open mapping φ ∈ Una

m such that φ(Ns) ∈ Ω for all s ∈ (2m)n
a
. Now let

δ := γ◦φ. Then δ ≼m γ; hence, by the choice ofm, δ is compatible with
a. Moreover, since γ is generically compatible with Xα and φ is open
and one-to-one, it follows that δ is generically compatible with Xα,
hence δ ∈ Comp(a,Xα). The conditions on φ imply that if s ∈ (2m)n

a
,

then (fγ × fγ)−1(Ena) ↾ φ(Ns) is either meager or comeager, hence
(f δ × f δ)−1(Ena) ↾ Ns is either meager or comeager. It follows that
δ ∈ B. Hence, (f δ)−1(B) is non-meager, and since φ is one-to-one and
open, we deduce that (fγ)−1(B) is non-meager, thus γ is not generically
compatible with Xα \B.

Case 2: There exists a continuous mapping Γ: 2N → B such that
(2N)n

a × Γ(2N) is contained in a single E ′-class and the equivalence
relation ((id(2N)na × Γ) × (id(2N)na × Γ))−1(E ′

na) is meager. We will
show that the approximation a is not α-terminal. Define F := eval ◦
(id(2N)na × Γ): (2N)n

a+1 → X, so that F (x ⌢ y) = fΓ(y)(x) for all

x ∈ (2N)n
a
and y ∈ 2N. Our assumptions on Γ imply that F ((2N)n

a+1)
is contained in a single E-class and (F × F )−1(Ena) is meager. If
na ≥ 1, then Claim 6.4 implies that (F × F )−1(Rna−1) is meager, in
which case (F × F )−1(Rna) is meager, and this obviously remains true
when na = 0. For all y ∈ 2N, Γ(y) is generically compatible with Xα,
so ∀y ∈ 2N∀∗x ∈ (2N)n

a
F (x ⌢ y) ∈ Xα, thus Kuratowski–Ulam’s

theorem ensures that F−1(Xα) is comeager in (2N)n
a+1.

Let C be a dense Gδ subset of (2N)n
a+1 × (2N)n

a+1 contained in
(F−1(Xα) × F−1(Xα)) \ (F × F )−1(Rna). For all (x, x′) ∈ C, we
have (F (x), F (x′)) ∈ E \ Rna , so there exists u ∈ Yna such that
πna(u) = (F (x), F (x′)). Hence, by Jankov–von Neumann’s uniformi-
sation theorem, we can find a Baire measurable mapping G : C → Yna

such that πna(G(x, x′)) = (F (x), F (x′)) for all (x, x′) ∈ C. Since Baire
measurable mappings are continuous on a comeager set, by shrinking
C if necessary, we can assume that G is continuous.
By Proposition 5.5, there exists a homomorphism φ ∈ Una+1

m from
∼Fna((2N)n

a+1) to C. Since φ is aligned, it follows that if y ∈ 2N,
then φ(x ⌢ y)(na) does not depend upon x. We denote this value by
ψ(y), thereby obtaining a continuous mapping ψ : 2N → 2N. For all
x ∈ (2N)n

a
and y ∈ 2N, we hence write φ(x ⌢ y) = (φy ↾ na)(x) ⌢

ψ(y), where we abuse notation by using φy ↾ na to denote the aligned
mapping (2N)n

a → (2N)n
a
given by (φy ↾ na)(x) := φ(x ⌢ y) ↾ na.
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To see that φy ↾ na ∈ Una

m , note that if s ∈ (2m)n
a
and x ∈ Ns, then

x ⌢ y ∈ Ns⌢y↾m, so φ(x ⌢ y) ∈ Ns⌢y↾m, thus (φ
y ↾ na)(x) ∈ Ns.

Define γ := (nγ, fγ, (gγk)k<nγ ), where nγ := na + 1, fγ : (2N)n
γ → X

is given by fγ := F ◦φ, gγk : Fk+1((2
N)n

γ
) \ Fk((2N)n

γ
) → Yk is given by

gγk(x ⌢ y, x′ ⌢ y) := g
Γ(ψ(y))
k ((φy ↾ na)(x), (φy ↾ na)(x′)) for all k < na,

(x, x′) ∈ Fk+1((2
N)n

a
)\Fk((2N)n

a
), and y ∈ 2N, and gγna := G◦ (φ×φ) ↾

∼Fna((2N)n
a+1). The continuity of F yields that of fγ, Proposition 2.3

ensures that gγk is continuous for all k < na, and the continuity of G
on (φ × φ)(∼Fna((2N)n

a+1)) yields the continuity of gγna . Moreover, if
k < na, (x, x′) ∈ Fk+1((2

N)n
a
) \ Fk((2N)n

a
), and y ∈ 2N, then

πk(g
γ
k(x ⌢ y, x′ ⌢ y))

= πk(g
Γ(ψ(y))
k ((φy ↾ na)(x), (φy ↾ na)(x′)))

= (fΓ(ψ(y))((φy ↾ na)(x)), fΓ(ψ(y))((φy ↾ na)(x′)))

= (F ((φy ↾ na)(x) ⌢ ψ(y)), F ((φy ↾ na)(x′) ⌢ ψ(y)))

= (F (φ(x ⌢ y)), F (φ(x′ ⌢ y)))

= (fγ(x ⌢ y), fγ(x′ ⌢ y)).

And if (x, x′) ∈ ∼Fna((2N)n
γ
), then the definition of G ensures that

πna(G(φ(x), φ(x′))) = (F (φ(x)), F (φ(x′))), that is, πna(gγna(x, x′)) =
(fγ(x), fγ(x′)). Hence, γ is a configuration. Moreover, since φ is a ho-
momorphism from ∼Fna((2N)n

a+1) to C and C ⊆ F−1(Xα)×F−1(Xα),
it follows that fγ takes values in Xα; in particular, γ is generically
compatible with Xα.
For all y ∈ 2N, define γy := (na, (fγ)y, ((gγk)

y)k<na). The formulas
defining γ ensure that γy = Γ(ψ(y)) ◦ (φy ↾ na); since φy ↾ na ∈ Una

m ,
it follows that γy is a configuration and γy ≼m Γ(ψ(y)). Since Γ(ψ(y))
is compatible with a, our choice of m ensures that γy is compatible
with a. In particular, if y ∈ 2N, then (fγ)y ∈ Ua, so fγ ∈ (Ua)→nγ

;
similarly, if k < na and y ∈ 2N, then (gγk)

y ∈ Vak , so g
γ
k ∈ (Vak )→nγ

.
Recall that, by Lemma 2.8, (Ua)→nγ

is an open subset of C((2N)n
γ
, X)

and (Vak )→nγ
is an open subset of C(Fk+1((2

N)n
γ
) \ Fk((2N)n

γ
), Yk) for

all k < na. Thus, we can find a basic open set U b ⊆ C((2N)n
γ
, X)

with diam(U b) ≤ 1/nγ and fγ ∈ U b ⊆ (Ua)→nγ
and basic open sets

Vbk ⊆ C(Fk+1((2
N)n

γ
) \ Fk((2N)n

γ
), Yk) with diam(Vbk) ≤ 1/nγ and gγk ∈

Vbk ⊆ (Vak )→nγ
for all k < na. We can also find a basic open set Vbna ⊆

C(∼Fna((2N)n
γ
), Yna) with diam(Vbna) ≤ 1/nγ and gγna ∈ Vbna . Letting

nb := nγ, it follows that b := (nb,U b, (Vbk)k<nb) is an approximation
which is an immediate successor of a and with which γ is compatible.
In particular, Comp(b,Xα) ̸= ∅, so b ∈ Sα, thus a is not terminal.
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For all a ∈ Tα, let B
a
α be a Borel set as given by Claim 6.5. Define

Xα+1 := Xα \
⋃
a∈Tα B

a
α. As there are only countably many approxima-

tions, this set is Borel. This completes the inductive construction.
As there are only countably many approximations and (Sα)α<ω1 is

decreasing, there exists α0 < ω1 such that Sα0+1 = Sα0 .

Claim 6.6. Every element of Sα0 has an immediate successor in Sα0.

Proof. Let a be an approximation having no successor in Sα0 . Then a
is α0-terminal, so Ba

α0
is defined and Comp(a,Xα0 \ Ba

α0
) = ∅. Since

Xα0+1 ⊆ Xα0 \ Ba
α0
, it follows that Comp(a,Xα0+1) = ∅, hence a /∈

Sα0+1. But Sα0+1 = Sα0 , so α /∈ Sα0 .

Let a0 denote the unique approximation for which na
0
:= 0 and

Ua0 := C((2N)0, X). There are two cases.
Case 1: a0 /∈ Sα0. Then no configuration is simultaneously compat-

ible with a0 and generically compatible with Xα0 . Observe that a con-
figuration γ such that nγ = 0 essentially consists only of a continuous
mapping fγ : (2N)0 → X, and can therefore be identified with a point
xγ ∈ X. Every such configuration is compatible with a0, and such a
configuration is generically compatible withXα0 if and only if xγ ∈ Xα0 .
It follows that Xα0 = ∅, so X =

⋃
α<α0

Xα \Xα+1 =
⋃
α<α0

⋃
a∈Tα B

a
α.

For all n ∈ N, the set Bn :=
⋃
α<α0

⋃
a∈Tα,na=nB

a
α is a countable union

of En-invariant Borel sets on which E has countable index over En, and
is therefore itself an En-invariant Borel set on which E has countable
index over En. As X =

⋃
n∈NBn, condition (1) follows.

Case 2: a0 ∈ Sα0 . Then Claim 6.6 yields a sequence (an)n∈N of
elements of Sα0 such that an+1 is an immediate successor of an for all
n ∈ N. It follows that na

n
= n for every n ∈ N. As an ∈ Sα0 , there is

a configuration γn which is compatible with an. For all n ∈ N, define
a continuous function fn : (2N)N → X by fn := (fγ

n
)→N. Similarly, for

all n ∈ N and k < n, define a continuous function gnk : Fk+1 \ Fk → Yk
by gnk := (gγ

n

k )→N. If m ≤ n, then fγ
m ∈ Uam and fγ

n ∈ Uan ⊆
(Uam)→n, so fm, fn ∈ (Uam)→N. As our choice of metrics ensures that
diam((Uam)→N) ≤ diam(Uam) ≤ 1/m, it follows that d(fm, fn) ≤ 1/m,
so (fn)n∈N is a Cauchy sequence and admits a limit f ∈ C((2N)N, X).
Similarly, for all k ∈ N, the sequence (gnk )n>k is Cauchy, and therefore
admits a limit gk ∈ C(Fk+1 \ Fk, Yk).

We now show that f satisfies condition (2). It is sufficient to show
that if k ∈ N and (x, x′) ∈ E1 \ Fk, then (f(x), f(x′)) ∈ E \ Rk. As
(Rl)l∈N is increasing and E1 \ Fk =

⋃
l≥k Fl+1 \ Fl, we can assume that
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(x, x′) ∈ Fk+1 \ Fk. Observe that if n > k, then

(fn(x), fn(x′)) = (fγ
n

(x ↾ n), fγ
n

(x′ ↾ n))

= πk(g
γn

k (x ↾ n, x′ ↾ n))

= πk(g
n
k (x, x

′)).

By Proposition 2.3, we can take the limit on both sides of the equality
to obtain (f(x), f(x′)) = πk(gk(x, x

′)), so (f(x), f(x′)) ∈ E \Rk.

Before proving our second dichotomy, we note the following conse-
quence of [CLM14, Propositions 2.13 and 2.14]:

Proposition 6.7. Let C ⊆ (2N)N be a comeager set and (Rn)n∈N be a
sequence of Fσ binary relations on (2N)N such that Rn∩E1 \Fn = ∅ for
all n ∈ N. Then there is a continuous homomorphism φ : (2N)N → C
from (Fn,∼Fn)n∈N to (Fn,∼Rn)n∈N.

Our second dichotomy is the following:

Theorem 6.8. Let X be a Polish space, E be an analytic equivalence
relation on X, and (En)n∈N be a sequence of potentially Fσ subequiva-
lence relations of E. Then exactly one of the following holds:

(1) There is a cover (Bn)n∈N of X such that Bn is an En-invariant
Borel set on which E has countable index over En for all n ∈ N.

(2) There is a continuous homomorphism φ : (2N)N → X from (E1,
(∼Fn)n∈N) to (E, (∼

⋃
i≤nEi)n∈N).

Moreover, if E =
⋃
n∈NEn, then the mapping φ in the latter condition

is an embedding of E1 into E.

Proof. The “moreover” part is immediate. Condition (2) in the state-
ment of the theorem is stronger than condition (2) in the statement of
Theorem 6.2; hence, as in Theorem 6.2, the two conditions are mutually
exclusive. It remains to show that at least one of them holds.
Refining the topology on X if necessary, we can assume that the

En’s are Fσ. We need to show that if condition (2) in the state-
ment of Theorem 6.2 holds, then so too does condition (2) in the
statement of Theorem 6.8. Suppose that ψ : (2N)N → X is a con-
tinuous homomorphism from (E1 \ Fn)n∈N to (E \

⋃
i≤nEi)n∈N. For

all n ∈ N, define R′
n := (ψ × ψ)−1(

⋃
i≤nEi). Then R′

n is Fσ and
R′
n ∩ (E1 \ Fn) = ∅. So Proposition 6.7 yields a continuous homomor-

phism π : (2N)N → (2N)N from (Fn,∼Fn)n∈N to (Fn,∼R′
n)n∈N, in which

cases the mapping φ := ψ ◦ π satisfies condition (2).

Following the usual abuse of language, we say that an equivalence
relation is finite if each of its equivalence classes are finite. A Borel
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equivalence relation E on a Polish space is hyperfinite if there is an
increasing sequence (En)n∈N of finite Borel subequivalence relations of
E whose union is E. As the Lusin–Novikov uniformization theorem
easily implies that every finite Borel equivalence relation on a Polish
space is smooth, it follows that every hyperfinite Borel equivalence
relation on a Polish space is hypersmooth.

We will need the following elementary result (see [CLM14, Proposi-
tion 5.1]):

Proposition 6.9. Suppose that X is a Polish space, (En)n∈N is an
increasing sequence of smooth Borel equivalence relations on X, and
there is a cover (Bn)n∈N of X such that Bn is a Borel set on which⋃
m∈NEm has countable index over En for all n ∈ N. Then

⋃
m∈NEm

is Borel reducible to a hyperfinite Borel equivalence relation on a Polish
space.

As a first application of our second dichotomy, we give a proof of the
Kechris–Louveau dichotomy:

Theorem 6.10 (Kechris–Louveau). Suppose that E is a hypersmooth
Borel equivalence relation on a Polish space. Then exactly one of the
following holds:

(1) There is a Borel reduction of E to a hyperfinite Borel equiva-
lence relation on a Polish space.

(2) There is a continuous embedding of E1 into E.

Proof. The exclusivity of the two conditions comes from the fact, men-
tioned in the introduction, that E1 is not Borel reducible to a countable
Borel equivalence relation on a Polish space; this can, for instance, be
obtained as a consequence of [KL97, Theorem 4.1], [Kec92, §1.II.i], and
Feldman–Moore’s theorem (alternatively, a more elementary proof can
be obtained from [CLM14, Proposition 2.4] and [CLM14, Proposition
2.5]). To see that at least one of the two conditions holds, write E
as the increasing union of a sequence of smooth Borel subequivalence
relations (En)n∈N. Refining the topology on X if necessary, we can
assume that the En’s are closed. Hence we can apply Theorem 6.8 and
use Proposition 6.9 to complete the proof.

7. Primary results

The following fact is the main result of this paper:
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Theorem 7.1. Suppose that F is a class of strongly-idealistic potential-
ly-Fσ equivalence relations on Polish spaces that is closed under count-
able disjoint unions and countable-index Borel superequivalence rela-
tions. If E is an equivalence relation on a Polish space that is a count-
able union of subequivalence relations that are Borel reducible to rela-
tions in F , then at least one of the following holds:

(1) There is a Borel reduction of E to a relation in F .
(2) There is a continuous embedding of E1 into E.

Moreover, if every relation in F is also ccc idealistic, then exactly one
of these conditions holds.

Proof. To see that the conditions are mutually exclusive when every
relation in F is ccc idealistic, observe that if both hold, then there is a
Borel reduction of E1 to a ccc idealistic Borel equivalence relation on
a Polish space, contradicting [KL97, Theorem 4.1].

To see that at least one of the conditions holds, note that, by The-
orem 6.8, we can assume that there is a cover (Bn)n∈N of X by Borel
sets on which E has countable index over subequivalence relations that
are Borel reducible to relations in F . For each n ∈ N, Proposition 3.8
yields a Borel reduction φn of E ↾ Bn to some Fn ∈ F , and Proposition
3.12 allows us to assume that Bn is E-invariant. Then the E-invariant
Borel sets B′

n := Bn \
⋃
m<nBm partition X, so the functions φn ↾ B′

n

can be combined to obtain a Borel reduction of E to
∐

n∈N Fn.

Theorem 1 follows from Theorem 7.1 and the previously mentioned
fact that every countable Borel equivalence relation on a Polish space
is strongly ccc idealistic and potentially Fσ.
Theorem 2 follows from Theorem 1, [KL97, Theorem 4.1], the Feld-

man–Moore theorem, and the fact that every countable Borel equiva-
lence relation on a Polish space is ccc idealistic.

Theorem 3 follows from Proposition 3.17, Theorem 7.1, and [KL97,
Theorem 4.1].

Theorem 4 follows from Theorem 5 and the fact that every countable
Borel equivalence relation on a Polish space is strongly ccc idealistic
and potentially Fσ.

Theorem 5 follows from Theorem 7.1 and [KL97, Theorem 4.1].
Theorem 6 follows from Theorem 5, Propositions 3.13, 3.15, and

3.17, and the observation that if F is a Borel equivalence relation on a
Polish space, then the class F of equivalence relations on Polish spaces
that are Borel isomorphic to countable-index Borel superequivalence
relations of F × ∆(N) is closed under countable disjoint unions and
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countable-index Borel superequivalence relations, and if F is strongly
idealistic and potentially Fσ, then so too is F ×∆(N).
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