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ABSTRACT: Peptides have recently regained interest as therapeutic candidates, but
their development remains confronted with several limitations including low
bioavailability. Backbone head-to-tail cyclization, i.e., setting a covalent peptide bond
linking the last amino acid with the first one, is one effective strategy of peptide-based
drug design to stabilize the conformation of bioactive peptides while preserving
peptide properties in terms of low toxicity, binding affinity, target selectivity, and
preventing enzymatic degradation. Starting from an active peptide, it usually requires
the design of a linker of a few amino acids to make it possible to cyclize the peptide,
possibly preserving the conformation of the initial peptide and not affecting its
activity. However, very little is known about the sequence−structure relationship
requirements of designing linkers for peptide cyclization in a rational manner.
Recently, we have shown that large-scale data-mining of available protein structures can lead to the precise identification of protein
loop conformations, even from remote structural classes. Here, we transpose this approach to linkers, allowing head-to-tail peptide
cyclization. First we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict
the cyclized peptide conformation. Second, and more importantly, we show that it seems possible to elaborate on the information
inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition,
providing the first framework for the rational design of head-to-tail cyclization linkers. Finally, we illustrate this for two peptides
using a limited set of amino-acids likely not to interfere with peptide function. For a linear peptide derived from Nrf2, the peptide
cyclized starting from the experimental structure showed a 26-fold increase in the binding affinity. For urotensin II, a peptide already
cyclized by a disulfide bond that exerts a broad array of biological activities, we were able, starting from models of the structure, to
design a head-to-tail cyclized peptide, the first synthesized bicyclic 14-residue long urotensin II analogue, showing a retention of in
vitro activity. Although preliminary, our results strongly suggest that such an approach has strong potential for cyclic peptide-based
drug design.

■ INTRODUCTION
Several naturally occurring cyclic peptides constitute alter-
natives to antibiotics, and peptide backbone cyclization is
frequently used in peptide-based drug design to convey
druggable properties to linear bioactive sequences.1,2 Peptides
in general combine high affinity with high target selectivity and
low toxicity and are a natural choice in the targeting of protein−
protein interactions. While preserving these favorable proper-
ties, peptide cyclization additionally confers peptides with more
rigid conformation and enhanced stability toward enzymatic
proteolysis and improves the permeability through biological
barriers.3−9 Moreover, many natural-occurring cyclic peptides
are known from different kingdoms of organisms, exhibiting
diverse biological activities, including antitumor,10,11 antimicro-
bial12,13 and anthelmintic activities.14−16 Together, this has
caused a growing interest toward cyclic peptides, thus the
number of designed cyclic peptide drugs is growing.17,18

However, the design of cyclic peptides remains challenging,
and particularly the compatibility with a desired structure.9,19,20

When designing new cyclic peptides, there are broadly two
strategies that can be followed: (i) de novo design, or (ii)
cyclization of an existing peptide. For the first strategy, a number
of experimental techniques are available, such as SICLOPPS,21

phage display, and mRNA display.22 These are all based on
libraries of random cyclic peptides that are subjected to an in
vitro selection. They can be complemented with library-based
computational approaches such as from Slough et al.,23

CAESAR,24 Omega,25 and CycloPs26 based on rdkit (https://
github.com/rdkit/rdkit). Those approaches are conceptually
similar to the molecular modeling of small ligands, with the
corresponding strengths (arbitrary molecular topologies) and
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weaknesses (limited number of flexible bonds). For computa-
tional de novo design, some recent approaches focusing on
protein−protein interactions use hot spots identified at the
interface to identify linker residues or template cyclic
conformations matching the geometry of the hot spots.27,28

They have not been experimentally validated so far. An
alternative approach is to perform peptide structure prediction,
using one of the many fragment-based methods that are
available, such as PLOP,29,30 Peplook,31,32 PEPstrMOD,33 or
PEP-FOLD,34,35 while imposing cyclization as a bond or
distance restraint (see ref 36 for a review). Since these methods
leverage the existing wealth of knowledge of protein and peptide
structure, they can deal with larger peptides but have difficulties
where this knowledge falls short, i.e., for unnatural amino acids.

For the second strategy, the starting point is an existing linear
peptide of a known structure. It is well established that small
linear peptides generally exist in solution in an interchangeable
conformational equilibrium. This flexibility provides bioactive
peptides the ability to interact with several types or subtypes of
receptors, for instance. Stabilizing a bioactive conformation is a
challenge that can be tackled by a variety of cyclization strategies.
On the one hand, this can be as straightforward as mutating two
spatially close residues into cysteins with the aim of introducing
a disulfide bond. On the other hand, sophisticated chemical
scaffolds or cyclotides can be used for the grafting or stitching of
peptides or cyclotides into rigid bioactive conformations.37,38

One particular successful strategy has been head-to-tail peptide
backbone cyclization, i.e., the design of peptide in which a
peptide bond connects the C-ter and N-ter amino acids.39−48

Except for a few cases where the N- and C-terminal amino-acids
are close enough to undergo direct cyclization, this involves the
design of a sequence that links the N- and C-terminal extremities
of the peptide. In principle, any amino acid can be part of the
linker sequence, but Gly, Ala, and Pro residues are often favored
because they are small and their side chains cannot form
hydrogen bonds, which could potentially disrupt the bioactive
conformation.

Head-to-tail cyclization leads to cyclic peptides with improved
pharmacological properties (affinity, potency, efficiency, and
selectivity) when compatible with target specificity (or

bioactivity conservation). Whether the cyclic peptide is active
or not, it is generally less sensitive to metabolic degradation.
However, cyclization is often unsuccessful due to the imposed
conformational restriction that is too strict and too far from the
bioactive structure. In order to avoid this, it is necessary to
understand the general sequence-structure requirements; in
particular: what is the allowed sequence space of the linker and
what will be the structure of the cyclized peptide? This is a
challenging issue, and to the best of our knowledge, there is one
computational protocol that has been successfully applied to
head-to-tail cyclization linker design, namely the Rosetta
protocol used by Bhardwaj et al.6 In another recent study, the
authors modified the AlphaFold framework for accurate design
of cyclic peptides.49 However, in both studies, the sequence and
structure of the entire cyclic peptide were designed from scratch.
At present, we do not know of any computational methods that
can predict the sequence and structure of a head-to-tail
cyclization linker while preserving the sequence and structure
of the linear peptide that is being cyclized.

Recently, we have developed DaReUS-Loop,50,51 a fast data-
based approach that identifies loop candidates mining the
complete set of available experimental protein structures. This is
done by treating the loop as a gap in the structure and
considering the flanking regions of the structure immediately
before and after the gap. Loop candidates are then favored that
(i) superimpose well onto the flanks, and (ii) have a compatible
sequence. Recognizing the conceptual similarity, we developed
PEP-Cyclizer, a method that extends the DaReUS-Loop
approach and applies it to rational head-to-tail peptide
cyclization. Given a conformation of the peptide to cyclize, it
provides two complementary possibilities: (i) given a sequence
for the linker, it can generate structural models for the cyclized
peptide, leaving unaffected the original conformation of the
linear peptide, (ii) it can propose candidate cyclization linker
sequences, constrained by length and amino acid composition.
For structure prediction, we have assessed the PEP-Cyclizer
performance on a benchmark of five cyclic conotoxin structures
for which a linear structure is available as well. With regard to the
experimental structures, the predicted cyclized peptide models
had a root-mean-square deviation (RMSD) of 2.0 Å (3.2 Å) for

Figure 1. The workflow of PEP-Cyclizer. The workflow describes the main steps for peptide head-to-tail cyclization. The method provides two
possibilities: proposing candidate sequences for the linker, or modeling the 3D conformation. The steps of the workflow are input preparation, linker
candidate search, candidate filtering, model building, model selection, and logo generation in the case of sequence prediction. The inputs are a linear
peptide and either the amino acid constraints for sequence prediction or the linker sequence for conformation modeling. In the final step, for
conformation modeling, the 20 best models are returned as the final predictions. For sequence prediction a logo is generated and a forward-backtrack
algorithm is used to sample the sequence space and assess the likelihood of the candidate linkers. Note that the sequence logo serves strictly as a global
visualization of the ensemble of generated sequence candidates, and has no predictive power by itself.
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the top 20 (top 1) models, an improvement of more than 1 Å
over the Rosetta Next-generation KIC (NGK) protocol,52 a
high-resolution Rosetta protocol for the modeling of missing
regions. For linker sequence prediction, PEP-Cyclizer was
validated on the same benchmark, and as a result, experimental
sequences were ranked significantly better than other sequences
of the same length and composition.

As a functional validation, PEP-Cyclizer was used to design
head-to-tail cyclized variants of the two peptides. The first one
corresponds to the interaction of a 9-residue long fragment of
Nrf2 in interaction with Keap1, as previously crystallized in
linear form.53 The second one corresponds to the human
urotensin II (UII), that is an 11-residue long disulfide-bridged
peptide.54 UII exerts a broad array of biological activities, in
particular, in the central nervous system, the cardiovascular
system, and the kidney. It has been suggested that the cognate
receptor of UII (UT), may emerge as a valuable and innovative
therapeutic or diagnostic target.55 Indeed, high affinity, potent
and selective UT peptide ligands have been designed, from
structure−activity relationship studies56 to further elucidate the
pharmacology and biology of UII toward new therapeutic
opportunities, such as the treatment of sepsis-induced lung
damage.57 In this context, introduction of amain conformational
restraint through head-to-tail cyclization has become a standard
strategy to improve pharmacological profile of peptide ligands.58

■ RESULTS
The PEP-Cyclizer Protocol. PEP-Cyclizer considers all

cyclization linker candidate structures that are compatible with
the flanks of the uncyclized peptide structure. The sequences of
these linker candidates, potentially filtered by a priori sequence
constraints, are then used to build a linker sequence profile. This
profile feeds a Hidden Markov Model from which it is possible
to estimate the likelihood of candidate linkers using a forward-
backtrack algorithm. Alternatively, if the linker candidates are
restricted to one known linker sequence, they are clustered and
superimposed onto the flanks, providing structural models of the
cyclized peptide. Figure 1 depicts the workflow of the method.
Note that when the linker size is not known, PEP-Cyclizer can
estimate a minimum linker size required for head-to-tail
cyclization based on the distance between the flanks of the
uncyclized peptide (see below for the details).

Modeling Cyclic Peptides Given a Linker Sequence. As
a positive control, PEP-Cyclizer was applied to 64 cyclic
peptides from the CyBase database extracted on Oct. 28, 2018
(see Table S1 for a complete list of studied peptides). 1147
linear peptides were artificially generated by removing segments
of 2−7 residues from the 64 cyclic peptides; details are reported
in the Supporting Information section ‘CyBase benchmark’.
Unlike a real-world situation, where a peptide may undergo
conformational changes upon cyclization, these artificial linear

Table 1. List of Real Cases for Head-to-Tail Cyclizationa

uncyclized no. NMR models cyclized no. NMR models RMSD (Å) uncyclized size cyclized size linker sequence

1m2c 14 2ajw 20 linear 1.22 ± 0.10 16 22 GGAAGG
1m2c 14 2ak0 20 1.09 ± 0.12 16 23 GAGGAAG
1mii 20 2ajw 20 1.26 ± 0.09 16 22 GGAAGG
1mii 20 2ak0 20 1.03 ± 0.12 16 23 GAGGAAG
2h8s 20 4ttl 1 0.40 ± 0.00 16 22 GGAAGG
1ixt 20 2mso 20 2.45 ± 0.07 27 30 GLP
2ew4 20 2j15 21 1.03 ± 0.40 13 15 AG
2ew4 20 - - - 13 16 RGD
1mxn (1mxp) 20 - - - 15 17, 19, 19 AG, AGGG, GGAA
2jut 20 - - - 13 19, 20 GGAAGG, GGAAGAG
1mvi 15 - - - 25 28 GLP

aThe PDB code of the uncyclized and cyclized peptides (if available) are reported. With the exception of 4ttl, all the other structures are obtained
using NMR and have several models. The average RMSD values are measured between all the models of the uncyclized and cyclized
conformations. In some cases, more than one linker sequence exists, as reported in the last column of the table.

Table 2. Linker Modeling Quality Assessmenta

PEP-Cyclizer Rosetta NGK

name lsz Nmodel lRMSD20* gRMSD20* lRMSD1* gRMSD1* lRMSD20* gRMSD20* lRMSD1* gRMSD1*
2ew4 2 20 0.47 ± 0.13 2.03 ± 0.84 0.67 ± 0.18 3.57 ± 1.35 0.31 ± 0.22 2.53 ± 1.25 0.39 ± 0.26 3.10 ± 1.25
1ixt 3 20 0.46 ± 0.08 2.31 ± 0.25 1.43 ± 0.35 3.52 ± 1.50 0.37 ± 0.14 2.81 ± 0.54 0.43 ± 0.14 3.08 ± 0.66
1m2c 6 14 1.31 ± 0.15 1.99 ± 0.16 1.66 ± 0.12 2.58 ± 0.57 1.33 ± 0.17 4.58 ± 0.90 1.53 ± 0.16 6.08 ± 1.53
1mii+ 6 20 1.35 ± 0.01 1.72 ± 0.01 1.75 ± 0.50 3.11 ± 1.74 1.56 ± 0.11 5.76 ± 0.55 1.72 ± 0.12 7.22 ± 0.45
2h8s 6 20 1.24 ± 0.12 2.12 ± 0.10 2.03 ± 0.29 4.05 ± 1.21 1.30 ± 0.19 3.01 ± 0.53 1.60 ± 0.21 3.81 ± 0.64
1m2c 7 14 1.59 ± 0.16 1.97 ± 0.25 2.09 ± 0.56 3.66 ± 1.56 1.84 ± 0.37 5.34 ± 1.30 2.12 ± 0.26 6.53 ± 1.29
1mii+ 7 20 1.51 ± 0.08 1.89 ± 0.06 1.69 ± 0.01 2.30 ± 0.02 1.56 ± 0.03 5.51 ± 0.72 1.64 ± 0.06 7.80 ± 0.67
average+ 1.01 ± 0.46 2.01 ± 0.43 1.49 ± 0.52 3.24 ± 1.26 0.95 ± 0.63 3.48 ± 1.39 1.13 ± 0.71 4.28 ± 1.77

aFor each peptide, cyclization experiments were performed starting from each of the Nmodel experimental conformations of the linear peptide. For
each, we calculated the local and global RMSD values (see Methods) and identified the top-1 and best out of top 20 values. The lRMSD measures
the linker internal conformation deviation relative to the experimental one. The gRMSD measures the deviation of the positioning of the linker
relative to that of the rest of the peptide. The RMSD values were calculated over the backbone atoms (N, C, Cα, and O). (lRMSD1* and gRMSD1*)
and (lRMSD20* and gRMSD20* ) correspond to the average and standard deviations over the respective Nmodel RMSD values. +: The structure of 1mii
and 1m2c correspond to the same protein (α-Conotoxin MII), but cyclized structures are available for 2 different linker sizes (see Figure 2). We
detail the results for 1m2c and 1mii separately, but for the average, to avoid redundancy, we considered the best predictions over 1m2c and 1mii.
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peptides represent perfect conformations for modeling the
removed linker conformation. For all linker sizes, PEP-Cyclizer
was able to produce accurate models of the local linker
conformation with an average accuracy of 1 Å or better. This is
comparable (although not fully equal in accuracy) to models
obtained for the same peptides using Rosetta NGK (compar-
isons reported per peptide and linker size in Tables S2 and S3,
respectively).

PEP-Cyclizer was then applied to a small benchmark of real-
world cases, in the form of several conotoxin peptides where
both cyclized and noncyclized structures are available in the
PDB. Seven distinct cyclized/noncyclized pairs of peptide
structures were identified (Table 1 and Table S4). The range of
backbone RMSD between the overlapping region of cyclized
and uncyclized forms is 0.4−2.5 Å. Using the known linker
sequence, only the noncyclized structure was used to model the
linker. In this case, PEP-Cyclizer was able to return a model
approximating the global structure of the linker at 2.01 Å on
average (1.01 Å for the local linker conformation), as reported in

Table 2. This is a considerable improvement over Rosetta NGK
(3.48 Å), which suffers from structural imprecisions caused by
conformational change upon cyclization. In contrast, our results
show PEP-Cyclizer to be rather robust against such
imprecisions. Figure 2 illustrates the results for the best
predictions, out of the top 20, of PEP-Cyclizer (in green) and
Rosetta NGK (in cyan), starting from the first NMR
conformation of each uncyclized peptide. Overall, these results
are compatible with those presented for DaReUS-Loop, where
we found Rosetta NGK performing better when starting from an
experimental backbone, and less accurate when starting from a
somewhat divergent backbone. Finally, we have also considered
the very recent evolution of AlphaFold for cyclized peptides.49

For 2ew4, 1ixt, 1m2c/1mii (GGAAGG linker), 2h8s, and 1m2c/
1mii (GAGGAAG linker)), we obtain gRMSD20* values of 2.16,
1.49, 6.09, 3.32, and 3.50 Å, respectively, and lRMSD20* of 0.42,
0.50, 1.99, 2.70 and 1.91, respectively. The corresponding
averages are 2.91 and 1.50. As currently implemented, it seems
AlphaFold is not as accurate as PEP-Cyclizer or RosettaNGK,

Figure 2. Structure of the studied linear conotoxins and their corresponding engineered cyclic peptides. The native linear and cyclic peptides are shown
at the left column, colored yellow and orange, respectively. The structures on the middle and right columns represent the comparison between the
native linker (in orange), linkers modeled by PEP-Cyclizer (in green), and Rosetta NGK (in cyan). See Table 2 for the corresponding gRMSD20 (and
lRMSD20) values. The corresponding linker sequences are reported for everymodel at the top. (a): χ-ConotoxinMrIA, (b): α-Conotoxin Vc1.1, (c): α-
Conotoxin MII, (d): α-Conotoxin MII, and (e): Conotocin gm9a.
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but it is important to note that AlphaFold performs the
prediction for the complete peptide, whereas for PEP-Cyclizer
and Rosetta NGK, we focused on the linker part.

Candidate Linker Sequence for a Given Linker Size.
Next, the ability of PEP-Cyclizer to propose peptide linker
sequences was tested. The same conotoxin benchmark was used,
adding ten cyclic sequences with available structures for the
uncyclized but not the cyclized peptide, for a total of 17
sequences. The details of the peptides are reported in Tables 1
and S4. As potential linker sequences, all combinations of all
amino acids that are present in the experimental linker sequence
(typically only Gly and Ala) were considered and ranked by the
forward-backtrack algorithm. The results are shown in Figure 3.
The experimental sequences were ranked significantly better
(average percentile: 37.2, p = 0.024) than other potential
sequences. It is important, however, to keep in mind that the
structures of cyclized peptides with only a few linker sequences

are available and that possible failures in either peptide synthesis
or structure determination are not documented. Nevertheless, it
is encouraging to observe that peptides cyclized with linkers well
ranked by our approach could be successfully cyclized and adopt
a conformation stable enough for structure determination.

Linker Size As a Function of Head-to-Tail Distance.
Starting from a linear peptide, the size of the linker is not known
and clues about likely linker sizes are needed. We focused on the
estimation of a minimal linker size. Figure 4a shows the
distribution of the inter-residue distance as a function of their
separation in the sequence, for a separation from 2 to 10
residues, in a collection of experimental structures of the PDB
and CyBase (see methods). As could be expected, one observes
a rather linear relationship between the residue separation and
the inter-residue distance. Figure 4b plots the relationship
between the head and tail residue distance and the average linker

Figure 3. Sequence logo generated by PEP-Cyclizer for the studied cases. The pdb codes of the linear peptides used as input are reported for each case.
Below every logo, the desired linker sequence, its rank, and score among the proposed sequences by the forward-backtrack algorithm are reported.

Figure 4. Linker size as a function of distance. (a) The distances between Cα atoms of every pair of nonconsecutive residues along each sequence with
gap sizes ranging from 2 to 10 amino acids are reported for PISCES and CyBase data sets, in cyan and pink, respectively. The standard deviation values
are shown with an asterisk for each box. (b) For every linker size, the mean−sd values calculated over both data sets are reported in blue. The fitted
dashed line in gray corresponds to the final formula (eq 1) used here to predict a minimum linker size.
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size reduced by one standard deviation (blue curve). The dashed
line corresponds to a regression fit of the blue curve, and we find

= *L d1.24 3.77 (1)

, where d is the distance (in Å) between the flanks and L is the
minimum linker size. It is in theory possible to make the
relationship more or less stringent by varying the number of
standard deviations, but probably considering a more complex
model would be preferable. Considering Figure 4a, one observes
that the minimum head-to-tail distance for all linker sizes is
about 4−5 Å, which leads to the linker size of 2 using eq 1.
Hence, the proposed formula is only a first approximation to
estimate a potential minimal linker size for head-to-tail
cyclization.

Application to the Design of Cyclized Nrf2 Peptides.
PEP-Cyclizer was applied to predict a head-to-tail cyclization
linker sequence for residues 76−85 of the Nrf2 protein. This
peptide has been crystallized in interaction with the Keap1
protein.53 The peptide conformation of the crystal structure was
used as a starting point. For cyclization, a linker of size 3 was
considered, according to the distance of 5.3 Å between the head
and tail residues, accepting only alanine, proline, and glycines.
Table 3 shows all 27 possible linkers ranked by PEP-Cyclizer.
We selected two different linkers, namely the highly ranked
AGG and the poorly ranked PAA.

Three Nrf2-derived peptides were synthesized (see Meth-
ods), namely, the original linear Nrf 2(76−85) peptide and the
same peptide cyclized with the two linkers. The sequences of the
peptides are listed in Figure 5.

Using microscale thermophoresis (MST), we then measured
the binding affinities between his-tagged Keap1 protein and each
of the synthesized peptides. The linear Nrf2 peptide (LV-5554)

possessed an affinity for Keap1 with a Kd measured at 3.16 ±
0.64 μM Figure 6. Under the same conditions, LV-5565 (linker
AGG) possessed a stronger affinity for the Keap1 protein with a
Kd value of 0.12 ± 0.04 μM, 26 times better than that measured
for linear Nrf2. Finally, the other cyclic peptide LV-5562 (linker
sequence PAA) possessed an affinity slightly better than that of
the linear peptide (Kd = 1.92 ± 0.44 μM). Therefore, the linker
that is ranked highly by PEP-Cyclizer indeed showed a much
higher affinity than the linker that is ranked last, although the
latter still resulted in a cyclized peptide that had a binding affinity
comparable to the linear peptide.

Application to Urotensin II. Finally, PEP-Cyclizer was
applied to predict a head-to-tail cyclization linker sequence for
UII. So far, only the structures of a fragment corresponding to
the eight last amino acids of UII and its N-methylated
tryptophan counterpart, [(N-Me)Trp7]U−II4−11 in polar
conditions (PDB entries 6HVB and 6HVC) have been solved
by NMR. Since our goal was to obtain a head-to-tail cyclized
version of UII, we decided to start from 3D models of the
complete UII (11 amino acids) which includes one disulfide
bond. Therefore, two ensembles of 8 and 5 conformations were
generated using two distinct strategies: i) molecular dynamics
simulations (MD) and ii) PEP-FOLD.35 The models are highly
structurally divergent (Supplementary Figure S2), with typical
RMSD values in excess of 2 Å both within and between the
ensembles (Supplementary Table S6). Consequently all of those
models were used as the starting points for the cyclization (see
Methods). Themodels of UII have head to tail distances ranging
from approximately 4 up to 10 Å, dispatched in a bimodal
manner, with 6 peptides having a distance of less than 6 Å, and
the other having a distance of more than 7.8 Å. For 4 of the 6
peptides with a distance of less than 6 Å, a minimal size of 3 is
suitable according to eq 1. Thus, we decided to consider a linker
size of 3, accepting only alanine, proline, and glycines. Table 4
presents the results accumulated for each of the two ensembles
of models. As can be observed, it is striking that despite the
diversity of the conformations and the way they were obtained,
those two independent ensembles of models resulted in a rather
stable ranking of the predicted sequences. This is reflected by the
fact that in both cases, the top 4 consist of the same four
sequences as well as by the high overall correlation of the ranks
(Spearman r = 0.98).

To test the significance of our approach, we analyzed the
impact of top-, mid-, and bottom-ranked linkers on the agonist
properties of the respective bicyclic UII analogues. Therefore,
UII was cyclized with the sequences AGG, GAG, GGA, and
GPA as displayed in Figure 5 leading to compounds LV-4131,
LV-4130, LV-4132, and LV-4133, respectively (see Methods).
Although obtained with low yield (<1%), each bicyclic analogue
was highly pure. The pharmacological profile of these synthesis-
challenging compounds was assessed by measuring their ability
to increase intracellular calcium concentration ([Ca2+]i) in
human UT-transfected CHO cells (Eurofins-Cerep and Euro-
screenFast) as previously described.59 As shown in Figure 7, UII
and LV-4130 induced a dose-dependent increase in [Ca2+]i with
EC50 values of 0.7 and 46 nM, respectively. The other analogs
were less potent than LV-4130 and exhibited EC50 values >6
μM. Noteworthy, LV-4130 is a first bicyclic UII analogue
retaining a substantial ability to increase [Ca2+]i in UT-
transfected CHO cells. Despite a shift in potency, the EC50
was less than 2 orders of magnitude lower, and LV-4130 is a
nanomolar active UT agonist of peculiar interest. Indeed, its
backbone cyclic structure may confer a lower susceptibility to

Table 3. Likelihood of Each of the 27 Possible 27 Linker
Sequences for Nrf2

linker L

GGG −5.71
AGG −5.73
GAG −6.32
PGG −6.71
APG −7.56
AAG −7.65
GPG −7.79
PAG −7.84
PPG −8.34
GGA −8.71
AGA −8.74
GGP −9.66
AGP −9.68
PGA −9.71
GAP −10.01
GAA −10.63
PGP −10.66
APP −11.06
APA −11.09
GPP −11.30
GPA −11.32
PPP −11.85
PPA −11.87
AAA −11.97
PAA −12.16
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metabolic degradation and a better selectivity for UT or a subset
of UT’s signaling cascade that deserves to be investigated: biased
agonist concept.

■ DISCUSSION
Recently, we demonstrated that the current structural
information available in the Protein Data Bank (PDB)60 is
sufficient to propose accurate protein loop candidates, in a
manner that is robust for conformational inaccuracies. In the
present study, we show that it is true for peptide cyclization
linkers as well. We propose a computational framework to assist
the design of head-to-tail cyclization of an existing peptide
structure, a well-known strategy to enhance peptide resistance to
enzymatic degradation and thus peptide bioavailability. The
method addresses two complementary questions, namely, (i)
proposing candidate sequences for the linker, a facility to assist
medicinal chemists, and (ii) predicting the 3D conformation of
the linker, for further peptide conformational stability analysis or

peptide-receptor docking. Up until now, there has been an
evident lack of computational methods to answer those
questions. Existing methods23−26,29−35 are oriented toward de
novo design and do not perform head-to-tail cyclization of
existing structures. We are aware of a single existing computa-
tional method, the Rosetta protocol by Bhardwaj et al.,6 that is
able to design head-to-tail cyclization linkers for pre-existing
peptide structures. However, in that method, what is predefined
is the complete structure of the entire cyclic peptide, including
the linker; also, the sequence of the entire peptide is designed
from scratch and not just that of the linker. In contrast, PEP-
Cyclizer takes an existing structure of a linear peptide and
predicts the sequence or structure of a cyclization linker, while
leaving the rest of the peptide undisturbed. To the best of our
knowledge, PEP-Cyclizer is the first computational method
designed to do this. It has limitations though; particularly, the
size of the linker is not presently guessed; it has to be specified.
This is the subject of further investigations.

Figure 5. Sequence of human UII, human/mouseNrf 2(76−85) and head-to-tail cyclic analogues. Linker residues for ring closing are marked in red.

Figure 6.Dose response fit ofMST for cyclized Nrf2 peptides. MST dose response curves for interaction between Keap1 labeled protein and the linear
Nrf 2(76−85) peptide (LV-5554, blue circles), the LV-5562 peptide (green circles) and the LV-5565 peptide (red circles). The data are the mean of three
independent experiments for both cyclic (LV-5562 and LV-5565) peptides and of five independent experiments for the linearNrf 2(76−85) peptide (LV-
5554). The thick lines correspond to the fit from the law of mass action. (Fl) fluorescently labeled; (FNorm) normalized fluorescence. ΔFnorm values
of Y-axis in the dose response plot are calculated from the ratio of normalized fluorescence F0/F1, where F0 corresponds to the normalized
fluorescence prior to MST activation. F1 is determined after an optimal MST power-dependent time interval, which yields the best signal-to-noise
ratio.
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The performance of the PEP-Cyclizer was validated on a set of
conotoxins for which both linear and cyclic peptide structures
are known. For comparison, we also evaluated a Rosetta
protocol, not the one from Bhardwaj et al.,6 but the Rosetta
NGK protocol,52 a state-of-the-art protocol for building missing
loops in crystal structures. It must be mentioned that Rosetta
NGK is not designed for peptide cyclization, and we had to
modify the input data and convert the head-to-tail cyclization to
loop modeling (i.e., dividing the peptides in two segments and
switching them to generate a gapped structure). In all cases, the

peptide linker models generated by PEP-Cyclizer had a
significantly better global accuracy. This is especially evident
for the two longest (7 amino acids) linkers, where the RMSD
was <2 Å, while >5 Å for Rosetta NGK.

Finally, PEP-Cyclizer was applied to the design of two head-
to-tail cyclized peptides, the first based on an Nrf2 fragment, the
second on urotensin II. To avoid at maximum interference with
peptide function, we considered linkers made of only a
combination of 3 amino acids types: alanine, glycine, or proline.
There are several significant differences between the two cases.

First, the Nrf2 peptide has been previously crystallized in
linear form, in interaction with Keap1.53 The known linear
Keap1-bound peptide structure provides a straightforward
starting point for PEP-Cyclizer in the design of a cyclic peptide.
In contrast, for UII, the absence of a full-length structure made it
necessary to performmolecular modeling in order to generate an
ensemble of linear peptide structures.

Second, for Nrf2, its interaction with Keap1 provides an in
vitro test, as it is possible to measure the affinity of binding of
various peptide candidates using MST. In contrast, UII binds to
a membrane receptor, making an in vitro test extremely
challenging. However, a functional assay for UII is available in
the form of an intracellular calcium concentration response to
extracellular UII binding.

Third, for UII, the initial single cyclic peptide structure
ensemble showed considerable conformational diversity,
consistent with the knowledge that although the NMR structure
of the disulfide-bridged core of UII is well-defined, the flanking
linear extremities are very flexible.61−64 Depending on the
experimental environment (water or membrane mimetic
micelles) and temperature, distinct conformations are stabilized
within the disulfide-bridged core, involving different sets of
intramolecular hydrogen bonds. This complicates the design of a
head-to-tail cyclic peptide. Nevertheless, the fact that UII is a
very potent molecule indicates that the loss of conformational
entropy of the peptide upon binding is limited. In contrast, the
Nrf2 peptide does not contain any disulfide bridges, opening up
the possibility that head-to-tail cyclization may lead to
rigidification, hence reduced loss of peptide conformational
entropy upon binding, and hence improved affinity. Together
with the known linear conformation, this makes Nrf2 a relatively
straightforward case for PEP-Cyclizer; on the other hand, for
UII, a cyclized peptide with demonstrated functional activity
may have direct therapeutic relevance.

The differences between the two cases are reflected in the
results. In both cases, using a linker predicted by PEP-Cyclizer, a
head-to-tail cyclized peptide was synthesized, and its activity
validated experimentally. For Nrf2, this resulted in an in vitro 26-
fold increase of binding affinity, indicating that successful
rigidification took place. In contrast, for UII, already rigidified
through disulfide bond cyclization, head-to-tail cyclization with
PEP-Cyclizer resulted in a loss of activity. However, as UII is
very potent to begin with (0.7 nM), the cyclized UII is still a very
strong UT ligand (46 nM). Peptide cyclization still has the
expected benefit of increased stability against enzymatic
degradation, paying a very modest price in terms of binding
affinity.

PEP-Cyclizer is the extension of the DaReUS-Loop algorithm
for the problem of head-to-tail peptide cyclization; details about
the algorithm are reported in our previous study.50 Essentially,
the linker/loop is treated as a gap in the structure, and a
structural database search is performed by using the flank
regions on either side. Like DaReUS-Loop, PEP-Cyclizer is a

Table 4. Likelihood of Each of the Possible 27 Linker
Sequencesa

PEP-FOLD MD

linker L linker L

AGG −7.42 AGG −7.21
APG −7.65 GAG −7.52
GAG −7.67 PGG −7.52
PGG −7.73 APG −7.61
AGA −7.80 GGG −7.64
PAG −7.81 PAG −7.69
GGG −7.89 AAG −7.78
AAG −7.90 AGA −7.80
PGA −8.11 PGA −8.10
GAP −8.12 PPG −8.11
PPG −8.15 GAP −8.21
AGP −8.19 AGP −8.22
PAP −8.26 GGA −8.23
GGA −8.27 GPG −8.36
APP −8.29 PAP −8.38
APA −8.32 AAP −8.47
AAP −8.34 APA −8.49
GPG −8.44 APP −8.50
PGP −8.50 PGP −8.53
GGP −8.66 GGP −8.65
GAA −8.75 GAA −8.79
PPP −8.80 PAA −8.96
PPA −8.82 PPA −8.99
PAA −8.88 PPP −9.00
AAA −8.97 AAA −9.06
GPP −9.08 GPA −9.24
GPA −9.11 GPP −9.25

aTwo independent series of models (8 generated using MD and 5
using PEP-FOLD) were used as starting points.

Figure 7. Concentration-dependent agonist-evoked Ca2+ responses on
UT-transfected CHO cells. Agonist responses were expressed as a
percent of the response observed with a maximally effective
concentration of UII (100 nM). Data points represent the mean of
duplicate.
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consensus method that considers both structural compatibility
(i.e., good superposition of the linker candidate onto the flanks)
and sequence compatibility. Therefore, when PEP-Cyclizer is
used to predict linker conformations, it is essential to consider all
20 candidate structures. When the PEP-Cyclizer is forced to
make a single prediction, the quality deteriorates considerably
(from 2.0 to 3.2 Å). While a top-1 accuracy is naturally less
favorable than a best-of-20 for any prediction method, it is
specifically true for PEP-Cyclizer, as the effect is much weaker
for Rosetta NGK (from 3.5 to 4.3 Å).

In contrast, the PEP-Cyclizer is shown to be very robust
against conformational changes. For the conotoxin benchmark,
the range of backbone RMSD between the overlapping region of
cyclized and uncyclized forms is 0.4−2.5 Å. This is to be
compared with the positive control, where the RMSD is zero.
However, the global accuracy of the PEP-Cyclizer models is
essentially the same between the two (2.0 vs 1.87 Å). This is a
stark contrast to Rosetta NGK, which performs very well on the
positive control (1.33 Å) but poorly on the real-world conotoxin
benchmark (3.5 Å). This is an expected result, as Rosetta NGK is
primarily designed to complete the missing regions in otherwise
high-quality crystal structures. Note that as a high-resolution
protocol Rosetta NGK does a good job in generating accurate
local linker conformations; it is the global positioning of the
linker onto the rest of the conotoxin structure where Rosetta
NGK is outperformed by PEP-Cyclizer.

The robustness of PEP-Cyclizer for conformational change is
also apparent for the prediction of linker sequences. For UII,
sequence prediction was performed on two different structure
ensembles that were of different origin and highly divergent with
very similar results. Note that it is inherently complicated to
evaluate linker sequence predictions, as we only have a few
positive cases and no negatives, i.e., we normally do not know
that a sequence does not cyclize. In addition, we must stress that
PEP-Cyclizer proposes linker candidates based on likely
sequence and structure only; in contrast, it cannot predict the
effectiveness of the in vitro synthesis or the peptide conforma-
tional stability. Future research will focus on the prediction of
the most likely length of the linker sequence, for which the
current protocol does not show significant predictive power.
Still, the result that experimental sequences were on average
better ranked shows that PEP-Cyclizer has at least some
predictive power. More importantly, the activity of the head-to-
tail cyclic UII peptide LV-4130 demonstrates that PEP-Cyclizer
has direct practical ability in cyclic peptide-based drug design.

■ MATERIALS AND METHODS
In this section we explain the details of PEP-Cyclizer, that is an
extension of DaReUS-Loop, a data-based approach using
remote or unrelated structures for loop modeling.50,51 Starting
from the geometry of flank residues, i.e., four residues before and
four residues after the loop of interest, PEP-Cyclizer mines a
structure database and identifies all possible candidates. It then
integrates a filtering step and, in the end, ranks the candidates
and proposes a final set of top models (structures or sequences).
PEP-Cyclizer implements two complementary and new
functionalities: (i) guessing the linker sequence and (ii)
modeling the conformation of the linker. The details of those
functionalities are depicted in Figure 1, and explained in the
followings.

Structure Database. We employed two different structure
databases. The first one is the database to search for linker
candidates, which contains the entire set of protein structures

available in the PDB. In March 2017, it consisted of 123,417
PDB entries, corresponding to 338,613 chains in total. The
second database is the one to search for linker sequences and
contains the entire set of protein structures available in the
PDB70. For every database, each chain was split into segments
that correspond to consecutive regions separated by gaps or
nonstandard residues, but accepting seleno-methionines. This
led to two databases with 758,143 and 172,693 protein
segments, respectively.

Test Sets. To validate our approach, we have searched for
cases for which both structures of the uncyclized and cyclized
peptides are available. Backbone cyclization has been applied to
few conotoxins, as reported in ref 65 and to the best of our
knowledge, the structures (NMR/Xray) of only five engineered
cyclic conotoxins for which the structure of the uncyclized form
exists have been deposited in the PDB database.60 For one of the
cases, two structures of the open form have been deposited in
the PDB (1m2c and 1mii), and their structures deviate by 1 Å,.
We have included both structures in our test set. For 3 additional
peptides, the structure of the uncyclized conformation and
information about successful linkers are available. Table 1
reports the details of those studied cases. Of note, the structures
of all the linear and cyclic peptides in this test set have been
determined using NMR, with the exception of one case (4ttl) for
which it has been solved by X-ray crystallography.

Since all the structures of the uncyclized forms of the peptides
have been determined using NMR and have Nuncyclized
conformations, we have performed the head-to-tail cyclization
starting from all Nuncyclized NMR conformations. The final
predictions for the cyclized forms of the peptides have been in
turn compared with all of the Ncyclized conformations of the
cyclized structures. Table 2 summarizes the average local and
global RMSD20* (best out of top 20) and RMSD1* (top 1) values
obtained for each linker (averaged over Nuncyclized conforma-
tions).

Input Preparation and Candidate Search. We consider
head-to-tail cyclization as a loop modeling problem, where the
loop flanks are the first and the last four residues in the N-
terminus and C-terminus, respectively. Accordingly, the
minimum acceptable size for the input linear peptide is 8
residues. We then switch the flanks and search for linker
candidates that match those flanks. We employ the method that
was previously introduced to mine the database using a Binet-
Cauchy (BC) kernel and a Rigidity score66 (detail in Supporting
Materials).

Predicting the Minimum Linker Size. To derive a
minimal linker size as a function of the distance between head
and tail residues, we have analyzed the distances between
residues using a set of nonredundant protein chains from the
PISCES server67 (downloaded on July 20, 2023 from https://
dunbrack.fccc.edu/pisces/download/) with 15% sequence
identity, no chain breaks, resolutions better than 1 Å and
determined by X-ray crystallography.67 This collection was
completed by all the natural cyclic peptides from the CyBase
database (http://www.cybase.org.au/)68,69 downloaded on
Oct. 28, 2018. The inter-residue distances correspond to the
distances between the Cα atoms of the residues.

Candidate Filtering. In most cases the number of
candidates returned by BCLoopSearch is too large to be
tractable, which implies limiting their number. Different filters
were sequentially applied in our protocol for each mode of
prediction:

Modeling the Conformation of the Linker.
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• Sequence similarity: The sequence similarity of a linker
candidate with the query linker sequence using
BLOSUM62 score. Candidates with negative scores
were discarded.

• Geometrical clustering: We used the python Numpy
library to measure the pairwise distances (RMSD)
between all the candidates.70 In addition, we used the
python Scipy package to perform hierarchical cluster-
ing.71 A RMSD cutoff of 1 Å was used to group similar
linker candidates. To consider memory constraints, we
applied an iterative clustering over subsets of 25,000
candidates, until at most 25,000 clusters were obtained.
Finally, one representative linker candidate with the
highest sequence similarity to the query linker was
selected for each cluster. The computational time of our
clustering protocol is in the range of 1−5 min; however, it
depends directly on the number of candidates detected by
BCLoopSearch. In extreme cases, the needed time may
increase up to 10−15 min.

• Local conformation: Previously, Shen et al. have shown
that local conformation profiles predicted from sequence
and profile−profile comparison can be employed to
accurately distinguish similar structural fragments.72

Consequently, we precomputed a collection of profiles
for all the protein chains in the structure data set, and for
all proteins of the test sets. For each linker candidate, it is
thus possible to extract the subprofiles P and Q,
corresponding to the query and candidate linker, and to
measure the Jensen Shannon divergence (JS(P, Q))
between these profiles:

= +JS P Q D P M D Q M( , )
1
2

( , )
1
2

( , )KL KL (2)

where M corresponds to 1/2(P + Q) and DKL is the
Kullback−Leibler divergence:

=D P Q P i P i Q i( , ) ( ) ln( ( )/ ( ))
i

KL
1 27 (3)

P(i) is the probability of SA letter i. Then wemeasured the
average Jensen Shannon divergence (JSD) over the paired
series of query and candidate profiles:

=JSD P Q JS P Q n( , ) ( , )/
i n

i i
1 (4)

where Pi and Qj are the two profiles corresponding to
positions 1 to L on the query and candidate linker
sequences. Note that a JSD of 0 indicates the perfect
identity of the profiles. This procedure was applied on
each linker candidate, and those with a JSD > 0.40 were
discarded from the remaining set.

• Steric clash detection: After modeling the complete
structure, models with steric clashes were discarded
considering the Cα distance between linker residues and
other residues of the protein, using a cutoff value of 3 Å.

Predicting the Linker Sequence.
• Sequence similarity: If sequence constraints are given, a

subset of sequences that represent at least 50% sequence
identity to any of the constraint amino acid types,
regardless of their position, are kept.

• Local conformation: Measuring the local conformation of
flanks (query and candidate flanks) and discarding
candidates with flank JSD > 0.40.

Sequence Constraints. Throughout the study, linker
sequences were predicted using the following sequence
constraints. At each position of the linker, the set of amino
acids of the entire experimental linker was considered, for
instance, for the RGD linker of 2ew4, the amino acids Arg, Gly,
and Asp were considered at all three positions; i.e., 33 different
linker sequences are possible.

Model Building. Final energy minimization was conducted
using Gromacs 2018,73 the CHARMM36m force field74 and the
steepest descent algorithm for 1000 steps. All bonds were
constrained by using the LINCS algorithm. The particle mesh
Ewald algorithm was used to handle electrostatics with a 10 Å
cutoff for the short-range part and a grid spacing of 1.2 Å for the
long-range contribution in reciprocal space. The Verlet buffer
scheme was used for nonbonded interactions, and the neighbor
list was updated every 20 steps.

Model Selection. To rank the models, we considered the
RMSD of the flanks. In the case of conformation modeling, our
procedure returns a maximum of 20 models with the lowest
f lank RMSD score. And for sequence guessing, it returns a set of
30 sequences with the lowest f lank RMSD score. From this set
and considering the sequence constraints, we apply the sequence
inference procedure (as explained below) to propose a final set
of likely sequences for the linker.

Candidate Sequence Inference. To draw candidate
sequences given the sequences of the candidate linkers
identified, we used a forward-backtrack procedure. One
advantage of such a procedure is to provide both sequences
and their likelihood. The probabilities paa,linkerl of observing each
amino acid type aa at position l of the linker can be estimated
from the amino acid sequences of the candidate linkers satisfying
the condition of peptide cyclization. However, when a reduced
number of amino acids are considered at a given position, these
estimates can be performed on a rather low number of
sequences. Consequently, we have estimated pseudofrequen-
cies, with paal = α.paa,linkerl + (1 − α).paa,dbl where α is a value
between 0 and 1, and paa,dbl is the frequency of amino acid type aa
as observed in a large collection of sequences named db. For db,
we have considered the sequences of the loops of 123,417 PDB
entries (758,143 protein segments), identified using the
procedure described in ref 50. Alternatively, we also considered
dbs, which corresponds to the subset of db corresponding to a
loop size of s. Transition probabilities have been estimated
similarly. Pseudo transition probabilities p(aal/aal−1) were
estimated as p(aal/aal−1) = β.p(aalinkerl /aalinkerl−1 ) + (1 −
β).p(aadbl /aadbl−1), where β is a value between 0 and 1. Given
estimates of paal and p(aal/aal−1) we have used the forward-
backtrack algorithm to infer a series of amino acids that fit best
the estimates. We prefer such procedure to for instance the
viterbikbest procedure that, in our experience,75 usually returns
less diverse sequences.

Linker Quality Assessment. To assess the quality of the
final linker structures, we report the following RMSD values of
the main chain heavy atoms (N, C, Cα, and O):

• Global RMSD (gRMSD): the modeled cyclic peptides are
superimposed on the native structure excluding the linker
region, then the RMSD is calculated over the linker.

• Local RMSD (lRMSD): RMSD is measured after
performing the best fit superimposition of the linker
region only.

Statistical Testing. To test the prediction of linker
sequences of the conotoxin benchmark, the rank of the
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experimental linker sequences was determined. To avoid
pseudoreplication, five duplicate cyclic sequences were elimi-
nated; using the remainder of the benchmark, the overall ranking
of the experimental linker sequences was tested for statistical
significance. With the total number of linker sequences varying
from case to case and many instances of tied ranks, it was not
feasible to compute an analytical p-value based on hyper-
geometric distributions. Instead, random ranks were simulated
by sampling from flat rank distributions and converted to
percentiles, and it was evaluated how often the overall mean
percentile was better than the observed mean percentile (37.2)
for the experimental linker sequences. This was the case in
2431/100000 random simulations, i.e., a p-value of 0.024.

Comparison with Other Approaches. In this work we
compare the performance of our linker modeling protocol with
the Rosetta NGK.52 The Rosetta NGK runs were performed
using the protocol provided by ref 52, and Rosetta energy values
were employed for ranking the models. Considering the fact that
Rosetta NGK is not designed for peptide cyclization, we
converted the head-to-tail cyclization to loop modeling, by
breaking every peptide into two segments and switching the two.

Experimental Tests. To test our procedure, we searched for
linear peptides known to interact with a protein and for which
some quantification of the impact of the cyclization can be done.
Since the aim of our approach to design linkers is to perturb as
little as possible the peptide conformation, while possibly
rigidifying it, a straightforward possibility was to search the
Protein Data Bank to identify peptide protein complexes solved
at high resolution, for which the peptide does not contain
unusual amino acids and for which the protein is available
commercially so that it is possible to undergo affinity
measurements between the different peptides and the protein.
Two such systems were identified and correspond, respectively,
to PDB entries 1x2r and 2qos. The first one corresponds to the
interaction of a fragment of Nrf2 of 9 amino acids (sequence:
LDEETGEFL) in an interaction with Keap1, an interaction
spotted in the context of lung cancer. The second one
corresponds to the C8 binding site, a peptide of 11 amino
acids (sequence: LRYDSTAERLY) interacting with the comple-
ment protein C8. However, this peptide led to aggregation when
tested forMST and did not lead to any exploitable results. A final
system corresponds to urotensin II, a peptide of 11 amino acids
(sequence: ETPDCFWKYCV) known to interact with a
membrane receptor, for which functional tests of ligand-
stimulated intracellular calcium response are available commer-
cially.

Urotensin II Model Generation. Two sets of 3D models
were used. The first one was generated using PEP-FOLD
server,35 a de novo approach to peptide structure prediction. Five
independent runs of 3D generation (100 models) were run, and
five models showing closed disulfide bonds in the PEP-FOLD
coarse grained representation were then submitted to refine-
ment using MD, with the aim of stabilizing the disulfide bond in
the all atom representation. The model topology was created by
using the Gromacs pdb 2gmx command, which did not include
the disulfide bond. The topology was further modified to include
the disulfide bond parameter using the gromacs_py library.76

Simulations were performed using the CHARMM-36 force
field77 and the TIP3P model for water. The Gromacs 2018
software73 was used to run the simulations. The fivemodels were
minimized two times for 10,000 steps with the steepest descent
algorithm. During the first minimization, the bonds were not
constraints, as in the second and following steps, all bonds were

constrained using the LINCS algorithm. The five models were
solvated in a water box and roughly 150 mM of NaCl. Systems
were again minimized in two similar steps, then equilibrated in
three successive steps: (i) 100 ps with position restraints of 1000
kJ mol−1 nm−2 applied on the peptide heavy atoms and an
integration time step of 1 fs, (ii) 500 ps with position restraints of
1000 kJ mol−1 nm−2 applied on the peptide Cα atoms, the
integration time step was fixed to 2 fs, (iii) 1 ns with position
restraints of 100 kJ mol−1 nm−2 applied on the Cα atoms.
Production runs were finally computed at 100 ns. The five 100
ns trajectories were then analyzed using MDAnalysis library.78

PCA of backbone atom coordinates was computed, and the 15
first components were used to cluster the coordinates. The
clustering DBSCAN algorithm79 was used using a min_sample
of 20, and sigma value of 5. A total of 13 clusters was identified,
and the cluster centroids were chosen by taking the closest
element in terms of RMSD to the average cluster structure. The
conformations generated using this protocol are available as
Supporting Information. All models underwent sequence
guessing to cyclize the peptide.

Another set of models was kindly provided by Chatenet and
co-workers at INRS Quebec, Canada. It consists of a set of 8
representative structures of UII displaying the heterogeneous
conformational ensemble of this peptide. The three-dimensional
structure of UII was generated from the sequence using the pdb
utilities server https://spin.niddk.nih.gov/bax/nmrserver/
pdbutil/ (performed in 2020). System preparation and MD
simulations were performed using AMBER v1680 and the ff14SB
force field.81 Simulations were performed at 300 K under
constant energy (NVE) conditions using a 2 fs time step. The
peptide was solvated using the SPC(E) water model in a
rectangular box with periodic boundary conditions. The system
was neutralized through the addition of counterions (Na+). The
preprocessing steps were followed by equilibration steps, as
described previously.82 All simulations were performed using
the GPU-enabled version of the AMBER simulation engine
pmemd. A Particle Mesh Ewald cutoff of 8 Å was used for the
GPU-enabled simulations.83 The peptide was simulated for a
total of 100 ns. Representative structures were selected by
clustering simulation ensembles obtained from the MD
simulation trajectory. Clustering was performed using the
hierarchical agglomerative approach with an epsilon cutoff of
3 Å, which represents the minimum distance between the
clusters.

Peptide Synthesis and Functional Test. Linear peptide
precursors of humanUII (LV-4130, LV-4131, LV-4132, and LV-
4133) and human/mouse Nrf 2(76−85) (LV-5562 and LV-5565)
cyclic analogues were synthesized by Fmoc solid phase
methodology on a Liberty microwave-assisted automated
peptide synthesizer (CEM, Saclay, France) using the standard
manufacturer’s procedure at 0.1 mmol scale on a preloaded
Fmoc-Asp(Wang resin)-ODmab as previously described.84

Reactive side chains were protected as follow: Thr, Tyr, tert-
butyl (tBu) ether; Glu, tert-butyl (OtBu) ester; Lys, Trp, tert-
butyloxycarbonyl (Boc) carbamate; Cys, trityl (Trt) thioether.
After completion of the chain assembly, the C-terminal Dmab
protective group was selectively removed by addition of a
solution of 2% hydrazine in DMF for 3 min.85 Treatment was
repeated twice, and the resin was washed with DMF and DCM.
Head-to-tail cyclization was performed on-resin by in situ
activation of the free carboxyl group with BOP (1.1 equiv) and
DIEA (10 equiv) in 10 mL of DMF at room temperature for
about 72 h. The head-to-tail cyclic peptides were deprotected
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and cleaved from the resin by adding 10mL of themixture TFA/
TIS/H2O (9.5:0.25:0.25) for 180 min at room temperature.
After filtration, crude peptides were washed three times by
precipitation in TBME followed by centrifugation (4500 rpm,
15 min). The synthetic peptides were purified by reversed-phase
HPLC on a 21.2 mm × 250 mm Jupiter C18 (5 μm, 300 Å)
column (Phenomenex, Le Pecq, France) using a linear gradient
(10−50% over 45 min) of acetonitrile/TFA (99.9:0.1) at a flow
rate of 10 mL/min. The disulfide bridge of UII analogues was
then formed by treatment of the head-to-tail cyclic peptides with
a mixture of N-chlorosuccinimide (1.05 equiv) in 20 mL of
H2O/CH3CN (1:1) for 30 min at room temperature as
previously described.86 The resulting bicyclic UII analogues
were purified as described above with a 20−60% linear gradient.
The purified peptides were finally characterized by MALDI-
TOF mass spectrometry on an ultrafleXtreme (Bruker,
Strasbourg, France) in the reflector mode using α-cyano-4-
hydroxycinnamic acid as a matrix. Analytical RP-HPLC,
performed on a 4.6 mm × 250 mm Jupiter C18 (5 μm, 300
Å) column, indicated that the purity of all peptides was >95%.
Purity analyses of 4 peptides are reported in Supplementary
Figure S1.

Intracellular Calcium Assay. Ligand-stimulated intra-
cellular calcium responses were measured at the human UT
receptor expressed in transfected CHO cells using a fluorimetric
detection method according to Eurofins-Cerep (catalog
reference G099-1376) and EuroscreenFast (catalog reference
FAST-0540A) standard assay protocols. The assays were
performed in duplicate or triplicate. The results were expressed
as a percent of human UII response at its EC100 concentration
and plotted using Prism software (GraphPad, San Diego, CA).

Microscale Thermophoresis. Keap1 (His-tagged) was
purchased from Tebu-Bio (Le Perray en Yvelines, France). This
His-tagged protein was labeled using the Labeling Kit RED-tris-
NTA second Generation Monolith (MO-L018, NanoTemper
Technologies GmbH, Germany). According to the manufac-
turer’s instructions we have first evaluated the affinity of the dye
toward theHis-Keap1, by preparing 16 dilution points of the his-
Keap1 protein in PBS-T (consisting of PBS supplied with the
labeling kit to which has been added 0.05% of tween 20) (from 4
μM to 0.12 nM; 10 μL each) and finally adding 10 μL of the
RED-tris-NTA second generation dye (50 nM) (in PBS-T) in
each tube. After 30 min of incubation at room temperature, the
affinity (Kd) of the RED-tris-NTA second generation dye for
Keap1 His-tag was measured using the Monolith NT.115Pico
instrument. As recommended by the manufacturer, since we
measured a Kd at 18 nM, we have chosen to label His-Keap1 as
follows for all experiments dedicated to the affinity measurement
of His-Keap1 with the different putative ligand. Briefly, we
adjusted 90 μL of the Keap1 concentration at 362 nM and added
90 μL of RED-tris-NTA second generation dye (100 nM). After
30 min of incubation at room temperature, the sample was
centrifugated (10 min; 4 °C; 15,000g) and then the supernatant
was collected for binding assay. Concerning the binding assay
experiments, the linear Nrf 2(76−85) peptide, LV-5562 and LV-
5565 were diluted in pure H2O at 600 μM. Twenty μL of these
stock solutions were placed in tube 1 and a series of 1:1 dilutions
were prepared in PBS-T, in order to obtain a ligand
concentration ranging from 600 μM to 18.32 nM (16 points).
Afterward, 10 μL of the labeled protein (100 nM) was added in
each 16 tubes containing the ligand at the 16 different
concentration. Finally, for MST measurement the final
concentration was 300 μM to 9.16 nM of ligand and 50 nM of

His-Keap1 labeled protein. After this preparation, each solution
was filled into Monolith NT standard capillaries. After loading
the 16 capillaries into the Monolith NT.115Pico instrument, a
scan of the fluorescence count for all capillaries was carried to
check for consistent fluorescence while confirming the absence
of ligand induced fluorescence changes or adsorption. MST was
measured using a Monolith NT.115Pico instrument at an
ambient temperature of 25 °C with 5 s/30 s/5 s laser off/on/off
times, respectively. Instrument parameters were adjusted with
5% LED power and 40% MST power. Data of at least three
independently pipetted measurements were analyzed (MO.Af-
finity Analysis software version 1.5.41, NanoTemper Tech-
nologies GmbH) using FHOT at 5 s. The data were fitted using
the law of mass action fromGraphPad Prism version 5, andMST
figures were generated using MO.Affinity Analysis.

Availability of Materials and Data. All models generated
for the conotoxins, Nrf2 and UII test cases, and the list of the
template conformations identified from the subset of the Protein
Data Bank are available as Supporting Information. Docker
images and scripts making possible to execute PEP-Cyclizer are
freely available at https://gitlab.rpbs.univ-paris-diderot.fr/
tuffery/pep-cyclizer-dist.
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