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We give a complete description of the structure of the connected components of the general linear group of a real hereditarily indecomposable Banach space, depending on the existence of complex structures on the space itself and on its hyperplanes. A side result is the fact that complex structures cannot exist simultaneously on such a space and on its hyperplanes.
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Introduction

In this paper, unless otherwise specified, when speaking about a Banach space (or simply a space), we shall mean an infinite-dimensional Banach space, and by subspace of a Banach space, we shall always mean infinite-dimensional, closed subspace. By operator, we shall always mean bounded linear operator. The algebra of operators on a normed space X will be denoted by LpXq, and the general linear group of X, that is, the group of invertible elements of LpXq, will be denoted by GLpXq. The algebra LpXq, and all of its subsets, will always be endowed with the topology induced by the operator norm. 1 and for the spaces L p pr0, 1sq, 1 ă p ă 8, by McCarthy and Mityagin (the proof first appeared in the survey [START_REF] Mityagin | The homotopy structure of the linear group of a Banach space[END_REF] by Mityagin). On the other hand, it was proved by Douady [START_REF] Douady | Un espace de Banach dont le groupe linéaire n'est pas connexe[END_REF], that GLpX ˆY q, for X and Y being two distinct spaces among the p 's, 1 ď p ă 8, and c 0 , is not connected, both in the real and in the complex case. For more details and results on this topic, and more generally on the homotopy structure of general linear groups of infinite-dimensional Banach spaces, we refer to Mityagin's survey [START_REF] Mityagin | The homotopy structure of the linear group of a Banach space[END_REF].

A common point between all of the latter examples is that their spaces of operators are very rich. In this paper, we study the case of some spaces where on the contrary, the space of operators is very poor: hereditarily indecomposable Banach spaces. Definition 1.1. A Banach space is said to be hereditarily indecomposable (HI) if it contains no topological direct sum of two subspaces. HI spaces were introduced by Gowers and Maurey in [START_REF] Gowers | The unconditional basic sequence problem[END_REF], where they built the first example of such a space (this space, existing in a real and in a complex version, will be called Gowers-Maurey's space in this paper). It turns out that these spaces are very rigid. For example, in the complex case, the following result was proved by Gowers and Maurey in [START_REF] Gowers | The unconditional basic sequence problem[END_REF].

Theorem 1.2 (Gowers-Maurey). Every operator on a complex HI space X has the form λ Id X `S, where λ P C and S is a strictly singular operator.

Recall that an operator on X is said to be strictly singular if it induces no isomorphism between two subspaces of X. The set of strictly singular operators on X, that we will denote by SpXq in this paper, is a two-sided, closed ideal of LpXq. An analogue of Theorem 1.2 for real HI spaces, due to Ferenczi [START_REF] Ferenczi | Operators on subspaces of hereditarily indecomposable Banach spaces[END_REF], will be presented in Section 2 (Theorem 2.1).

A consequence of the smallness of the space of operators on an HI space is that similar methods as those used in the finite-dimensional case apply quite well to the study of connected components of GLpXq. This study was started by the author in [2], were the complex case was settled.

Theorem 1.3 (de Rancourt). If X is a complex HI space, then GLpXq is connected.

In the same paper, the author proved a partial result in the case of real HI spaces, that we present below. This result is stated in terms of homotopy between operators. If A Ď LpXq and S, T P A, we say that S and T are homotopic in A whenever there exists a continuous mapping r0, 1s Ñ A, t Þ Ñ T t , with T 0 " S and T 1 " T . Since GLpXq is open in LpXq, it follows that two operators in GLpXq are homotopic in GLpXq if and only if they are in the same connected component of GLpXq.

Also recall that an operator R P LpXq is a reflection of X if there exists H Ď X a hyperplane and x 0 P Xzt0u such that @x P H Rpxq " x and Rpx 0 q " ´x0 . All reflections of X are elements of GLpXq. Call an antireflection of X an operator of the form ´R, where R is a reflection of X. It is easy to see that any two reflections of the same space X are homotopic in GLpXq, and that the same holds for antireflections. The partial result about real HI spaces proved in [2] is the following: Theorem 1.4 (de Rancourt). Let X be a real HI space and let T P GLpXq. Then T is homotopic, in GLpXq, either to Id X , or to ´Id X , or to all reflections, or to all antireflections.

It immediately follows that GLpXq has at most four connected components. It is also remarked in [2] that this bound is attained in the case of the real Gowers-Maurey's space.

The goal of this paper is to give a complete description of the connected components of GLpXq when X is a real HI space. We will prove, in particular, that GLpXq necessarily has either 2 or 4 connected components, and that both can happen (see Theorem 2.5). It turns out that the structure of connected components of GLpXq is closely related to the existence of complex structures on X and on its hyperplanes, that has been widely studied by Ferenczi [START_REF] Ferenczi | Uniqueness of complex structure and real hereditarily indecomposable Banach spaces[END_REF] and Ferenczi-Galego [START_REF] Ferenczi | Even infinite-dimensional real Banach spaces[END_REF]. This paper is organized as follows. In Section 2, we review some properties of real HI spaces and of their complex structures, from papers [START_REF] Ferenczi | Operators on subspaces of hereditarily indecomposable Banach spaces[END_REF][START_REF] Ferenczi | Uniqueness of complex structure and real hereditarily indecomposable Banach spaces[END_REF] by Ferenczi and [7] by Ferenczi-Galego. At the end of the section, we state our main result, Theorem 2.5. The next two sections are devoted to its proof. In Section 3, we prove that whenever X is a real HI space, the identity of X can never be homotopic to a reflection in GLpXq (Theorem 3.1). In the course of the proof, some tools playing a similar role as the determinant in finite dimension will be introduced. In Section 4, we will finish the proof of Theorem 2.5 and, using the tools introduced in Section 3, we will give a complete description of the connected components of GLpXq depending on the existence of complex structures on X and on its hyperplanes (see Theorems 4.4, 4.5 and 4.6). It will also be proved that there cannot simultaneously exist complex structures on a real HI space and on its hyperplanes (Theorem 4.2).

Real HI spaces and complex structures

Theorem 1.2 is not always true for real HI spaces. However, the folloing analogue was proved by Ferenczi in [START_REF] Ferenczi | Operators on subspaces of hereditarily indecomposable Banach spaces[END_REF]: Theorem 2.1 (Ferenczi). Let X be a real HI space. Then the quotient algebra LpXq{SpXq is either isomorphic, as a unitary Banach algebra, to R, to C, or to the quaternion algebra H.

We will say that the space X has type R, type C, or type H depending on the case; the real Gowers-Maurey's space, for example, has type R. In the rest of this paper, we will denote by π X : LpXq Ñ LpXq{SpXq the canonical quotient map, and for λ P R, we will abusively identify the element π X pλ Id X q of LpXq{SpXq with the real number λ. Hence, R can be seen as a subalgebra of LpXq{SpXq. Of course, in the case of spaces of type C or H, we cannot identify the whole algebra LpXq{SpXq with C or H since this identification is in general not unique. Observe that if P P LpXq is a projection onto a finite-codimensional subspace Y , then the mapping LpY q Ñ LpXq, T Þ Ñ T ˝P induces an isomorphism from LpY q{SpY q onto LpXq{SpXq; in particular, a real HI space and its finite-codimensional subspaces have the same type.

If pX, } ¨}q is a real Banach space, we define a complex structure on X as a structure of complex vector space on X extending its structure of real vector space, together with a complex norm } ¨}C which, when seen as a real norm, is equivalent to the original norm } ¨}. Saying that a real Banach space X admits a complex structure is hence equivalent to say that X is isomorphic, as a real Banach space, to some complex Banach space; thus admitting a complex structure is an isomorphic property of real Banach spaces. We will identify two complex structures on X when the associated complex norms are equivalent. Hence, a complex structure on X is entirely determined by the action of the multiplication by i on the space X; this multiplication should be an operator I P LpXq such I 2 " ´Id X . Conversely, given such an operator I on a real Banach space X, we can define a complex structure on X by letting, for every x P X, ix :" Ipxq and }x} C :" sup aPC, |a|"1 }ax}. Thus, in the rest of this paper, we will identify the set of complex structures on X with the set of I P LpXq such that I 2 " ´Id X .

If X is a real Banach space, then X admits a complex structure if and only if its 2-codimensional subspaces do so. Indeed, if X admits a complex structure I, then given any hyperplane H Ď X, it is easy to see that the subspace HXIpHq of X has codimension 2 and is I-invariant; conversely, if a subspace Y Ď X of codimension 2 admits a complex structure, then X is isomorphic to Y ' C, so it admits a complex structure too. Thus, the problem of the existence of complex structures on finite-codimensional subspaces of X is settled once we know whether X and its hyperplanes admit complex structures. The following result of existence follows from results by Ferenczi and Galego [START_REF] Ferenczi | Even infinite-dimensional real Banach spaces[END_REF].

Theorem 2.2 (Ferenczi-Galego). Let X be a real Banach space and let u P LpXq{SpXq be such that u 2 " ´1. Then exactly one of the following conditions holds:

1. There exists U P LpXq with π X pU q " u such that U 2 " ´Id X ; 2. There exists U P LpXq admitting an invariant hyperplane H, with π X pU q " u, and such that pU ae H q 2 " ´Id H .

It follows that as soon as LpXq{SpXq contains a square root of ´1, then there exist a complex structure, either on X, or on its hyperplanes. (Of course, nothing prevents both to happen at the same time, since a complex structure on X and a complex structure on its hyperplanes could come from distinct elements of LpXq{SpXq; this is the case, for instance, for X " 2 .) In particular if X is a real HI space having type C or H, then either X, or its hyperplanes, admits a complex structure. Conversely, it is immediate that if either X, or its hyperplanes, admit a complex structure, then some element of LpXq{SpXq should have square ´1. Thus, real HI spaces of type R, and in particular the real Gowers-Maurey's space, admit no complex structures, neither their hyperplanes do.

The following notions were introduced by Ferenczi and Galego in the same paper [START_REF] Ferenczi | Even infinite-dimensional real Banach spaces[END_REF].

Definition 2.3.

1. The real Banach space X is said to be even if it admits a complex structure, and its hyperplanes do not.

2. The real Banach space X is said to be odd if it does not admit a complex structure, and its hyperplanes do.

This terminology comes from the finite-dimensional case: spaces of even dimension are even, and spaces of odd dimension are odd. It follows from the previous remarks that every real HI space X satisfies exactly one of the four following properties:

1. X has type R; 2. X is even; 3. X is odd; 4. both X and its hyperplanes admit a complex structure.

We have examples in the three first cases. As already said, the real Gowers-Maurey's space has type R. In [START_REF] Ferenczi | Uniqueness of complex structure and real hereditarily indecomposable Banach spaces[END_REF], Ferenczi built two examples of even real HI spaces, XpCq and XpHq, having respectively type C and H. Since hyperplanes of even spaces are obviously odd, and similarly, hyperplanes of odd spaces are even, it follows that hyperplanes of XpCq and of XpHq are odd HI spaces of respective types C and H. On the other hand, we will show in Section 4, as a byproduct of our work on general linear groups, that case 4. cannot possibly occur (see Theorem 4.2). This solves by the negative the following question by Ferenczi and Galego (still open in the general case) in the special case of HI spaces: Question 2.4 (Ferenczi-Galego). Does there exist a real Banach space X which is not isomorphic to its hyperplanes, such that both X and its hyperplanes admit a complex structure?

We are now ready to state our main theorem, which will be proved in the next two sections.

Theorem 2.5. Let X be a real HI space. Then exactly one of the three following condition holds.

1. X has type R, and GLpXq has exactly four connected components: one containing Id X , one containing ´Id X , one containing all reflections, and one containing all antireflections.

2. X is even, and GLpXq has exactly two connected components: one containing Id X and ´Id X , and one containing all reflections and all antireflections.

3. X is odd, and GLpXq has exactly two connected components: one containing Id X and all antireflections, and one containing ´Id X and all reflections.

In each of the latter cases, a characterization of operators belonging to each connected component will be given in Section 4, see Theorems 4.4, 4.5 and 4.6.

Reflections on real HI spaces

In this section, we prove the following theorem.

Theorem 3.1. Let X be a real HI space. Then Id X cannot be homotopic to a reflection in GLpXq.

In the proof of this theorem, we will need to use spectral theory, and hence to pass to the complexification of the real space X. This complexification, denoted by X C , is defined as the set of formal sums x `iy for x, y P X, endowed with the complex vector space structure defined by pa `ibqpx `iyq :" pax ´byq `ipay `bxq for a, b P R, and with the complex norm defined by }x `iy} :" sup θPR } cos θ ¨x `sin θ ¨y}; this makes it a complex Banach space. Given T P LpXq, we can define its complexification T C P LpX C q by T C px `iyq :" T pxq `iT pyq. When talking about the spectrum of the operator T , we will actually abusively talk about the spectrum of the operator T C ; the same convention will be adopted for all spectrum-related notions such as eigenvalues, multiplicities, etc. The spectrum of the operator T will be denoted by σpT q. It is easy to see that the spectrum of an operator T on a real Banach space is always conjugationinvariant, and that if λ is an eigenvalue of T , then so is λ, with the same multiplicity. It is also straightforward that the complexification of a Fredholm operator is itself Fredholm, with the same index. Lemma 3.2. Let X be a real HI space, and let T P LpXq. Let λ P σpT q X R be such that π X pT q ‰ λ. Then λ is an isolated eigenvalue of T with finite multiplicity.

Proof. Recall that the essential spectrum of T is the set of all µ P C such that T C ´µ Id X C is not semi-Fredholm. It is well known that every operator on an HI space is either strictly singular, or Fredholm with index 0 (see for example [2], Theorem 3.4). It follows that λ does not belong to the essential spectrum of T .

It was proved by Gowers and Maurey [START_REF] Gowers | The unconditional basic sequence problem[END_REF] that the spectrum of an operator on a real HI space is countable. It follows from [START_REF] Kato | Perturbation theory for linear operators[END_REF], Theorem 5.33, that every non-essential spectral value of T is an isolated eigenvalue with finite multiplicity. This is, in particular, the case for λ.

For I an open interval of R, denote by NS I pXq the set of all T P LpXq satisfying the two following conditions:

1. π X pT q R I;

2. σpT q X BI " ∅.

(Here, BI denotes the boundary of I in R.) The notation NS stands for non-singular. By Lemma 3.2, for T P NS I pXq, σpT q X I is made of finitely many isolated eigenvalues with finite multiplicities. We will denote by p I pT q the parity of the sum of the multiplicities of eigenvalues of T that are contained in I. Here, by a parity, we will mean an element of Z{2Z.

The next lemma, along with Lemma 3.5, is reminiscent of the proof of Proposition 8 in [START_REF] Ferenczi | Even infinite-dimensional real Banach spaces[END_REF].

Lemma 3.3. Let X be a real HI space and I be an open interval of R. Then the mapping p I : NS I pXq Ñ Z{2Z is locally constant.

To prove Lemma 3.3, we will need the following result of continuity of the spectrum. For a proof, see [START_REF] Kato | Perturbation theory for linear operators[END_REF], Chapter Four, Subsection 3.5. Proposition 3.4. Suppose T : Y Ñ Y is an operator on a complex space, and Γ is a rectifiable, simple closed curve in C such that Γ X σpT q " ∅. Denote by V the bounded connected component of CzΓ, and suppose that σpT q X V consists in finitely many eigenvalues of T with finite multiplicity. Then for every S P LpY q close enough to T , σpSqXV consists in finitely many eigenvalues of S and the sum of their multiplicities is equal to the sum of the multiplicities of the eigenvalues of T in V .

Proof of Lemma 3.3. Fix T P NS I pXq. Consider Γ a conjugation-invariant, rectifiable, simple closed curve in C, not intersecting σpT q, such that, denoting by V the bounded connected component of CzΓ, we have V X σpT q " I X σpT q, and I X p´}T C } ´1, }T C } 1q Ď V . This last condition implies that for S P NS I pXq close enough to T , we have σpSq X I Ď V .

Denote by n the sum of the multiplicities of the eigenvalues of T that are in I. By Proposition 3.4, for S P NS I pXq close enough to T , the sum of the multiplicities of the eigenvalues of S that are in V is equal to n. By invariance of the spectrum of S under conjugation, the sum of the multiplicities of the eigenvalues of S that are in V zI is even. Thus, for such an S, the sum of the multiplicities of the eigenvalues of S that are in I has the same parity as n, as wanted. Lemma 3.5. Let X be a real HI space having type C or H. Then p R : NS R pXq Ñ Z{2Z is constant.

Proof. Let S, T P NS R pXq; we show that p R pSq " p R pT q. We first claim that one of the segments rS, T s and rS, ´T s is contained in NS R pXq. If not, then both of their direct images under π X , that are respectively the segments rπ X pSq, π X pT qs and rπ X pSq, ´πX pT qs, intersect R, so there exist λ, µ P p0, 1q such that both u :" λπ X pSq `p1 ´λqπ X pT q and v :" µπ X pSq ´p1 ´µqπ X pT q are elements of R. Hence, p1´µqu`p1´λqv p1´µqλ`p1´λqµ " π X pSq P R, contradicting the assumption that S P NS R pXq.

Since p R pT q " p R p´T q, we can assume, without loss of generality, that the segment rS, T s is contained in NS R pXq; hence, the mapping p R is defined on this whole segment.

Since it is locally constant, and since locally constant mappings on connected sets are constant, we deduce that p R pSq " p R pT q.

As a consequence, if X is a real HI space having type C or H, we can define ParpXq P Z{2Z as the unique value taken by p R on NS R pXq (observe that in the case of a space of type R, this definition would make no sense since in this case, NS R pXq is empty). ParpXq will be called the parity of X. As it will turn out (see Proposition 4.3 below), this notion of parity coincindes with the one defined by Ferenczi and Galego in [START_REF] Ferenczi | Even infinite-dimensional real Banach spaces[END_REF] (Definition 2.3).

Observe that, for X a real HI space of type C or H, NS p´8,0q pXq and NS p0,`8q pXq form an open cover of GLpXq. Their intersection is precisely NS R pXq X GLpXq, and for every T P NS R pXq X GLpXq, we have p p´8,0q pT q `pp0,`8q pT q " p R pT q " ParpXq. So the following conditions correctly define a mapping Par : GLpXq Ñ Z{2Z:

• ParpT q :" p p´8,0q pT q for T P NS p´8,0q pXq;

• ParpT q :" ParpXq ´pp0,`8q pT q for T P NS p0,`8q pXq.

ParpT q will be called the parity of the operator T . Lemma 3.6. Let X be a real HI space having type C or H. Then Par : GLpXq Ñ Z{2Z is locally constant.

Proof. It is enough to show that it is locally constant on the two elements of the open cover tNS p´8,0q pXq, NS p0,`8q pXqu of GLpXq. This directly follows from the definition of ParpT q on each of these open sets and from Lemma 3.3.

Proof of Theorem 3.1. If the space X has type C or H, the result directly follows from Lemma 3.6, and for the fact that ParpId X q " 0 and ParpRq " 1 for every reflection R of X.

The case of spaces of type R has already been treated in [2], but we reproduce the proof here for completeness of this paper. If X has type R, then π X ae GLpXq takes values in Rzt0u. This implies that the image by π X of the connected component C of the identity in GLpXq is entirely contained in p0, `8q; in other words, C Ď NS p´8,0q pXq. Hence, by Lemma 3.3, p p´8,0q is constant on C; and its value is necessarily p p´8,0q pId X q " 0. Knowing that for a reflection R, we have p p´8,0q pRq " 1, this shows that no reflection belongs to C.

A complete description of the connected components of GLpXq

In this section, using tools developped in Section 3, we provide a complete description of the connected components of GLpXq, for X a real HI space. Our results will, in particular, imply Theorem 2.5. We start with some preliminary results.

• GL 0 pXq :" tT P GLpXq | π X pT q ă 0 and p p0,`8q pT q " 0u containing ´Id X ;

• GL 1 pXq :" tT P GLpXq | π X pT q ă 0 and p p0,`8q pT q " 1u, containing all antireflections.

Proof. The fact that GL 0 pXq, GL 0 pXq, GL 1 pXq, and GL 1 pXq contain respectively Id X , all reflections, ´Id X , and all antireflections, comes directly from the definitions. In particular, these four sets are nonempty. Now observe that every connected component of GLpXq is entirely contained in one of these four sets. Indeed, if C is such a connected component, then the continuity of π X shows that C is either entirely contained in GL 0 pXq Y GL 1 pXq, or in GL 0 pXq Y GL 1 pXq; and if, for instance, we are in the first case, then the local constancy of p p´8,0q that C is either contained in GL 0 pXq, or in GL 1 pXq. Since, by Theorem 1.4, GLpXq has at most four connected components, it follows that the sets GL 0 pXq, GL 0 pXq, GL 1 pXq, and GL 1 pXq are exactly the connected components of GLpXq.

Theorem 4.5. Let X be an even real HI space. Then GLpXq has exactly two connected components, listed below:

• GL 0 pXq :" tT P GLpXq | ParpT q " 0u, containing Id X and ´Id X ;

• GL 1 pXq :" tT P GLpXq | ParpT q " 1u, containing all reflections and all antireflections.

Proof. The facts that GL 0 pXq contains Id X and ´Id X , and that GL 1 pXq contains all reflections and all antireflections, are direct consequences of the definition of these sets and of Proposition 4.3. The local constancy of Par on GLpXq (see Lemma 3.6) shows that every connected component of GLpXq is entirely contained in one of these two sets. The combination of Lemma 4.1 and Theorem 1.4 shows that GLpXq has at most two connected components. Those are necessarily GL 0 pXq and GL 1 pXq.

Theorem 4.6. Let X be an odd real HI space. Then GLpXq has exactly two connected components, listed below:

• GL 0 pXq :" tT P GLpXq | ParpT q " 0u, containing Id X and all antireflections;

• GL 1 pXq :" tT P GLpXq | ParpT q " 1u, containing ´Id X and all reflections.

Proof. The proof is similar to this of Theorem 4.5.

The two last results show that the parity of an operator plays a similar role as the sign of its determinant in finite-dimension. More precisely, if X is a finite-dimensional normed space, then the mappings p I , for I an interval of R, can be defined on the whole LpXq, and ParpXq and ParpT q for T P GLpXq can thus be correctly defined. We have that for all T P GLpXq, e iπ ParpT q is exactly the sign of the determinant of T . Moreover, Proposition 4.3 and Theorems 4.5 and 4.6 are still valid in this case, replacing even and odd by even-dimensional and odd-dimensional, respectively. Some results of this paper have been independently proved by Maurey [START_REF] Maurey | Théorie spectrale et opérateurs sur un espace HI réel[END_REF], in particular Theorems 3.1 and 4.2. In this text, he also proves some results about the existence of quaternionic structures on a real HI space and on its finite-codimensional subspaces, using quite different methods.
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Proposition 4.3. Let X be a real HI space having type C or H. Then X is even iff ParpXq " 0, and is odd iff ParpXq " 1.

Proof. If X is even, then Id X and ´Id X are homotopic in GLpXq by Lemma 4.1. By Lemma 3.6, it follows that ParpId X q " Parp´Id X q. We know that ParpId X q " p p´8,0q pId X q " 0, and that Parp´Id X q " ParpXq ´pp0,`8q p´Id X q " ParpXq, so it follows that ParpXq " 0.

A similar argument shows that if X is odd, then ParpXq " 1. Since by Theorem 4.2, every real HI space of type C or H is either even, or odd, we deduce that the two implications we just proved are actually equivalences.

We now describe the structure of the connected components of GLpXq, for X a real HI space, in the three cases defined by Theorem 4.2, in the three theorems below. Their combination, along with Theorem 4.2, implies Theorem 2.5. Theorem 4.4. Let X be a real HI space having type R. Then GLpXq has exactly four connected components, listed below:

• GL 0 pXq :" tT P GLpXq | π X pT q ą 0 and p p´8,0q pT q " 0u, containing Id X ;

• GL 1 pXq :" tT P GLpXq | π X pT q ą 0 and p p´8,0q pT q " 1u, containing all reflections;