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Connected components of the general linear group of a real

hereditarily indecomposable Banach space

N. de Rancourt

Abstract

We give a complete description of the structure of the connected components of
the general linear group of a real hereditarily indecomposable Banach space, depend-
ing on the existence of complex structures on the space itself and on its hyperplanes.
A side result is the fact that complex structures cannot exist simultaneously on such
a space and on its hyperplanes.

1 Introduction

In this paper, unless otherwise specified, when speaking about a Banach space (or simply
a space), we shall mean an infinite-dimensional Banach space, and by subspace of a
Banach space, we shall always mean infinite-dimensional, closed subspace. By operator,
we shall always mean bounded linear operator. The algebra of operators on a normed
space X will be denoted by LpXq, and the general linear group of X, that is, the group
of invertible elements of LpXq, will be denoted by GLpXq. The algebra LpXq, and all
of its subsets, will always be endowed with the topology induced by the operator norm.

Connected components of GLpXq are well-known when X is a finite-dimensional
normed space: this group is connected in the complex case, and has two connected
components determined by the sign of the determinant in the real case. In the infinite-
dimensional case, the situation is more complex. It follows from standard operator
theory that GLp`2q is connected in the complex case, and connectedness in the real
case was first proved by Putnam and Wintner [13]. Then, connectedness of the general
linear group has been proved, both in the real and in the complex case, for the space c0
independently by Arlt [1] and Neubauer [12], for the spaces `p, 1 ď p ă 8, by Neubauer
[12], for Cpr0, 1sq, L1pr0, 1sq, L8pr0, 1sq and `8 by Edelstein, Mityagin and Semenov [4],
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and for the spaces Lppr0, 1sq, 1 ă p ă 8, by McCarthy and Mityagin (the proof first
appeared in the survey [11] by Mityagin). On the other hand, it was proved by Douady
[3], that GLpX ˆ Y q, for X and Y being two distinct spaces among the `p’s, 1 ď p ă 8,
and c0, is not connected, both in the real and in the complex case. For more details and
results on this topic, and more generally on the homotopy structure of general linear
groups of infinite-dimensional Banach spaces, we refer to Mityagin’s survey [11].

A common point between all of the latter examples is that their spaces of operators
are very rich. In this paper, we study the case of some spaces where on the contrary,
the space of operators is very poor: hereditarily indecomposable Banach spaces.

Definition 1.1. A Banach space is said to be hereditarily indecomposable (HI) if it
contains no topological direct sum of two subspaces.

HI spaces were introduced by Gowers and Maurey in [8], where they built the first
example of such a space (this space, existing in a real and in a complex version, will be
called Gowers–Maurey’s space in this paper). It turns out that these spaces are very
rigid. For example, in the complex case, the following result was proved by Gowers and
Maurey in [8].

Theorem 1.2 (Gowers–Maurey). Every operator on a complex HI space X has the form
λ IdX `S, where λ P C and S is a strictly singular operator.

Recall that an operator on X is said to be strictly singular if it induces no isomor-
phism between two subspaces of X. The set of strictly singular operators on X, that
we will denote by SpXq in this paper, is a two-sided, closed ideal of LpXq. An analogue
of Theorem 1.2 for real HI spaces, due to Ferenczi [5], will be presented in Section 2
(Theorem 2.1).

A consequence of the smallness of the space of operators on an HI space is that similar
methods as those used in the finite-dimensional case apply quite well to the study of
connected components of GLpXq. This study was started by the author in [2], were the
complex case was settled.

Theorem 1.3 (de Rancourt). If X is a complex HI space, then GLpXq is connected.

In the same paper, the author proved a partial result in the case of real HI spaces,
that we present below. This result is stated in terms of homotopy between operators. If
A Ď LpXq and S, T P A, we say that S and T are homotopic in A whenever there exists
a continuous mapping r0, 1s Ñ A, t ÞÑ Tt, with T0 “ S and T1 “ T . Since GLpXq is
open in LpXq, it follows that two operators in GLpXq are homotopic in GLpXq if and
only if they are in the same connected component of GLpXq.

Also recall that an operator R P LpXq is a reflection of X if there exists H Ď X a
hyperplane and x0 P Xzt0u such that @x P H Rpxq “ x and Rpx0q “ ´x0. All reflections
of X are elements of GLpXq. Call an antireflection of X an operator of the form ´R,
where R is a reflection of X. It is easy to see that any two reflections of the same space
X are homotopic in GLpXq, and that the same holds for antireflections. The partial
result about real HI spaces proved in [2] is the following:
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Theorem 1.4 (de Rancourt). Let X be a real HI space and let T P GLpXq. Then
T is homotopic, in GLpXq, either to IdX , or to ´ IdX , or to all reflections, or to all
antireflections.

It immediately follows that GLpXq has at most four connected components. It is
also remarked in [2] that this bound is attained in the case of the real Gowers–Maurey’s
space.

The goal of this paper is to give a complete description of the connected components
of GLpXq when X is a real HI space. We will prove, in particular, that GLpXq necessarily
has either 2 or 4 connected components, and that both can happen (see Theorem 2.5).
It turns out that the structure of connected components of GLpXq is closely related to
the existence of complex structures on X and on its hyperplanes, that has been widely
studied by Ferenczi [6] and Ferenczi–Galego [7].

This paper is organized as follows. In Section 2, we review some properties of real HI
spaces and of their complex structures, from papers [5, 6] by Ferenczi and [7] by Ferenczi–
Galego. At the end of the section, we state our main result, Theorem 2.5. The next
two sections are devoted to its proof. In Section 3, we prove that whenever X is a real
HI space, the identity of X can never be homotopic to a reflection in GLpXq (Theorem
3.1). In the course of the proof, some tools playing a similar role as the determinant in
finite dimension will be introduced. In Section 4, we will finish the proof of Theorem
2.5 and, using the tools introduced in Section 3, we will give a complete description of
the connected components of GLpXq depending on the existence of complex structures
on X and on its hyperplanes (see Theorems 4.4, 4.5 and 4.6). It will also be proved
that there cannot simultaneously exist complex structures on a real HI space and on its
hyperplanes (Theorem 4.2).

2 Real HI spaces and complex structures

Theorem 1.2 is not always true for real HI spaces. However, the folloing analogue was
proved by Ferenczi in [5]:

Theorem 2.1 (Ferenczi). Let X be a real HI space. Then the quotient algebra LpXq{SpXq
is either isomorphic, as a unitary Banach algebra, to R, to C, or to the quaternion al-
gebra H.

We will say that the space X has type R, type C, or type H depending on the case;
the real Gowers–Maurey’s space, for example, has type R. In the rest of this paper, we
will denote by πX : LpXq Ñ LpXq{SpXq the canonical quotient map, and for λ P R, we
will abusively identify the element πXpλ IdXq of LpXq{SpXq with the real number λ.
Hence, R can be seen as a subalgebra of LpXq{SpXq. Of course, in the case of spaces of
type C or H, we cannot identify the whole algebra LpXq{SpXq with C or H since this
identification is in general not unique. Observe that if P P LpXq is a projection onto a
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finite-codimensional subspace Y , then the mapping LpY q Ñ LpXq, T ÞÑ T ˝ P induces
an isomorphism from LpY q{SpY q onto LpXq{SpXq; in particular, a real HI space and
its finite-codimensional subspaces have the same type.

If pX, } ¨ }q is a real Banach space, we define a complex structure on X as a structure
of complex vector space on X extending its structure of real vector space, together with
a complex norm } ¨ }C which, when seen as a real norm, is equivalent to the original norm
} ¨ }. Saying that a real Banach space X admits a complex structure is hence equivalent
to say that X is isomorphic, as a real Banach space, to some complex Banach space;
thus admitting a complex structure is an isomorphic property of real Banach spaces.
We will identify two complex structures on X when the associated complex norms are
equivalent. Hence, a complex structure on X is entirely determined by the action of the
multiplication by i on the space X; this multiplication should be an operator I P LpXq
such I2 “ ´ IdX . Conversely, given such an operator I on a real Banach space X,
we can define a complex structure on X by letting, for every x P X, ix :“ Ipxq and
}x}C :“ supaPC, |a|“1 }ax}. Thus, in the rest of this paper, we will identify the set of

complex structures on X with the set of I P LpXq such that I2 “ ´ IdX .

If X is a real Banach space, then X admits a complex structure if and only if its
2-codimensional subspaces do so. Indeed, if X admits a complex structure I, then given
any hyperplaneH Ď X, it is easy to see that the subspaceHXIpHq ofX has codimension
2 and is I-invariant; conversely, if a subspace Y Ď X of codimension 2 admits a complex
structure, then X is isomorphic to Y ‘ C, so it admits a complex structure too. Thus,
the problem of the existence of complex structures on finite-codimensional subspaces of
X is settled once we know whether X and its hyperplanes admit complex structures.
The following result of existence follows from results by Ferenczi and Galego [7].

Theorem 2.2 (Ferenczi–Galego). Let X be a real Banach space and let u P LpXq{SpXq
be such that u2 “ ´1. Then exactly one of the following conditions holds:

1. There exists U P LpXq with πXpUq “ u such that U2 “ ´ IdX ;

2. There exists U P LpXq admitting an invariant hyperplane H, with πXpUq “ u,
and such that pUæHq

2 “ ´ IdH .

It follows that as soon as LpXq{SpXq contains a square root of ´1, then there exist a
complex structure, either on X, or on its hyperplanes. (Of course, nothing prevents both
to happen at the same time, since a complex structure on X and a complex structure
on its hyperplanes could come from distinct elements of LpXq{SpXq; this is the case,
for instance, for X “ `2.) In particular if X is a real HI space having type C or H, then
either X, or its hyperplanes, admits a complex structure. Conversely, it is immediate
that if either X, or its hyperplanes, admit a complex structure, then some element of
LpXq{SpXq should have square ´1. Thus, real HI spaces of type R, and in particular
the real Gowers–Maurey’s space, admit no complex structures, neither their hyperplanes
do.

The following notions were introduced by Ferenczi and Galego in the same paper [7].
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Definition 2.3.

1. The real Banach space X is said to be even if it admits a complex structure, and
its hyperplanes do not.

2. The real Banach space X is said to be odd if it does not admit a complex structure,
and its hyperplanes do.

This terminology comes from the finite-dimensional case: spaces of even dimension
are even, and spaces of odd dimension are odd. It follows from the previous remarks
that every real HI space X satisfies exactly one of the four following properties:

1. X has type R;

2. X is even;

3. X is odd;

4. both X and its hyperplanes admit a complex structure.

We have examples in the three first cases. As already said, the real Gowers–Maurey’s
space has type R. In [6], Ferenczi built two examples of even real HI spaces, XpCq and
XpHq, having respectively type C and H. Since hyperplanes of even spaces are obviously
odd, and similarly, hyperplanes of odd spaces are even, it follows that hyperplanes of
XpCq and of XpHq are odd HI spaces of respective types C and H. On the other hand,
we will show in Section 4, as a byproduct of our work on general linear groups, that case
4. cannot possibly occur (see Theorem 4.2). This solves by the negative the following
question by Ferenczi and Galego (still open in the general case) in the special case of HI
spaces:

Question 2.4 (Ferenczi–Galego). Does there exist a real Banach space X which is not
isomorphic to its hyperplanes, such that both X and its hyperplanes admit a complex
structure?

We are now ready to state our main theorem, which will be proved in the next two
sections.

Theorem 2.5. Let X be a real HI space. Then exactly one of the three following
condition holds.

1. X has type R, and GLpXq has exactly four connected components: one containing
IdX , one containing ´ IdX , one containing all reflections, and one containing all
antireflections.

2. X is even, and GLpXq has exactly two connected components: one containing IdX
and ´ IdX , and one containing all reflections and all antireflections.

3. X is odd, and GLpXq has exactly two connected components: one containing IdX
and all antireflections, and one containing ´ IdX and all reflections.
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In each of the latter cases, a characterization of operators belonging to each connected
component will be given in Section 4, see Theorems 4.4, 4.5 and 4.6.

3 Reflections on real HI spaces

In this section, we prove the following theorem.

Theorem 3.1. Let X be a real HI space. Then IdX cannot be homotopic to a reflection
in GLpXq.

In the proof of this theorem, we will need to use spectral theory, and hence to pass
to the complexification of the real space X. This complexification, denoted by XC,
is defined as the set of formal sums x ` iy for x, y P X, endowed with the complex
vector space structure defined by pa` ibqpx` iyq :“ pax´ byq ` ipay ` bxq for a, b P R,
and with the complex norm defined by }x ` iy} :“ supθPR } cos θ ¨ x ` sin θ ¨ y}; this
makes it a complex Banach space. Given T P LpXq, we can define its complexification
TC P LpXCq by TCpx ` iyq :“ T pxq ` iT pyq. When talking about the spectrum of the
operator T , we will actually abusively talk about the spectrum of the operator TC; the
same convention will be adopted for all spectrum-related notions such as eigenvalues,
multiplicities, etc. The spectrum of the operator T will be denoted by σpT q. It is easy
to see that the spectrum of an operator T on a real Banach space is always conjugation-
invariant, and that if λ is an eigenvalue of T , then so is λ, with the same multiplicity. It is
also straightforward that the complexification of a Fredholm operator is itself Fredholm,
with the same index.

Lemma 3.2. Let X be a real HI space, and let T P LpXq. Let λ P σpT q X R be such
that πXpT q ‰ λ. Then λ is an isolated eigenvalue of T with finite multiplicity.

Proof. Recall that the essential spectrum of T is the set of all µ P C such that TC´µ IdXC

is not semi-Fredholm. It is well known that every operator on an HI space is either strictly
singular, or Fredholm with index 0 (see for example [2], Theorem 3.4). It follows that λ
does not belong to the essential spectrum of T .

It was proved by Gowers and Maurey [8] that the spectrum of an operator on a real
HI space is countable. It follows from [9], Theorem 5.33, that every non-essential spectral
value of T is an isolated eigenvalue with finite multiplicity. This is, in particular, the
case for λ.

For I an open interval of R, denote by NSIpXq the set of all T P LpXq satisfying the
two following conditions:

1. πXpT q R I;

2. σpT q X BI “ ∅.
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(Here, BI denotes the boundary of I in R.) The notation NS stands for non-singular. By
Lemma 3.2, for T P NSIpXq, σpT qX I is made of finitely many isolated eigenvalues with
finite multiplicities. We will denote by pIpT q the parity of the sum of the multiplicities
of eigenvalues of T that are contained in I. Here, by a parity, we will mean an element
of Z{2Z.

The next lemma, along with Lemma 3.5, is reminiscent of the proof of Proposition
8 in [7].

Lemma 3.3. Let X be a real HI space and I be an open interval of R. Then the mapping
pI : NSIpXq Ñ Z{2Z is locally constant.

To prove Lemma 3.3, we will need the following result of continuity of the spectrum.
For a proof, see [9], Chapter Four, Subsection 3.5.

Proposition 3.4. Suppose T : Y Ñ Y is an operator on a complex space, and Γ is a
rectifiable, simple closed curve in C such that ΓX σpT q “ ∅. Denote by V the bounded
connected component of CzΓ, and suppose that σpT qXV consists in finitely many eigen-
values of T with finite multiplicity. Then for every S P LpY q close enough to T , σpSqXV
consists in finitely many eigenvalues of S and the sum of their multiplicities is equal to
the sum of the multiplicities of the eigenvalues of T in V .

Proof of Lemma 3.3. Fix T P NSIpXq. Consider Γ a conjugation-invariant, rectifiable,
simple closed curve in C, not intersecting σpT q, such that, denoting by V the bounded
connected component of CzΓ, we have V XσpT q “ IXσpT q, and IXp´}TC}´1, }TC}`

1q Ď V . This last condition implies that for S P NSIpXq close enough to T , we have
σpSq X I Ď V .

Denote by n the sum of the multiplicities of the eigenvalues of T that are in I. By
Proposition 3.4, for S P NSIpXq close enough to T , the sum of the multiplicities of the
eigenvalues of S that are in V is equal to n. By invariance of the spectrum of S under
conjugation, the sum of the multiplicities of the eigenvalues of S that are in V zI is even.
Thus, for such an S, the sum of the multiplicities of the eigenvalues of S that are in I
has the same parity as n, as wanted.

Lemma 3.5. Let X be a real HI space having type C or H. Then pR : NSRpXq Ñ Z{2Z
is constant.

Proof. Let S, T P NSRpXq; we show that pRpSq “ pRpT q. We first claim that one of the
segments rS, T s and rS,´T s is contained in NSRpXq. If not, then both of their direct im-
ages under πX , that are respectively the segments rπXpSq, πXpT qs and rπXpSq,´πXpT qs,
intersect R, so there exist λ, µ P p0, 1q such that both u :“ λπXpSq ` p1´ λqπXpT q and

v :“ µπXpSq ´ p1 ´ µqπXpT q are elements of R. Hence, p1´µqu`p1´λqv
p1´µqλ`p1´λqµ “ πXpSq P R,

contradicting the assumption that S P NSRpXq.

Since pRpT q “ pRp´T q, we can assume, without loss of generality, that the segment
rS, T s is contained in NSRpXq; hence, the mapping pR is defined on this whole segment.

7



Since it is locally constant, and since locally constant mappings on connected sets are
constant, we deduce that pRpSq “ pRpT q.

As a consequence, if X is a real HI space having type C or H, we can define ParpXq P
Z{2Z as the unique value taken by pR on NSRpXq (observe that in the case of a space of
type R, this definition would make no sense since in this case, NSRpXq is empty). ParpXq
will be called the parity of X. As it will turn out (see Proposition 4.3 below), this notion
of parity coincindes with the one defined by Ferenczi and Galego in [7] (Definition 2.3).

Observe that, for X a real HI space of type C or H, NSp´8,0qpXq and NSp0,`8qpXq
form an open cover of GLpXq. Their intersection is precisely NSRpXq XGLpXq, and for
every T P NSRpXq X GLpXq, we have pp´8,0qpT q ` pp0,`8qpT q “ pRpT q “ ParpXq. So
the following conditions correctly define a mapping Par: GLpXq Ñ Z{2Z:

• ParpT q :“ pp´8,0qpT q for T P NSp´8,0qpXq;

• ParpT q :“ ParpXq ´ pp0,`8qpT q for T P NSp0,`8qpXq.

ParpT q will be called the parity of the operator T .

Lemma 3.6. Let X be a real HI space having type C or H. Then Par: GLpXq Ñ Z{2Z
is locally constant.

Proof. It is enough to show that it is locally constant on the two elements of the open
cover tNSp´8,0qpXq,NSp0,`8qpXqu of GLpXq. This directly follows from the definition
of ParpT q on each of these open sets and from Lemma 3.3.

Proof of Theorem 3.1. If the space X has type C or H, the result directly follows from
Lemma 3.6, and for the fact that ParpIdXq “ 0 and ParpRq “ 1 for every reflection R of
X.

The case of spaces of type R has already been treated in [2], but we reproduce the
proof here for completeness of this paper. If X has type R, then πXæGLpXq takes values in
Rzt0u. This implies that the image by πX of the connected component C of the identity
in GLpXq is entirely contained in p0,`8q; in other words, C Ď NSp´8,0qpXq. Hence,
by Lemma 3.3, pp´8,0q is constant on C; and its value is necessarily pp´8,0qpIdXq “ 0.
Knowing that for a reflection R, we have pp´8,0qpRq “ 1, this shows that no reflection
belongs to C.

4 A complete description of the connected components of
GLpXq

In this section, using tools developped in Section 3, we provide a complete description
of the connected components of GLpXq, for X a real HI space. Our results will, in
particular, imply Theorem 2.5. We start with some preliminary results.
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Lemma 4.1. Let X be a real Banach space.

1. If X admits a complex structure, then IdX and ´ IdX are homotopic in GLpXq.

2. If hyperplanes of X admits a complex structure, then IdX is homotopic to antire-
flections in GLpXq.

Proof. 1. Fix a complex structure on X. Then r0, 1s Ñ GLpXq, t ÞÑ eiπt IdX is a
homotopy between IdX and ´ IdX in GLpXq.

2. Fix H a hyperplane of X and x0 R H. Fix a complex structure on H. For
t P r0, 1s, define Tt P LpXq by Ttpx0q :“ x0, and Ttphq :“ eiπth for h P H. Then
r0, 1s Ñ GLpXq, t ÞÑ Tt is a homotopy between T0 “ IdX and T1 an antireflection.

Theorem 4.2. Let X be a real HI space. Then either X is has type R, or X is even,
or X is odd, and these three cases are mutually exclusive.

Proof. We have already seen in Section 2 that the three cases are mutually exclusive,
and that the only other possible case is that both X and its hyperplanes admit complex
structures. We show that this last case cannot happen. Suppose it does. Then by
Lemma 4.1, IdX is both homotopic, in GLpXq, to ´ IdX and to antireflections. This
implies that IdX is homotopic to reflections, contradicting Theorem 3.1.

Proposition 4.3. Let X be a real HI space having type C or H. Then X is even iff
ParpXq “ 0, and is odd iff ParpXq “ 1.

Proof. If X is even, then IdX and ´ IdX are homotopic in GLpXq by Lemma 4.1.
By Lemma 3.6, it follows that ParpIdXq “ Parp´ IdXq. We know that ParpIdXq “
pp´8,0qpIdXq “ 0, and that Parp´ IdXq “ ParpXq ´ pp0,`8qp´ IdXq “ ParpXq, so it
follows that ParpXq “ 0.

A similar argument shows that if X is odd, then ParpXq “ 1. Since by Theorem
4.2, every real HI space of type C or H is either even, or odd, we deduce that the two
implications we just proved are actually equivalences.

We now describe the structure of the connected components of GLpXq, for X a real
HI space, in the three cases defined by Theorem 4.2, in the three theorems below. Their
combination, along with Theorem 4.2, implies Theorem 2.5.

Theorem 4.4. Let X be a real HI space having type R. Then GLpXq has exactly four
connected components, listed below:

• GL`0 pXq :“ tT P GLpXq | πXpT q ą 0 and pp´8,0qpT q “ 0u, containing IdX ;

• GL`1 pXq :“ tT P GLpXq | πXpT q ą 0 and pp´8,0qpT q “ 1u, containing all reflec-
tions;
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• GL´0 pXq :“ tT P GLpXq | πXpT q ă 0 and pp0,`8qpT q “ 0u containing ´ IdX ;

• GL´1 pXq :“ tT P GLpXq | πXpT q ă 0 and pp0,`8qpT q “ 1u, containing all antire-
flections.

Proof. The fact that GL`0 pXq, GL´0 pXq, GL`1 pXq, and GL´1 pXq contain respectively
IdX , all reflections, ´ IdX , and all antireflections, comes directly from the definitions. In
particular, these four sets are nonempty. Now observe that every connected component
of GLpXq is entirely contained in one of these four sets. Indeed, if C is such a con-
nected component, then the continuity of πX shows that C is either entirely contained
in GL`0 pXqYGL`1 pXq, or in GL´0 pXqYGL´1 pXq; and if, for instance, we are in the first
case, then the local constancy of pp´8,0q that C is either contained in GL`0 pXq, or in
GL`1 pXq. Since, by Theorem 1.4, GLpXq has at most four connected components, it fol-
lows that the sets GL`0 pXq, GL´0 pXq, GL`1 pXq, and GL´1 pXq are exactly the connected
components of GLpXq.

Theorem 4.5. Let X be an even real HI space. Then GLpXq has exactly two connected
components, listed below:

• GL0pXq :“ tT P GLpXq | ParpT q “ 0u, containing IdX and ´ IdX ;

• GL1pXq :“ tT P GLpXq | ParpT q “ 1u, containing all reflections and all antire-
flections.

Proof. The facts that GL0pXq contains IdX and ´ IdX , and that GL1pXq contains all
reflections and all antireflections, are direct consequences of the definition of these sets
and of Proposition 4.3. The local constancy of Par on GLpXq (see Lemma 3.6) shows
that every connected component of GLpXq is entirely contained in one of these two sets.
The combination of Lemma 4.1 and Theorem 1.4 shows that GLpXq has at most two
connected components. Those are necessarily GL0pXq and GL1pXq.

Theorem 4.6. Let X be an odd real HI space. Then GLpXq has exactly two connected
components, listed below:

• GL0pXq :“ tT P GLpXq | ParpT q “ 0u, containing IdX and all antireflections;

• GL1pXq :“ tT P GLpXq | ParpT q “ 1u, containing ´ IdX and all reflections.

Proof. The proof is similar to this of Theorem 4.5.

The two last results show that the parity of an operator plays a similar role as the
sign of its determinant in finite-dimension. More precisely, if X is a finite-dimensional
normed space, then the mappings pI , for I an interval of R, can be defined on the whole
LpXq, and ParpXq and ParpT q for T P GLpXq can thus be correctly defined. We have
that for all T P GLpXq, eiπParpT q is exactly the sign of the determinant of T . Moreover,
Proposition 4.3 and Theorems 4.5 and 4.6 are still valid in this case, replacing even and
odd by even-dimensional and odd-dimensional, respectively.
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Some results of this paper have been independently proved by Maurey [10], in partic-
ular Theorems 3.1 and 4.2. In this text, he also proves some results about the existence
of quaternionic structures on a real HI space and on its finite-codimensional subspaces,
using quite different methods.
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