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Abstract

We prove a local version of Gowers’ Ramsey-type theorem [25], as well as lo-
cal versions both of the Banach space first dichotomy (the “unconditional/HI”
dichotomy) of Gowers [25] and of the third dichotomy (the “minimal/tight” di-
chotomy) due to Ferenczi-Rosendal [22]. This means that we obtain versions of
these dichotomies restricted to certain families of subspaces called D-families, of
which several concrete examples are given. As a main example, non-Hilbertian
spaces form D-families; therefore versions of the above properties for non-Hilbertian
spaces appear in new Banach space dichotomies. As a consequence we obtain new
information on the number of subspaces of non-Hilbertian Banach spaces, making
some progress towards the “ergodic” conjecture of Ferenczi—-Rosendal and towards
a question of Johnson.
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1 Introduction and background

In this paper, we will only consider real Banach spaces; however, all of our results trans-
pose to the complex case. Unless otherwise specified, when writing about a Banach space
(or simply a space), we shall mean an infinite-dimensional Banach space, by subspace of
a Banach space, we shall mean infinite-dimensional, closed vector subspace, and by direct
sum, we shall mean topological direct sum. By operator, we shall always mean bounded
linear operator. By Hilbertian space we mean a space which is linearly isomorphic (but
not necessarily isometric) to a Hilbert space. For all other unexplained notation, see the
end of this introduction.

1.1 Ergodic Banach spaces

A Banach space is said to be homogeneous if it is isomorphic to all of its (closed, infinite-
dimensional) subspaces. A famous problem due to Banach, and known as the homoge-
neous space problem, asked whether, up to isomorphism, ¢ is the only homogeneous
Banach space. The answer turned out to be positive; this problem was eventually solved
in the 1990’s by a combination of results by Gowers—Maurey [26], Komorowski-Tomczak-
Jaegermann [35], and Gowers [25].



The homogeneous space characterization of the Hilbert space shows that, as soon as a
separable Banach space X is non-Hilbertian, it should have at least two non-isomorphic
subspaces. Thus, the following general question was asked by Godefroy:

Question 1.1 (Godefroy). How many different subspaces, up to isomorphism, can a
separable, non-Hilbertian Banach space have?

This question seems to be very difficult in general, although good lower bounds for
several particular classes of spaces are now known. A seemingly simplest particular case
of Godefroy’s question was formulated by Johnson:

Question 1.2 (Johnson). Does there exist a separable Banach space having exactly two
different subspaces, up to isomorphism?

Even this question is still open. More generally, it is not known whether there
exist a separable, non-Hilbertian Banach space with at most countably many different
subspaces, up to isomorphism; anticipating on considerations following below, let us
note that a positive answer to Conjecture would imply that such a space does not
exist. In the rest of this paper, a separable Banach space having exactly two different
subspaces, up to isomorphism, will be called a Johnson space.

It turns out that the right setting to study Godefroy’s question is the theory of the
classification of definable equivalence relations. This theory studies equivalence relations
E on nonempty standard Borel spaces X which, when seen as subsets of X2, have a
sufficiently low descriptive complexity (in general, Borel or analytic). Recall that a
Polish space is a separable and completely metrizable topological space. A standard
Borel space is a set X equipped with a o-algebra B such that B is the Borel o-algebra
associated to some Polish topology on X. When X is a standard Borel space, the X™’s,
for n > 1, will always be endowed with the product o-algebras; this makes them standard
Borel spaces as well. A subset A of a standard Borel space (X, B) is said to be Borel if it
is an element of B, analytic if it is the projection of a Borel subset of X2, and coanalytic
if its complement is analytic. A Borel mapping between two standard Borel spaces is
a mapping for which the preimage of every Borel set is Borel, and an isomorphism is
a Borel bijection (it automatically follows that its inverse is Borel). It is a classical
fact in descriptive set theory that all uncountable standard Borel spaces are isomorphic,
and that a Borel subset of a standard Borel space is itself a standard Borel space when
equipped with the induced o-algebra. For proofs of all the forementioned facts, see [34].
The central notion of the theory is Borel-reducibility.

Definition 1.3. Let X,Y be nonempty standard Borel spaces, and F, F' be equivalence
relations on X and Y respectively.

e it is said that E Borel-reduces to F', denoted by (X,E) <p (Y,F) (or simply
E <p F) if there is a Borel mapping f : X — Y (called a reduction) such that
for every x,y € X, we have x Ey < f(x) F f(y).

e it is said F and F' are Borel-equivalent, denoted by ¥ =5 F, if £ <p F and
F <p FE.



e we denote by E <p F the fact that £ < F and E #p F.

The Borel-reducibility relation defines a hierarchy of complexities on the class of all
equivalence relations on standard Borel spaces, the complexity classes being the equiv-
alence classes of =p.

Observe that a reduction f from (X, FE) to (Y, F) induces a one-to-one mapping
X/E — Y/F, and in particular, if E <p F, then |X/E| < |Y/F|. Thus, classes of
complexity can be seen as Borel cardinalities: studying the complexity of an equivalence
relation gives us at least as much information than counting its classes. If E' is analytic
and has at most countably many classes, then E is actually Borel and F <p F <
|X/E| < |Y/F|. Thus, for such an E, the complexity of E and the number of its
classes agree. However, for relations with uncountably many classes, it turns out that
the complexity of the relation gives strictly more information than the number of its
classes. The classification of relations with exactly continuum many classes is extremely
complex and is actually the main focus of the theory.

We now define a particular equivalence relation that will be important in the rest of
this paper. Denote by A the Cantor space, that is, {0, 1} with the product topology
and the associated standard Borel structure.

Definition 1.4. The equivalence relation Eg on A is defined as follows: two sequences
(Zn)nen and (Yn)nen are Eg-equivalent if and only if z;,, = v, eventually.

It can easily be shown that (A, =) <p (A, Ep); in particular, Eg and the equality
on the Cantor space are examples of two inequivalent equivalence relations both having
continuum-many classes. It follows from important dichotomies by Silver [56] and by
Harrington—Kechris-Louveau [28] that the following family of equivalence relations:

(1,:) <B (2,2) <B (3, :) <B...<BRB (N, :) <B (A, :) <B (A,Eo)

is an exhaustive initial segment of the whole hierarchy of Borel equivalence relations,
in the sense that every Borel equivalence relation F is either Borel-equivalent to some
element of this hierarchy, or is strictly above Eg. Note that this is not true anymore when
E is only supposed analytic (an analytic equivalence relation E which is strictly above
(N, =) and incomparable to (R, =) is constructed in [56]). For a complete presentation
of the theory of the classification of definable equivalence relations, see [33]; note for
example that Eg is still quite low in the whole hierarchy.

One of the main applications of this theory is the study of the complexity of clas-
sification problems in mathematics. When one wants to classify a class € of objects
up to isomorphism, it is often possible to equip ¥ with a natural Borel structure, for
which the isomorphism relation is, in general, analytic. Knowing the complexity of this
isomorphism relation gives an indication on the difficulty of the associated classification
problem. For instance, such a class of structures can be classified by real invariants if
and only if the isomorphism relation on this class is reducible to (R, =) (or equivalently,
to (A, =)). Conversely, if (A, Eg) is reducible to the isomorphism relation on this class,
this implies that the associated classification problem is quite complex.



One can, in particular, study the classification problem for closed vector-subspaces
of a given separable Banach space X. To do this, we first need to put a standard Borel
structure on Sub(X); this was first done by Bossard [9]. We refer to his paper for more
details and proofs. The set Sub(X) is endowed with the Effros Borel structure, that
is, the o-algebra generated by sets of the form {Y € Sub(X) | Y n U # @}, where U
ranges over all open subsets of X. This makes it a standard Borel space, on which the
isomorphism relation is analytic. It is clear from the definition that this Borel structure
on Sub(X) only depends on the isomorphic structure of X; in particular, if T: X —
Y is an isomorphism between two separable Banach spaces, then T induces a Borel
isomorphism between Sub(X) and Sub(Y’). It is also easy to see that if Y is a subspace
of X, then the Effros Borel structure on Sub(Y') coincides with the trace on Sub(Y") of
the Effros Borel structure on Sub(X). We also mention the following lemma, which will
be useful in applications. Here, P(N) is identified with the Cantor space and if (z;)ier
is a family of elements of a Banach space X, we will let [z; | ¢ € I] = span(x; | i € I).

Lemma 1.5. Let X be a separable Banach space and let (zy)nen be a sequence of ele-
ments of X. Then the mapping j: P(N) — Sub(X) defined by j(A) = [z, | n € A] is
Borel.

Proof. Let U be an open subset of X; we prove that V := {Ae€ P(N) | j(A)nU # @} is
an open subset of P(N), which is enough to conclude. Let A € V. Then since U is open,
U contains a finite linear combination of the x,,’s, n € A, so there is a finite s £ A such
that [z, | n € s] n U # @. In particular, the open neighborhood {B € P(N) | s £ B} of
A is entirely contained in V.

O

Let us mention that the Effros Borel structure can also be used to study the iso-
morphism relation on the class of all finite- and infinite-dimensional separable Banach
spaces. Indeed, using the fact that the separable Banach space C(A) is isometrically
universal for this class, we can identify the class of all finite- and infinite-dimensional
separable Banach spaces with Sub(C(A)). Using this coding, it has been shown by Fer-
enczi, Louveau and Rosendal [19] that the isomorphism relation on the class of all finite-
and infinite-dimensional separable Banach spaces is analytic-complete, that is, is max-
imum for <p among all analytic equivalence relations on standard Borel spaces. This
gives a formal proof of the heuristic fact that there is no reasonable classification of
separable Banach spaces, up to isomorphism.

We can also simply study the complexity of the isomorphism relation on Sub(X) for
any separable Banach space X; this complexity gives strictly more information that the
number of different subspaces of X, up to isomorphism, including the finite-dimensional
ones. So Godefroy’s question can be generalized by asking, for spaces X with infinitely
many different subspaces up to isomorphism, what is the complexity of the isomorphism
relation of Sub(X). In their investigation on this question, Ferenczi and Rosendal defined
the following class of separable Banach spaces in [20]:

Definition 1.6. A separable Banach space X is said to be ergodic if Eg is Borel-reducible
to the isomorphism relation on Sub(X).



In particular, ergodic Banach spaces have continuum many pairwise non-isomorphic
subpaces, and their subspaces cannot be classified by real numbers, up to isomorphism.
Immediate consequences of this definition are that ¢5 is non-ergodic, that a subspace of
a non-ergodic space is itself non-ergodic, and that the notion of ergodicity is invariant
under isomorphism. Ergodic Banach spaces are quite complex and on the contrary, non-
ergodic spaces are expected to be regular in some sense. Ferenczi and Rosendal have
shown several regularity properties for non-ergodic spaces. For instance:

Theorem 1.7 (Ferenczi-Rosendal, [21, 50]). Let X be a non-ergodic Banach space with
an unconditional basis. Then X is isomorphic to X @Y for every subspace Y spanned
by a (finite or infinite) subsequence of the basis. In particular, X is isomorphic to its
square and to its hyperplanes.

Theorem 1.8 (Ferenczi-Rosendal, [20]). Let X be a non-ergodic separable Banach
space. Then X has a subspace Y with an unconditional basis, such thatY is isomorphic
toY @ Z for every block-subspace Z of Y .

All these results led them to the following conjecture:

Conjecture 1.9 (Ferenczi-Rosendal). Every separable non-Hilbertian Banach space is
ergodic.

This conjecture is still open. We quote below some of the most relevant partial results
supporting the conjecture.

Definition 1.10. A Banach space X is said to be minimal if it embeds isomorphically
into all of its subspaces.

The notion of minimality was based on the classical examples of the ,’s, 1 < p <
oo, and ¢p (and their subspaces). Later on the dual of Tsirelson’s space, and then
Schlumprecht’s arbitrarily distortable space were added to the list, see [60} 12] 54], as
well as [I1] for variants on Schlumprecht’s example.

Theorem 1.11 (Ferenczi, [15]). Every non-ergodic separable Banach space contains a
minimal subspace.

It is a consequence of Kwapien’s theorem [36] that a space is Hilbertian if and only
if there exists a constant K such all its finite-dimensional subspaces are K-isomorphic
to a Euclidean space. This property may be relaxed as follows:

Definition 1.12. A Banach space X is said to be asymptotically Hilbertian if there exists
a constant K such that for every n € N, there exists a finite-codimensional subspace Y
of X all of whose n-dimensional subspaces are K-isomorphic to £7.

Theorem 1.13 (Anisca, [3]). Every asymptotically Hilbertian, non-Hilbertian separable
Banach space is ergodic.

A generalization of the last result will be proved in this paper (see Theorem [5.25]),
using a different method than Anisca’s original one.



Theorem 1.14 (Cuellar Carrera, [10]). Every non-ergodic separable Banach space has
type p and cotype q for every p < 2 < q.

This last result is particularly significant since it shows that counterexamples to
Conjecture should be geometrically very close to be Hilbertian. In particular, the
ly)’s, 1 < p # 2 < o and ¢ are ergodic (this had already been shown by Ferenczi and
Galego [17] for the £,’s, 1 < p < 2, and ¢y). A consequence of this, combined with James’
theorem, is that non-ergodic spaces having an unconditional basis should be reflexive.

We refer to the survey [23] as well as to Ferenczi’s These d’Habilitation (in French)
[16] for more details. These references list, in particular, better estimates on the complex-
ity of the isomorphism relation between subspaces for several classical Banach spaces.

On the path to possible answers to Johnson’s Question[[.2land of Ferenczi-Rosendal’s
Conjecture [[.9 we identify two weaker conjectures to be studied in the present paper.

Conjecture 1.15. Every Johnson space has an unconditional basis.

Conjecture 1.16. Every non-ergodic non-Hilbertian separable Banach space contains a
non-Hilbertian subspace having an unconditional basis.

Conjectures and are important because they allow us to reduce Johnson’s
and Ferenczi-Rosendal conjectures to the case of spaces having an unconditional basis,
for which, as we saw above, we already know many properties. We shall not solve these
conjectures, but we make significant progress on them as will appear in Section [l

1.2 Gowers’ classification program

In order to motivate our forthcoming definitions, we first present the main steps of the
solution of the homogeneous space problem. We start with a definition.

Definition 1.17 (Gowers—Maurey, [26]). A Banach space X is hereditarily indecompos-
able (HI) if it contains no direct sum of two subspaces.

HI spaces exist; they were first built by Gowers and Maurey [26], as a solution to
the unconditional basic sequence problem: they were the first spaces known to contain
no subspace with an unconditional basis. Independently of the existence of HI spaces,
the combination of the following three results solves positively the homogeneous space
problem:

Theorem 1.18 (Gowers—Maurey, [26]). An HI space is isomorphic to no proper subspace
of itself.

Theorem 1.19 (Komorowski-Tomczak-Jaegermann, [35]). Every Banach space either
contains a subspace without unconditional basis, or an isomorphic copy of {s.

Theorem 1.20 (Gowers’ first dichotomy, [25]). Every Banach space either contains a
subspace with an unconditional basis, or an HI subspace.



We refer to [35] for a more precise statement of Theorem [[I9l Gowers’ first di-
chotomy is especially important, since it allows to restrict the homogeneous space prob-
lem to two special cases, the case of spaces with an unconditional basis and the case of
HI spaces. In both of these radically opposite cases, we dispose of specific tools allowing
us to solve the problem more efficiently. Based on this remark, Gowers suggested in
[25] a classification program for separable Banach spaces “up to subspace”. The goal is
to build a list of classes of separable Banach spaces, as fine as possible, satisfying the
following requirements:

1. the classes are hereditary: if X belongs to a class C then all subspaces of X also
belong to C (or, in the case of classes defined by properties of bases, all block-
subspaces of X belong to C);

2. the classes are pairwise disjoint;

3. knowing that a space belongs to a class gives much information about the structure
of this space;

4. every Banach space contains a subspace belonging to one of the classes.

Such a list is in general called a Gowers list. The most difficult property to prove among
the above is in general 4.; Gowers’ first dichotomy proves this property for the two
classes of spaces with an unconditional basis and HI spaces, thus showing that these two
classes form a Gowers list. In the same paper [25], Gowers suggests that this list could
be refined by proving new dichotomies in the same spirit, and himself proves a second
dichotomy. Three other dichotomies were then proved by Ferenczi and Rosendal [22],
leading to a Gowers list with 6 classes (all of whose are now known to be nonempty)
and 19 possible subclasses.

All of these dichotomies draw a border between a class of “regular” spaces (spaces
sharing many properties with classical spaces such as the £,’s, 1 <p < o, or ¢), and a
class of “pathological” or “exotic” spaces. These dichotomies are often important in the
study of the problem of the complexity of the isomorphism relation between subspaces
of a space X; when X is on the “pathological” side, we expect this relation to be rather
complex. We present below the most important of the dichotomies by Ferenczi and
Rosendal (called “third dichotomy” in [22]), which will be particularly relevant in this

paper.
Definition 1.21 (Ferenczi-Rosendal).

1. Let (en)nen be a basis of some Banach space. A Banach space X is tight in the
basis (ey) if there is an infinite sequence of nonempty intervals Iy < I; < ... of
integers such that for every infinite A € N, we have X & [ey, [n & | J;c4 Li |-

2. A basis (ep)nen is said to be tight if every Banach space is tight in it. A Banach
space X 1is tight if it has a tight basis.



In the case of reflexive Banach spaces it is known that all bases are tight if one of
them is tight [22, Corollary 3.5]. Note that there is a more intuitive characterization
of tightness, see [I8]. Namely X is tight in (e,) exactly when the set of A < N such
that X embeds into [e, | n € A] is meager (in the natural topology on P(N) obtained
by identifying it with the Cantor space). However the definition with the intervals I; is
more operative, allowing for example to distinguish forms of tightness according to the
dependence between X and the associated sequence of intervals (I;).

Theorem 1.22 (Ferenczi-Rosendal). Every Banach space either has a minimal sub-
space, or has a tight subspace.

This dichotomy will be referred as the minimal/tight dichotomy in the rest of this
paper. Here, the “regular” class is the class of minimal spaces, and the “pathological”
class is the class of tight spaces: these spaces are isomorphic to very few of their own
subspaces. An example of a tight space is Tsirelson’s space (see [22]). The minimal/tight
dichotomy is a generalization of Theorem [[.TT] (which itself improved the main result
of [45]): indeed, it can be shown quite easily that tight spaces are ergodic, which,
combined with the dichotomy, shows that non-ergodic separable spaces should have a
minimal subspace.

Ferenczi—Rosendal’s definition of tightness is restricted to Schauder bases. This was
not a relevant loss of generality for Theorem For our local versions of this di-
chotomy, however, it will be important to extend the notion to FDD’s. To give a concrete
example of our need to use FDD’s, note that one may force a space to be non-Hilbertian
just by imposing restrictions on the summands of an FDD, without condition on the
way they “add up”; this would of course not be possible with bases. The definition is
straightforward, and properties of tight bases extend without harm to tight FDD’s:

Definition 1.23 (Tight FDD’s).

1. Let (F})nen be an FDD of some Banach space. A Banach space X is tight in (F,)
if there is an infinite sequence of nonempty intervals Iy < I; < ... of integers such
that for every infinite A € N, we have X & [F, [n ¢ (J;c4 Li |-

2. An FDD (F),)nen is said to be tight if every Banach space is tight in it.

It is clear from the definition that if a space is spanned by a tight FDD, then it has
a tight subspace.

1.3 Local Ramsey theory

Dichotomies such as Gowers’ or Ferenczi—Rosendal’s present drawbacks if one wants to
deal with problems related to ergodicity. Indeed, ¢» always belongs to the “regular” class
defined by those dichotomies, which makes them useless to apply to spaces containing



an isomorphic copy of f5. Typically, if a space is fo-saturated, but non-Hilbertian, then
these dichotomies do not provide information on the structure of the space itself.

For this reason, it would be interesting to have dichotomies similar to Gowers’ or
Ferenczi—Rosendal’s, but which avoid ¢5, that are, dichotomies of the form “every non-
Hilbertian Banach space X contains a non-Hilbertian subspace either in ‘R, or in P”,
where R is a class of “regular” spaces, and P is a class of “pathological” spaces. Proving
such dichotomies is the main goal of this paper.

Gowers’ and Ferenczi—Rosendal’s dichotomies are proved using combinatorial meth-
ods, and especially Ramsey theory. Here, for an infinite M < N, we denote by [M]*
the set of infinite subsets of M; we see [N]® as a subset of the Cantor space, endowed
with the induced topology.

Theorem 1.24 (Silver, [55]). Let X < [N]|® be analytic. Then there exists an infinite
M < N such that either [M]* < X, or [M]* < X°.

A topological proof of Silver’s theorem was obtained by E. Ellentuck [14]. Similar
topologies to those introduced by Ellentuck will be considered in section [3.11

The proofs of both Gowers’ dichotomies in [25] are based on a version of Theorem
[L24lin the context of Banach spaces, known as Gowers’ Ramsey-type theorem for Banach
spaces. Here, N is replaced with a separable Banach space X, the set X becomes a set of
normalized sequences in X, and the monochromatic set M becomes a subspace of X. In
this context, a result exactly similar to Theorem does not hold, and the conclusion
has to be weakened, using a game-theoretic framework. The exact statement of Gowers’
Ramsey-type theorem is a bit technical and will be given in Section 2 (Theorem [2.10]);
a more comprehensive presentation of this theory can be found in [7], Part B, Chapter
IV. The proofs of the dichotomies of Ferenczi and Rosendal in [22] use either Gowers’
Ramsey-type theorem, or similar methods based on Ramsey theory and games.

If one wants to prove Banach-space dichotomies where the outcome space lies in
some prescribed family of subspaces (for instance, non-Hilbertian subspaces), one needs
adapted Ramsey-theoretic results. Fortunately, such results exist in classical Ramsey
theory; they form a topic usually called local Ramsey theory. Here, the word local refers
to the fact that we want to find a monochromatic subset locally; meaning, in a prescribed
family of subsets. We present below the local version of Silver’s Theorem [[.24], due to
Mathias [40]. A complete presentation of local Ramsey theory can be found in [59],
Chapter 7.

Definition 1.25.
1. A coideal on N is a nonempty subset H < [N]® satisfying, for all A, B € P(N):

(a) if Ae H and A < B, then B € H;
(b) if AU B e H, then either Ae H or B € H.

2. The coideal H is said to be P if for every decreasing sequence (A, )nen of elements
of H, there exists Ay € H such that for every n € N, A, ©* A,, (meaning, here,
that Ay\A, is finite).
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3. The coideal H is said to be selective if for every decreasing sequence (A, )nen of
elements of H, there exists A, € H such that for every n e N, A \[0,n] € A,,.

Theorem 1.26 (Mathias, [40]). Let H be a selective coideal on N, and let X < [N]* be
analytic. Then there exists M € H such that either [M]* < X, or [M]* < X*.

A local Ramsey theory in Banach spaces has already been developed by Smythe in
[57]. There, he proves an analogue of Gowers’ Ramsey-type theorem where the outcome
space is ensured to lie in some prescribed family H of subspaces of the space X in which
we work. The conditions on the family H are similar to those in the definition of a selec-
tive coideal. However, in the context of Banach spaces, these conditions become quite
restrictive and it is not clear that they are met by “natural” families in a Banach-space-
theoretic sense. Smythe’s theory seems to be more adapted to dealing with problems of
genericity, as illustrated in [57].

In this paper, we shall prove a local version of Gowers’ Ramsey-type theorem for
families H satisfying weaker conditions, which are closer to the definition of P*-coideals
(Theorem [.T]). This theorem has a weaker conclusion than Smythe’s theorem; however,
the range of families H to which it applies is much broader and includes “natural” families
in a Banach-space-theoretic sense, for instance the family of non-Hilbertian subspaces of
a given space. These families, called D-families, will be defined and studied in Section
Bl In order to motivate their definition, we state below a sufficient condition for being
a PT-coideal which is well-known to set-theoreticians. This fact is folklore; it is, for
instance, an easy consequence of Lemma 1.2 in [42].

Lemma 1.27. Let H be a coideal on N. If H is Gs when seen as a subset of the Cantor
space, then H is PT.

1.4 Organization of the paper

After the introductory Section 1, Section 2 is still mainly a background section, present-
ing the formalism of Gowers spaces, as well as their approximate versions, developed by
de Rancourt [I3] as a generalization of Gowers Ramsey-type theory in Banach spaces,
and necessary to prove local dichotomies.

In Section 3 we define and study the notion of D-family, Definition In similarity
to Lemma [[.27] a set of subspaces of a Banach space X will be called a D-family if it is
closed under finite-dimensional modifications and is G for a certain rather fine topology
on the set of subspaces of X. This will ensure on one hand that such families have a
diagonalization property similar to the P*-property, and on the other hand that they
have a good behavior relative to FDD’s, so that “local” Ramsey theorems, i.e. restricted
to subspaces in the D-family, may be hoped for. The concrete examples of D-families
are associated to the important notion of degree d, Definition B.I5], which allow us to
formalize quantitative estimates relating the finite-dimensional subspaces F' of a space
X, and X itself, by assigning a positive real number d(X, F'). A subspace Y of X is
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d-small, Definition B.16, when the degrees d(Y, F') are uniformly bounded for F € Y,
and d-large otherwise; the conditions on the definition of degree imply that the family
of d-large subspaces of X is a D-family, Proposition Several classical properties of
Banach spaces are equivalent to being d-small for a well-chosen degree d, for instance
being Hilbertian, having a certain fixed type or cotype, or having Gordon-Lewis local
unconditional structure [24], Examples B.17l

In Section 4, we concentrate on the formalism of approximate Gowers spaces to prove
our local version of Gowers’ Ramsey-type theorem (Theorem []) for analytic games.
Then we deduce from it a local version of Gowers’ first dichotomy (Theorem [4.4]). This
“first dichotomy” in the case of a D-family induced by a degree d may be stated as
follows:

Theorem 1.28 (see Theorem [L)). Let X be a d-large Banach space. Then X has a
d-large subspace Y such that:

1. either'Y 1s spanned by a UFDD;

2. or'Y contains no direct sum of two d-large subspaces.

The first alternative is stronger than containing an unconditional basic sequence, and
the second one, a “pathological” property, is weaker than the HI property.

In Section 5, we will then prove a local version of the minimal/tight dichotomy,
Theorem In the case of a degree d, this dichotomy may be stated as follows:

Theorem 1.29 (see Theorem [B.6]). Let X be a d-large Banach space. Then X has a
d-large subspace Y such that:

1. either Y isomorphically embeds into all of its d-large subspaces;

2. or'Y is spanned by an FDD in which every d-large Banach space is tight.

The property satisfied by Y in the first alternative will be called d-minimality. Note
that the word “minimal” here refers to a minimal element, among d-large spaces, for the
relation of embedding between subspaces. So a d-minimal space should not be thought of
as small is this context; it is a d-large space. The proof of Theorem [I.29is more delicate
than for the first local dichotomy; it is inspired by a proof by Rosendal of a variant of
the classical minimal/tight dichotomy [52] and relies on the formalism of Gowers spaces.
Quite importantly towards the questions of Godefroy and Johnson, we prove that the
relation between tightness and ergodicity still holds in the local version. Our precise
result, in the case of a degree d, is the following:

Theorem 1.30 (see Theorem B.I6). Let X be a d-large Banach space spanned by an
FDD in which every d-large Banach space is tight. Then X is ergodic.
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Consequently a d-large and non-ergodic separable space must contain a d-minimal
subspace, Corollary B.17], and the study of d-minimal spaces turns out to be quite rele-
vant. We end the section with additional observations about the d-minimality property,
and consequences. For example we generalize the result by Anisca that non-Hilbertian
spaces which are asymptotically Hilbertian must be ergodic (Theorem [L13)), to the case
of d-large spaces which are “asymptotically d-small”, Theorem

Finally in Section 6, we consider the Hilbertian degree ds(F'), defined as the Banach-
Mazur distance of F' to the euclidean space of the same dimension, and for which the
class of d-small spaces is exactly the class of Hilbertian spaces. In this case the two
dichotomies immediately translate as (to avoid confusion let us insist on the fact that
each of 1. and 2. states a dichotomy, but 1. versus 2. is not):

Theorem 1.31. Every non-Hilbertian Banach space contains a non-Hilbertian subspace

which:

1. either is spanned by a UFDD, or does not contain any direct sum of non-Hilbertian
subspaces,

2. either isomorphically embeds into all its non-Hilbertian subspaces, or has an FDD
in which every non-Hilbertian space is tight.

We therefore give some applications of the theory developed in the previous sections
for the study of ergodicity and Johnson’s question, applying these new dichotomies using
only non-Hilbertian subspaces. We reproduce two of our results below as an illustration:

Theorem 1.32 (see Corollary [6.16]). Let X be a Johnson space. Then X has a Schauder
basis; moreover, X has an unconditional basis if and only if it is isomorphic to its square.

Theorem 1.33 (see Theorems 6.5 and [623). Let X be a separable, non-Hilbertian, non-
ergodic Banach space. Then X has a non-Hilbertian subspace Y which isomorphically
embeds into all of its non-Hilbertian subspaces, and which moreover satisfies one of the
following two properties:

1. 'Y has an unconditional basis;

2. Y contains no direct sum of two non-Hilbertian subspaces.

We moreover conjecture that the second alternative in Theorem [[.33] cannot actually
happen, Conjecture We end the section by identifying non trivial examples of
spaces which do not contain direct sums of non-Hilbertian subspaces, Example and
Example [6.22], and giving a list of open problems.
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1.5 Definitions and notation

This subsection lists the main classical definitions and notation that will be needed
in this work. We denote by N the set of nonnegative integers, and by R, the set of
nonnegative real numbers. We denote by Ban® the class of all (infinite-dimensional)
Banach spaces, by Ban=% the class of finite-dimensional normed spaces, and we let
Ban = Ban® uBan=®. Given a Banach space X, we denote by Sub®(X) the set of
(infinite-dimensional, closed) subspaces of X, by Sub=*(X) the set of finite-dimensional
subspaces of X, and we let Sub(X) = Sub~*(X) u Sub®(X). For Y, Z € Sub(X), we
will say that Y is almost contained in Z, and write Y €* Z, when a finite-codimensional
subspace of Y is contained in Z.

When writing about a Banach space X, we will in general assume that it comes with
a fixed norm, that we will usually denote by | - ||. The unit sphere of X for this norm
will be denoted by Sx, and if necessary we will denote by ¢, the distance induced by
this norm. For z € X and r > 0, we denote by B(z,r) the open ball centered at x with
radius r (which is just the empty set when r = 0).

Given two finite- or infinite-dimensional Banach spaces X and Y, the space of con-
tinuous linear operators from X to Y will be denoted by £(X,Y), or simply by £(X)
when X =Y. It will be equipped by the operator norm coming from the norms of X
and Y, and this norm will also be usually denoted by |- |. For C > 1, a C-isomorphism
between X and Y is an isomorphism T: X — Y such that |T| - |77'| < C. The
Banach-Mazur distance between X and Y, denoted by dpps(X,Y) is the infimum of the
C > 1 such that there exists a C-isomorphism between X and Y (if X and Y are not
isomorphic, then dpp(X,Y) = ). A space will be called Hilbertian if it is at finite
Banach-Mazur distance to a Hilbert space, and f5-saturated if every subspace of X has a
Hilbertian subspace. A C-isomorphic embedding from X into Y is an embedding which
is a C-isomorphism onto its image. We write X = Y if X isomorphically embeds into
Y, and X E¢ Y if X C-isomorphically embeds into Y.

Two families (z;);er and (y;)ier of elements of a Banach space X are said to be C-
equivalent, for C' > 1, if for every family (a;);er of reals numbers with finite support, we

have:
Z a;Yi Z ATy Z @Yi|| -

el el el

< <C-

1
C

In this case, there is a unique C*?-isomorphism 7': span(x; | i € I) — span(y; | i € I) such
that for every i, we have T'(x;) = y;. The families (z;) and (y;) are simply said to be
equivalent if they are C-equivalent for some C > 1.

In this paper, we will often use the notion of finite-dimensional decomposition (FDD).
Recall that an FDD of a space X is a sequence (F),)nen of nonzero finite-dimensional
subspaces of X such that every € X can be written in a unique way as Z;‘LOZO T,
where Vn € N z,, € F,,. In this case there exists a constant C' such that for all x € X
and all n € N, we have |[>,,_, #;| < C|z|. The smallest such C is called the constant
of the FDD (F,,). A sequence of finite-dimensional subspaces which is an FDD of the
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closed subspace it generates will simply be called an FDD, without more precision.
An unconditional finite-dimensional decomposition (UFDD) is an FDD (F),)nen such
that for every sequence (zy)neny with z, € F, for all n, if Zf:o T, converges, then
this convergence is unconditional. In this case, there is a constant K such that for
all such sequences (), and for every sequence of signs (,)neny € {—1, 1}, we have
12 ienznl| < K|X,-, en®nl. The smallest such K is called the unconditional constant
of the UFDD (F,).

Fix (Fp)nen an FDD of a space X. For z = Y (x, € X, the support of z is
supp(z) = {n € N |z, # 0}. For A < X, we let supp(A) = | J,c4 supp(z). A blocking of
(F},) is a sequence (Gy,)nen of finite-dimensional subspaces of X for which there exists
a partition of N into nonempty successive intervals Iy < I < ... such that for every n,
Gn = @yer, Fir A block-FDD of (IF,) is a sequence (G, )nen of nonzero finite-dimensional
subspaces of X such that supp(Goy) < supp(G1) < ... (here, for two nonempty sets of
integers A and B, we write A < B for Vie AVj e Bi < j). A blocking is a particular
case of block-FDD. A block-FDD of (F},) is itself an FDD, and its constant is less than
or equal to the constant of (F},); moreover, if (F},) is a UFDD, then a block-FDD of
(F},) is also a UFDD, and its unconditional constant is less than or equal to this of (F,).
A block-sequence of (F),) is a sequence (z,)nen of vectors of X such that (Rzj,)pen is
a block-FDD of (F),). Such a sequence is a basic sequence, with constant less than or
equal to the constant of the FDD (F},).

If (F});er is a family of finite-dimensional subspaces of a Banach space X, we will let
[F; | ieI] =2, Fi. Thisnotation will often (but not only) be used in the case where

el 1

(F;) is a (finite or infinite) subsequence of an FDD.

For C > 1, a C-bounded minimal system in a Banach space X is a family (z;)er
of nonzero elements of X such that for every family (a;)ier of real numbers with finite
support and for every ig € I, we have |a; x| < C-|>,c; aixi|. Every separable Banach
space contains a countable bounded minimal system whose closed span is the whole
space; several more precise results by Terenzi show that such a system can be chosen to
have properties that are very close to those of a Schauder basis (see for example [58]).
A normalized, 1-bounded minimal system is called an Auerbach system; by Auerbach’s
lemma (]27], Theorem 1.16), every finite-dimensional normed space has an Auerbach
basis (that is, a basis which is an Auerbach system). A basic sequence with constant
< C'is a 2C-bounded minimal system. But there are other interesting examples. For
instance, let (F},)neny be an FDD with constant C. Let, forne N, d,, = > _ dim(Fy,),
and let (e;)d,<i<d,,, be an Auerbach basis of F,. Then the sequence (e;)ien is a 2C-
bounded minimal system.

Given two families (z;);er and (y;)ier that are K-equivalent, if (x;) is a C-bounded
minimal system, then (y;) is a CK2-bounded minimal system. We will also often use
the following small perturbation principle for bounded minimal systems:

Lemma 1.34. For every C' = 1 and every € > 0, there exists § > 0 satisfying the
following property: if (x;)ier is a C-bounded minimal system in a Banach space X, if
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(Yi)ier is a family of elements of the same space, and if:

then (z;) and (y;) are (1 + €)-equivalent.

The proof is routine. This is a classical result for basic sequences, see for example
[1], Theorem 1.3.9, and the proof is exactly the same for bounded minimal systems.

2 Gowers spaces

In this section, we present the formalism of Gowers spaces. This formalism will be our
main tool to prove dichotomies. It has been developed by de Rancourt in [13], as a
generalisation of Gowers’ Ramsey-type theory in Banach spaces developed in [25]. The
proofs of all the results presented in this section can be found in [13].

2.1 Gowers spaces

For a set II, denote by II<N the set of all finite sequences of elements of II. A sequence
of length n will usually be denoted by s = (sg,...,Sn—1), and the unique sequence of
length 0 will be denoted by @. Let Seq(Il) = II<M\{@}. For s € II=N and = € II, the
concatenation of s and z will be denoted by s x.

Definition 2.1. A Gowers space is a quintuple G = (P,II, <, <*,<1), where P is a
nonempty set (the set of subspaces), Il is an at most countable nonempty set (the set of
points), < and <* are two quasiorders on IP (i.e. reflexive and transitive binary relations),
and < € Seq(II) x P is a binary relation, satisfying the following properties:

1. for every p,q € P, if p < g, then p <* ¢;

2. for every p,q € P, if p <* ¢, then there exists r € P such that r < p, r < ¢ and
p<tr;

3. for every <-decreasing sequence (p;)ien of elements of P, there exists p* € P such
that for all i € N, we have p* <* p;;

4. for every p € P and s € II<N, there exists « € IT such that s ~ z < p;

5. for every s € Seq(II) and every p,q € P, if s < p and p < ¢, then s < q.

We say that p,q € P are compatible if there exists r € P such that » < p and r < q.
To save writing, we will often write p $ ¢ when p < ¢ and ¢ <* p.
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The prototypical example of a Gowers space is the following. Let K be an at most
countable field. The Rosendal space over K is R = (P,II, €, c* <), where:

e II is a countably infinite-dimensional K-vector space;
e P is the set of all infinite-dimensional subspaces of II;
e C is the usual inclusion relation between subspaces;

e C* is the almost inclusion, defined by Y <* Z iff Z contains a finite-codimensional
subspace of Y

o (rg,...,xp) <Y iffx, €Y.
Here, we have that Z $ Y iff Z is a finite-codimensional subspace of Y, and Y and Z

are compatible iff Y n Z is infinite-dimensional.

In the case of the Rosendal space, the fact that s <« p actually only depends on p
and on the last term of s. This is the case in most usual examples of Gowers spaces;
spaces satisfying this property will be called forgetful Gowers spaces. In these spaces,
we will allow ourselves to view <t as a binary relation on Il x P. However, in the proof
of Theorem [B.5] we will use a Gowers space which is not forgetful.

In the rest of this subsection, we fix a Gowers space G = (P,II, <, <*,<0). To every
p € P, we associate the four following games:

Definition 2.2. Let p € P.
1. Gowers’ game below p, denoted by Gy, is defined in the following way:

I po P1
11 ) T

where the z;’s are elements of II, and the p;’s are elements of P. The rules are the

following:

o for I: for all i e N, p; < p;
e for II: for all i e N, (zg,...,x;) < p;.

The outcome of the game is the sequence (z;)ien € IIV.

2. The asymptotic game below p, denoted by F),, is defined in the same way as G,
except that this time we moreover require that p; < p.

3. The adversarial Gowers’ games below p, denoted by A, and B,, are obtained by
mixing Gowers’ game and the asymptotic game. The game A, is defined in the
following way:

I 0, 4o Z1,q1
I po Yo, P1 Y1, D2

where the z;’s and the y;’s are elements of II, and the p;’s and the ¢;’s are elements
of P. The rules are the following:
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o for I for all i e N, (xq,...,2;) < p; and ¢; < p;

o for IT: for all i e N, (yo...,¥y;) < ¢; and p; < p.

The outcome of the game is the pair of sequences ((x;)ien, (¥i)ien) € (HN)2.

4. The game B, is defined in the same way as A, except that this time we require
pi S p, whereas we only require ¢; < p.

In this paper, when dealing with games, we shall use a convention introduced by
Rosendal: we associate an outcome to the game, and define a winning condition in
terms of the outcome belonging or not to a determined set. For example, saying that
player IT has a strategy to reach a set X < IIN in the game G, means that she has a
winning strategy in the game whose rules are those of G, and whose winning condition
is the fact that the outcome belongs to X.

We endow the set II with the discrete topology and the set IIV with the product
topology. The two main results about Gowers spaces, proved by de Rancourt in [13],
are the following:

Theorem 2.3 (Abstract Rosendal’s theorem, [13]). Let X < IIV be analytic, and let
p € P. Then there exists ¢ < p such that:

o cither player I has a strategy to reach X in Iy;

o or player II has a strategy to reach X in G.

Theorem 2.4 (Adversarial Ramsey principle, [13]). Let X < (HN)2 be Borel, and let
p € P. Then there exists ¢ < p such that:

o cither player I has a strategy to reach X in Ay;
e or player II has a strategy to reach X in B,.

Remark 2.5. The definition of the games A, and B, we give here is slightly different
than the original definition given in [I3]. This is to save notation in the rest of the paper,
and in particular in the proof of Theorem (.5l which will be quite technical. The version
of Theorem [2.4] we state above is thus slightly weaker than the original one.

Theorem [23] has been stated and proved by Rosendal in [51] in the special case of
the Rosendal space, as a discrete version of Gowers’ Ramsey-type theorem in Banach
spaces. Theorem 2.4 has been proved by Rosendal for 28 and H% subsets, in the case
of the Rosendal space, in [53], where he also conjectured the result for Borel sets, which
has been proved by de Rancourt in [13].
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2.2 Approximate Gowers spaces

Approximate Gowers spaces are a version of Gowers spaces where the set of points is not
anymore a countable set, but a Polish metric space. This formalism is more convenient
to obtain approximate Ramsey-type theorems in Banach spaces, for example.

In this section and in the rest of this paper, we use the following notation: if (II,d)
is a metric space, if X < IV and if A = (A, )nen is a sequence of positive real numbers,
then we let (X)a = {(Zn)neny € IV | I (Y )neny € X VN € N §(2, yn) < Ay},

Definition 2.6. An approzimate Gowers space is a sextuple G = (P,II, 4, <, <*, <),
where P is a nonempty set, Il is a nonempty Polish space, J is a compatible distance on
II, < and <* are two quasiorders on P, and <« < II x P is a binary relation, satisfying
the same axioms 1. — 3. as in the definition of a Gowers’ space and satisfying moreover
the two following axioms:

4. for every p € IP, there exists x € Il such that = < p;

5. for every x € Il and every p,q e P, if x <« p and p < ¢, then x < q.

The relation g and the compatibility relation on P are defined in the same way as for a
Gowers space.

With this definition, approximate Gowers spaces are always forgetful, that is, the
relation < is defined as a subset of II x P and not as a subset of Seq(I) x P (this
technical restriction seems to be needed to prove approximate versions of Theorems 23]
and [24]). In all cases we will encounter in this paper, <« will actually be the membership
relation.

The prototypical example of an approximate Gowers space is the following. Let

X be a separable Banach space. The canonical approrimate Gowers space over X is
G = (]P’, S)(,(SH,”,Q, E*,G), where:

e PP is the set of all (infinite-dimensional) subspaces of X;

e Sx is the unit sphere of X;

e J). is the distance on Sx induced by the norm of X;

e C is the usual inclusion relation between subspaces;

e C* is the almost inclusion between subspaces, as defined in Subsection [k
e c is the membership relation between points and subspaces.

Here, we have that Z $ Y iff Z is a finite-codimensional subspace of Y, and Y and Z
are compatible iff Y n Z is infinite-dimensional.

In the context of approximate Gowers spaces, de Rancourt proved in [I3] an approx-
imate version of Theorem [2.4], but we will not use it in this paper. However, we will
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introduce an approximate version of Theorem 2.3l In the rest of this subsection, we
fix an approximate Gowers space G = (P, 11, §, <, <*,<1). In this space, Gowers’ game
G) is defined in the same way as in Gowers spaces (Definition 2.2)), apart from the fact
that the rule (xq,...,z;) < p; is obviously replaced with z; <t p;. We will also define a
strengthening of the asymptotic game. Recall that a subset of II is said to be relatively
compact if its closure in II is compact. In what follows, for K < Il and p € P, we
abusively write K < p to say that the set {x € K | x < p} is dense in K.

Definition 2.7. A system of relatively compact sets for the approximate Gowers space
G is a set K of relatively compact subsets of 1I, equipped with an associative binary
operation @, satisfying the following property: for every p € P, and for every K, L € K,
if K<pand L<p, then K® L < p.

If (IC,®) is a system of relatively compact sets for G and if (K, )nen is a sequence of
elements of K, then:

e for A < N finite, denote by @, 4 K the sum K, @...® Ky, , where nq,...,ny
are the elements of A taken in increasing order;

e a block-sequence of (K,) is, by definition, a sequence (z;);en € IIN for which there
exists an increasing sequence of nonempty sets of integers Ag < A; < Ay < ...
such that for every ¢ € N, we have z; € @nEAi K,.

Denote by bs((K,)nen) the set of all block-sequences of (K,,).

In the canonical approximate Gowers space Gx over a separable Banach space X, we
can define a natural system of relatively compact sets, (Kx,®x), as follows: the elements
of Kx are the unit spheres of finite-dimensional subspaces of X and the operation @x on
Kx is defined by Sp@®x S¢ = Srig. Observe that, given (Fy,)nen an FDD of a subspace
of X, the block-sequences of (Sg,)nen in the sense given by the latter definition are
exactly the normalized block-sequences of (F},) in the Banach-theoretic sense.

Definition 2.8. Let (K,®) be a system of relatively compact sets for G, and p € P. The
strong asymptotic game below p, denoted by SF), is defined as follows:

I po P1
11 K, K,

where the K,,’s are elements of IC, and the p,’s are elements of P. The rules are the
following;:

e for I: for all me N, p, < p;
o for II: for all n e N, K, <t p,,.

The outcome of the game is the sequence (K, )ney € K.

We endow ITN with the product topology. The following result, proved by de Ran-
court in [I3], is the approximate version of Theorem 23]
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Theorem 2.9 (Abstract Gowers’ theorem, [13]). Let (IC,®) be a system of relatively
compact sets for G. Let X < IIN be analytic, let p € P and let A be a sequence of positive
real numbers. Then there exists q < p such that:

o cither player I has a strategy in SF, to build a sequence (Kp)pen such that
bs((Kp)nen) S X€;

e or player IT has a strategy in G4 to reach (X)a.

From this abstract result, we can easily recover the original Ramsey-type theorem
proved by Gowers in [25], and used in the same article to deduce his first dichotomy
(Theorem [[.20)) along with another dichotomy:

Theorem 2.10 (Gowers). Let X be a separable Banach space, X < (SX)N be analytic
and A be a sequence of positive real numbers. Then there exists a subspace Y of X such
that:

o citherY has a basis (Yn)nen such that all normalized block-sequences of (yy) belong
to X°;

e or player II has a strategy in Gy to reach (X)a.

In the statement of this theorem, Gy denotes the Gowers’ game relative to the
canonical approximate Gowers space Gx. The original statement proved by Gowers is a
bit different in its formulation, however both are easily equivalent. As an illustration of
the formalism of approximate Gowers spaces, we now prove Theorem 2.0l

Proof of Theorem [Z10. Work in the canonical approximate Gowers space Gx, with the
system of relatively compact sets (Kx,®x) defined above. Apply Theorem to X,
p = X, and A. Then either we get a subspace Y € X such that player II has a strategy
in Gy to reach (X)a, and we are done, or we get a subspace Y < X such that player I
has a strategy 7 in SFy to build a sequence (K,,)nen with bs((Kp)nen) € X¢. We can
assume that the strategy 7 is such that for every run of the game SFy:

I Y, Y

I1 Sk, Sk e
played according to 7, the natural projection [F; | i <n]®Y,, — [F; | i < n] has norm
at most 2. Now consider any run of the game where I plays according to 7 and II plays
unit spheres of subspaces of dimension 1: Sy, Sry,, - ... Then by construction, (y,)nen
is a basic sequence with constant at most 2, and because I played according to 7, all
normalized block-sequences of (y,) belong to X.

O

The main goal of next section is to investigate conditions on families H of subspaces
of X for which a local version of Theorem 210 can be proved, that is, a version of
Theorem 2.10] where we can ensure that the subspace Y given by the theorem is in H.
Such a result will be proved in Section [l
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3 D-families: definition and examples

In this section, we introduce the notion of a D-family: these families will be those
for which we will be able to prove local Banach-space dichotomies. The “D” in the
name of D-families both refers to the possibility of proving such dichotomies, and to
the fundamental property that one can diagonalize among such families (see Lemma [3.5]
below). We will then give sufficient conditions for being a D-family, and examples.

3.1 Definition and first properties

As seen in the previous section, the main ingredient to prove dichotomies of a Ramsey-
theoretic nature in a given family of subspaces is the possibility to diagonalize among
elements of this family. Inspired by Lemma [[.27, we will define D-families as families
of subspaces that are Gy for a certain topology. This will ensure, on one hand, that a
diagonalisation property similar to this in the definition of a PT-coideal will be satisfied
by these families, and on the other hand that they have a good behaviour relative to
FDD’s.

Fix X a Banach space. For F € Sub=®(X) and Y € Sub(X) such that FF € Y,
let [F,Y]:={Z e Sub(X) | F < Z < Y}; and for e > 0, let [F,Y]X be the set of
Z € Sub(X) for which there exist Z' € [F,Y] and an isomorphism 7: Z’ — Z with
|T"—Idz | < e (this latter set will simply be denoted by [F,Y]. when there is no
ambiguity on the ambient space X). To avoid any misunderstanding, let us note that
this notation [F, Y] should not be confused with the one used to denote the closed linear
span of a sequence of vectors or of finite-dimensional subspaces.

Lemma 3.1. The sets [F,Y]., fore > 0, F € Sub~*(X) and Y € Sub(X) such that F <
Y, form a basis for a topology on Sub(X). Given Y € Sub(X), a basis of neighborhoods
of Y for this topology is given by the [F,Y|.’s, fore >0 and F €Y.

Proof. What we have to show is that given ¢; > 0, Y; € Sub(X), and F; € Sub~*(X)
such that F; € Y; for 1 < i < n, and given Z € (._,[F;, Yi].,, there exist ¢ > 0 and
a finite-dimensional subspace F' < Z such that [F, Z]. < (i, [Fi, Yil,. For each i, fix
Z; € |F;,Y:] and T;: Z; — Z an isomorphism such that |T; —Idz, | < &;. Fix e > 0
such that for every i, |T; —Idz, | + (1 + &) < &;, and let F = > | T;(F;). Then we
have ' < Z. Now let W € [F,Z]., and fix 1 < i < n; we show that W € [F},Y}].,.
Fix W' € [F,Z] and T: W — W an isomorphism such that |7 — Idy | < e. Then
is an isomorphism from T, '(W’) to W, and we have T, (W') € [F}, Y;].

To(T;) M (W)
Moreover,
HT o (1)1 wry — Mg | < H (T = Tdw) o (T3) 171y | + T — Tz
< e(l+e&)+ T —1dz|
< &,

concluding the proof.
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The topology on Sub(X) defined in Lemma Bl will be called the Ellentuck topology.
It does not depend on the choice of the equivalent norm on X. This name was given
because of the similarity between this topology and other topologies that arise in the
context of Ramsey spaces, and that are also called Ellentuck. See [59] for more details.

Definition 3.2. A D-family of subspaces of X is a family H = Sub®(X) satisfying the
two following properties:

1. H is stable under finite-dimensional modifications, i.e. for every Y € Sub®(X) and
every F' € Sub~®(X), we have Y € H if and only if Y + F € H;

2. H, seen as a subset of Sub(X), is G for the Ellentuck topology.

We now prove a few properties of D-families. In what follows, we fix H a D-family
of subspaces of X.

Definition 3.3. Let Y € Sub(X). The restriction of H to Y is the set Hy = H n
Sub(Y).

Lemma 3.4. Let Y € Sub®(X). The Ellentuck topology on Sub(Y) coincides with the
topology induced on Sub(Y") by the Ellentuck topology on Sub(X). In particular, Hy is
a D-family of subspaces of Y.

Proof. Observe that for every ¢ > 0, every Z € Sub(Y) and every finite-dimensional
subspace F' € Z, we have [F,Z]Y = [F,Z]X ~ Sub(Y). The left-hand-side of this
equality is the general form of a basic neighborhood of Z in the Ellentuck topology on
Sub(Y'), and the right-hand-side is the general form of a basic neighborhood of Z in
the topology induced on Sub(Y') by the Ellentuck topology on Sub(X). Thus, these
topologies coincide.

Therefore, since H is Gy for the Ellentuck topology on Sub(X), its intersection with
Sub(Y') is Gs for the Ellentuck topology on Sub(Y'), proving the second part.
O

Lemma 3.5. Let (Yy,)nen be a decreasing family of elements of H. Then there exists
Yoo € H such that for everyne N, Yo, ©* Y,,.

Proof. Let (Up)nen be a decreasing family of Ellentuck-open subsets of Sub(X) such
that H = (),,enUn- We define inductively an increasing sequence (Fy,)nen of finite-
dimensional subspaces of X in the following way. Let Fy = {0}. The space F,, being
defined, by axiom 1. in the definition of a D-family, the subspace Y,, + F, is in H,
so in U,; thus there exists a finite-dimensional subspace F, 1 < Y, + F, such that
[Frt1, Yo+ F,] € U,. We can even assume that F,, € Fj,;1 and that dim(F,,+1) = n+1.
This achieves the construction.

Now let Yo, = (J,,cy I By construction, for every n € N we have Yo, € F, +Y,,, so
Yy, ©* Y,. This also implies that Yo, € [Frq1, Yo + Fn] S Uy, so finally Y, € H.
O
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Corollary 3.6. Gy = (H, Sx, 0., S, S, €) is an approzimate Gowers space.

Definition 3.7. An H-good FDD is an FDD (F},),en of a subspace of X such that for
every infinite A < N, the subspace [F,, | n € A] is in H.

This terminology is motivated by the fact that we want to prove dichotomies where
the outcome space is in the family H (so for instance, non-Hilbertian). In our di-
chotomies, good FDD’s will play a similar role as the basis (y,)nen in the statement of
Theorem 210 does.

Lemma 3.8. Let (F,)nen be an FDD of a subspace of X. Suppose that [F,, | n€ N] e H.
Then there exists a blocking (Gp)nen of (Fy) which is H-good.

Proof. Let (Up)nen be a decreasing family of Ellentuck-open subsets of Sub(X) such
that H = (),enUn- Let, for every k € N, Y, = [F; | | > k]. We build (G,) by
induction as follows. Suppose that the G,,’s have been built for m < n, and let k,, =
(max supp(Gn—1)) + 1 if n > 1, k, = 0 otherwise. By axiom 1. in the definition of
a D-family, for every A < {0,...,n — 1}, we have that [G,, | m € A] @Y}, € Uy,
so there exists a finite-dimensional subspace K2 < [G,, | m € A] @Y}, and €2 > 0

such that [K;?, [Gm | m e Al ® Ykn] , € Un. We can assume that K2 =[G, |
£

n

m € Al @ H2 for some finite-dimensional subspace H < Y3 . Now let H, be the
finite-dimensional subspace of Y}, generated by all the H’s, A < {0,...,n — 1}, and
let &, = min{ed | A < {0,...,n — 1}}. We have that for every A < {0,...,n — 1},
[[Gm | me Al ® Hy, [Gn, | m e Al ® Ykn] C U,. Now consider an isomorphism
En

T,: Yy — Yy such that

e T, is equal to the identity on [Fy | k < ky];

o T5(Y,) = Yi,;

o T,,(H,) C [Fi | kn < k < kpy1] for some kyi1 > ky;

o |7, —Idy, | < en.

We let G,, = [F); | kn < k < kp41], and this achieves the construction.

It is clear that (G,,) is a blocking of (F,,). We show that it is H-good. Let A € N be
infinite and n € A, we show that [G,, | m € A] € U, which is enough to conclude. We
know that T, fixes [G,, | m € A, m < n], and we have T,,(H,,) S Gy, thus (T;,) " *([Gs |
m € A]) contains [G,, | m € A, m < n] ® H,,. Moreover, (T,,)~! stabilizes Y}, , which
contains the G,’s for m > n, so (T;,) 1 ([Gy, | m € A]) is contained in [G,, | me A, m <
n] @Yy, . Hence, we have:

()" ([Go | m € A]) € [[Gm Ime A, m<n]®Hy, [Gm|me A, m< n]G—)Ykn],
and since |7}, — Idy, || < 5, we finally get:

[Gm|meA]e[[Gm|meA,m<n]®Hn, [Gm|meA,m<n]@Ykn] < Uy,

En
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as wanted.

O

Lemma 3.9. For every Y € H and every € > 0, there exists a subspace of Y having an
‘H-good FDD (F,)nen with constant at most 1 + €.

Proof. By Lemma B8 it is enough to build the FDD (F,) in such a way that [F), |
n € N| € H; passing to a blocking, we can turn it into an H-good FDD having the
same constant. Let (U, )nen be a decreasing family of Ellentuck-open subsets of Sub(X)
such that H = (),,eyUn. We build the FDD (F,)nen by induction on n. Suppose that
Fy, ..., F,_1 have been built. Let Y,, be a finite-codimensional subspace of Y, with
Y, n[F; | i <n] = {0}, and such that the natural projection from [F; | i < n]@®Y,, onto
[F; | i < n] has norm at most 1 +&. If n > 1, we can even assume that Y, £ Y,,_;. We
have that [F; | i <n] @Y, € Uy, so we can find a finite-dimensional subspace F,, € Y,

such that [[E |i<n], [Fili<n]® Yn] C U,,. This achieves the construction.

By construction, for every n € N, we have [F; | i > n]| € Y,,, so the natural projection
from [F; | i <n]@®[F; | i > n] onto [F; | i < n] has norm at most 1 + . This shows
that (F),) is an FDD with constant at most 1 + . Moreover, for every n € N, we have
[F|ieN]e [[Fi\isn], [Fi|i<n]€r)Yn] < Uy, 50 [F; | i e N] e H.

O

The next lemma is an H-good version of Bessaga—Pelczyriski’s selection principle.

Lemma 3.10. Let Y be a subspace of X having an FDD (F),)nen, and let U € H be
such that U € Y. Then there exists a subspace Z of Y spanned by an H-good block-FDD
(Gr)nen of (Fy), such that Z isomorphically embeds into U.

Lemma [3.10] was stated in this form for greater clarity, but for several applications
in this paper, we will need a more general and more precise version of it, stated and
proven below. This can be seen as an amalgamation of Lemma [3.10] and Lemma [3.5]

Lemma 3.11. Let (Yi)gen be a family of subspaces of X such that for every k € N,
Yy has an FDD (FF),en. Assume that for every k € N, (FF1), oy is a block-FDD of
(FF)pen. Let (Up)ren be a decreasing family of elements of H and let (Ap)ren be a
sequence of positive real numbers. Assume that for every k € N, we have Uy € Y.

Then there exist a subspace Z < X generated by an H-good FDD (Gy)ken, such
that for every k € N, (G));=k is a block-FDD of (F, )neN, and there exists an iso-
morphic embedding T: Z — X such that for every k € N, we have T(Gy) < Uy and
H —1dz) 161k H Ay, and such that the FDD (T(Gg))ken of T(Z) is H-good.

Moreover, if we are given, for every k € N, a subset Dy < Sx such that, for every
finite A N, Dy n[FF | ne A] is dense in the unit sphere of [EF | n € A], then we can
ensure that for every k € N, the space Gy has a basis made of elements of Dy,.
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Proof. Without loss of generality, we can assume that Ay < % and that for every k € N,
Apiq < %. Let (Ug)ren be a decreasing family of Ellentuck-open subsets of Sub(X)
such that H = (e Uk Let C be the constant of the FDD (F.). We build by induction
on k the FDD (Gy), along with an FDD (Hy)ren of a subspace of X, such that for all
k e N, dim(Gy) = dim(Hy). We also build, at the same time, a sequence of isomorphisms
Ty : Gy — Hp; the embedding T will be defined as the unique bounded linear mapping
on Z extending all the Tj’s.

Suppose that the G;’s, the H;’s and the T;’s are built for [ < k. Let r; € N be
defined as follows: if k& = 0, then r; = 0, and otherwise, 7 is such that supp (Gx_1) <
supp (Fr’i ), where the supports are taken with respect to the FDD (F,’ffl)neN. Let
Y] = [FF | n > ry], and let U] be a finite-codimensional subspace of U, such that
U, <Y/ and U, n [H; |l < k] = {0}; if £ > 1, we moreover suppose that U;, < Uj_;.
For every A € {0,...,k—1}, the subspaces [G; | l € A]|@®Uj, and [H; |l € A]@Uj, are in
H, so as in the proof of Lemma [3.8] we can find £, > 0 and a nonzero finite-dimensional
subspace Hy, € U, such that for all A, both basic open sets:

(611 1e @ Hi G 1e Ao U

€k

and

[[Hl|zeA]@Hk,[H,ueA]@U,g]

ek

are contained in U),. We can even assume that for all [ < k, g < % Since Hy <
Y] = [F¥ | n > 7], we can find a finite-dimensional subspace Gy < Y/ having finite
support relative to the FDD (Fk)n;r,c of Y}/, and a linear mapping Tj: G, — Hj, such
that [T —Idg, | < §% and |7}, ' —Idp, || < sic(eTT)- We can even ensure that Gy, has
a basis made of elements of D;.. This finishes the induction.

As wanted, for every k € N, (G);=k is a block-FDD of (F¥),en. In particular (Gy)ren
is a block-FDD of (FY) and hence has constant at most C. Let Z =[Gy | k € N] and
7 = @pen Gk, a dense vector subspace of Z. Define T: 7 — X as the unique linear
mapping extending all the T}’s on their domains. For every eventually null sequence
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(x1)1eny with VI e N x; € Gy, and for every k € N, we have:

(T —1dy) (Z xl> H <

|(Ty = 1dg, ) (1)

18

I=k I=k
e}
Ay
< ZEHMH
=k
e}
Ak
< ZWHMH
I=k
e e} e}
Ay,
S 221 k+zc'20 Zml
=k I=k

[00]
S

l=k

< A

This shows that < Ap. In particular, T is a bounded operator on A ,

‘(T - IdZ>f@z>k Gi
so it extends to a bounded operator T': Z — X still satisfying H(T —1d2) 1=k H < Ay

for every k € N. In particular, since Ag < %, the latter inequality shows that T is an

isomorphic embedding, with |7 < 2 and |771| < 2. In particular, (Hg)gen is an FDD

of a subspace of X, with constant at most 3C.

It remains to show that the FDD’s (Gy) and (Hy) are H-good. For (Hy), the proof
is similar as in Lemma B8 given A € N infinite and k € A, we have:

[H|le A l>k cU,

SO:
[Hl|leA]e[[Hl|leA,l<k]@Hk,[Hl|leA,l<k]®U,;],

and by construction, the set on the right hand side is contained in U}, which concludes.
For (Gy), we need one more estimate. Let, for all k, Ky = [G; |l < k], Vi = [H] |

[ = k], and Wy, = K, @ Vj. Define Si: Wi, — Z as the unique operator which is equal
to the identity on K}, and to 7! on Vj. For all [ > k, we have:

el < Ek
24C(C +1) ~ 20=k.24C(C + 1)

|77 = 1d, | <

Thus, knowing that (H;);> is an FDD of V}, with constant at most 3C, and using the
same proof as for T', we can show that

. B £k 6O — k.
I (T )Wk Idy, | < Z 2=k . 24C(C + 1) 6C 2(C+1)

=k

Now recall that, by construction, supp(K}) < supp(Y}), where the supports are taken
with respect to the FDD (F?); and that Vi, < Y/. Since the FDD (F?) has constant
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C, the natural projection Wj — Vj, has norm at most C' + 1. Since S — Idy, is the
composition of this projection and (71) v T Idy, , we deduce that ||S, — Idw, | < .

We are now ready to prove that the FDD (Gy) is H-good. Let A be an infinite subset
of N, and let k € A, we want to prove that [G; |l € A] € U. We have:

(G| 1€ A] :Sk<[Gl 1leAl<k@H,O[H |leAl> k]),
and:
[Gy|le Al < kOH®[H |leAl>ke [[Gl |le Al < k®Hy, [Gi|le Al < k]@U,;],
so using the fact that | S, — Idw, || < €, we get that:

[Gy|leA]e [[Gl|leA,l<k]@Hk, [G) |zeA,z<k]@U,;] .
€k
And we know, by construction, that this latter basic open set is contained in Uy, as
wanted.

O

In the rest of this section, we introduce sufficient conditions for being a D-family,
which will be convenient for applications.

3.2 Wijsman and slice topologies

Let X a Banach space with a fixed norm || - |. For N an equivalent norm on X, for
Y € Sub(X) and for » € X, we denote by Ny,y(r) the norm of the class of z in the
quotient X /Y, when this quotient is equipped with the corresponding quotient norm.
Thus, we have an injective mapping:

on: Sub(X) — RX
Y — Nxpy

The Wijsman topology associated to N on Sub(X) is the topology obtained by pulling
back through ¢y the product topology on RX. For this topology, a net (Yy) of elements
of Sub(X) is converging to Y € Sub(X) if and only if for every z € X, Ny, (z) —
Nxy(x). In general, this topology depends on the choice of the equivalent norm N (see
[8], Section 2.4).

The slice topology on Sub(X) is the topology generated by sets of the form {Y €
Sub(X) | Y nU # &} and {Y € Sub(X) | ¢ (Y,C) > 0}, where U ranges over
open subsets of X, C ranges over nonempty bounded closed convex subsets of X, and
01| (Y, C) = infyeoyey £ — yll. The name slice topology comes from the fact that in the
previous definition, it is actually enough to make C range over slices of closed balls, that
are, nonempty sets of the form {x € X | |z| <, z*(x) = a}, where r > 0, 2* € X*, and
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a € R (see [§], Lemma 2.4.4). It is easy to see that the slice topology on Sub(X) only
depends on the isomorphic structure of X, but not of the norm.

The main properties of the Wijsman and the slice topologies can be found in [8]. We
reproduce some useful ones below.

Theorem 3.12 (see [§]).

1. If X is separable, then all the Wijsman topologies on Sub(X) associated to equiv-
alent norms are Polish.

2. If X is separable and has separable dual, then the slice topology on Sub(X) is
Polish.

3. The slice topology on Sub(X) is the coarsest topology refining all the Wijsman
topologies associated to equivalent norms on X.

4. (Hess’ theorem) If X is separable, then the Borel o-algebra associated with any
Wigsman topology on Sub(X) coincides with the Effros Borel structure on this set.

5. If X is separable and has separable dual, then the Borel o-algebra associated with
the slice topology on Sub(X) coincides with the Effros Borel structure on this set.

These topologies are easier to manipulate than the Ellentuck topology. However, we
have the following result:

Proposition 3.13. The Ellentuck topology on Sub(X) is finer than the slice topology.
In particular, it is finer than oll the Wijsman topologies associated to equivalent norms.

Proof. Fix U a nonempty open subset of X. We show that & = {Y € Sub(X) | Y n
U # @} is Ellentuck-open. For this, consider Y e Y. We fix 20 e UnY and € > 0
such that B(xg,e|zol|) € U; we show that [Rzg,Y]. € U. Let Z € [Rxg, Y], and fix
Z" € [Rzo, Y] and T: Z' — Z an isomorphism with |7 — Idy | < e. If zy # 0, then
|T(x0) — xo| < €|xo|, so by the choice of &, we have T'(xz¢) € U n Z; this conclusion
remains true if zg = 0. This shows that Z € U.

Now fix C' a nonempty bounded closed convex subset of X. We show that V = {Y €
Sub(X) | §;.(Y,C) > 0} is Ellentuck-open. For this, we fix Y € V and we show that
[{0},Y]e =V, for small enough e. More precisely, let n = ). (Y,C) and let R > 1 such
that C' < B(0, R — ). Then we take ¢ = 7k (so in particular, £ < 3). Let Z € [{0},Y].,
and fix Z' € [{0},Y] and T: Z/ — Z an isomorphism with |7 — Idy || < . We pick
r € Z' and we show that ). (T'(z),C) > 3, which is enough to conclude. If |z > 2R,
then [T(z)| = 2| — |T(z) — 2| = % > R, s0 6,(T(x),C) = n. If 2] < 2R, then
IT(x) — =] < 3. And since z € Y, we have ¢ (z,C) = n, so 0).|(T(z),C) = 3.

U

Corollary 3.14. Consider H < Sub®(X) satisfying the two following properties:
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1. For every Y € Sub®(X) and every F € Sub~*(X), we have Y € H if and only if
Y +FeH;

2. H, seen as a subset of Sub(X), is Gs for one of the Wijsman topologies, or for the
slice topology.

Then H is a D-family of subspaces of X.

3.3 Degrees

Degrees will be our main way of defining D-families throughout this paper. A degree
allows one to define a notion of largeness on the class of all Banach spaces, and this
notion gives rise to a D-family when restricted to the set of subspaces of some fixed
Banach space.

We define an approzimation pair as a pair (X, F') where X is a (finite- or infinite-
dimensional) Banach space, and F' is a finite-dimensional subspace of X. We denote by
AP the class of approximation pairs. If (X, F), (Y,G) € AP, a morphism from (X, F') to
(Y,G) is a pair ¢ = (S,T), where S: G — F and T': X — Y are operators that make
the following diagram commute:

F—'‘s X

g e

G——Y
where the ¢’s stand for the inclusions. The norm of the morphism ¢ is defined as
lel = IS1- 1T it G # {0}, and || = 1 if G = {0}.

Definition 3.15. A degree is amapping d: AP — R for which there exists K: [1,00)x
R+ — R, such that:

e K, is non-decreasing in both of its variables;
o forall t e Ry, limg 1 Ky(s,t) = t;

and for every (X, F'), (Y,G) € AP and for every morphism ¢: (X, F) — (Y, G), we have
d(Y,G) < Ka(lel, d(X, F)).

Definition 3.16. Given a degree d, we say that a Banach space X is d-small if
SUppesub<e(x) A(X, F') < o0, and that X is d-large otherwise.

For most degrees we will consider, the value of d(X, F') will actually only depend
on F. Degrees satisfying this property will be called internal degrees, and d(X, F') will
simply be denoted by d(F). To verify that d: Ban=® — R, is an internal degree, it
is enough to find Ky: [1,00) x Ry —> R, as above, such that for every embedding
S: G — F between two finite-dimensional spaces, we have d(G) < Ky4(|S|-[|S™!|,d(F))
(where S~! is defined on S(G), and with the convention that |S| - |S™!| = 1 when
G = {0}).
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Examples 3.17.

1. Let d(F) = dim(F). Then d is an internal degree, witnessed by Kg(s,t) = t. A
space is d-small if and only if it is finite-dimensional.

2. Let d(F) = dppm(F, Kgim(F)). Then d is an internal degree, witnessed by K,(s,t) =
st. A space is d-small if and only if it is Hilbertian (a consequence of Kwapien’s
theorem [36]).

3. Fix 1 < p < 2 < g < w. Let d(F) be the type-p constant (resp. the cotype-q
constant) of F. Then d is an internal degree, witnessed by Ky(s,t) = st. A space
is d-small if and only if it has type p (resp. cotype ¢). If X is d-small, then
SUP pegub<=(x) d(F') is the type-p constant (resp. the cotype-q constant) of X.

4. Fix 1 < p < 0. For (X, F) € AP, define d(X, F) as the infimum of the M’s for
which the canonical inclusion of F' into X M-factorizes through some £}, meaning
there exist n € N and operators U: F' — (3 and V': £ — X with |[U| - [V| = M,
making the following diagram commute:

ty
7N
Fe—t 3 X

Then d is degree, witnessed by Ky(s,t) = st. By [38], Theorem 4.3 (and the
classical fact that ¢4’s are uniformly complemented in L,,1 < p < o), we have
that:

e if 1 < p < o0, a space is d-small if and only if it is either an £,-space, or a
Hilbertian space;
e if p=1or p= 00, a space is d-small if and only if it is an £,-space.
5. For (X, F) € AP, define d(X, F') as the infimum of the M’s for which there exist

a space Z with a l-unconditional basis and operators U: F' - Z and V: Z — X
with |U] - ||V| = M, making the following diagram commute:

VA
AN
Fee—r'" X

Then d is a degree, witnessed by K,(s,t) = st. A space is d-small if and only if
it has Gordon-Lewis local unconditional structure (GL-lust) [24]. If X is d-small,
then sup pegup<=(x) d(X, F') is the GL-lust constant of X.

6. For (X,F) € AP, define d(X, F) as the infimum of the K’s such that F is K-
complemented in X. Then d is not a degree. To see this pick F =G c X c Y in
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such a way that F'is 1-complemented in X but not n-complemented in Y, so that
d(X,F) =1 and d(Y,G) = n; and take S = Idp, T the canonical inclusion of X
into Y.

This may be surprising, in view of the fact that a space is Hilbertian if and
only if there exists K > 1 such that all its finite-dimensional subspaces are K-
complemented in it (see [I], Theorem 12.42), i.e., Hilbertian spaces would be char-
acterized as the d-small spaces if d were a degree.

Remark 3.18. The notion of degree is closely related to the classical Pietsch’s theory
of operator ideals [47]. Recall (J[47] Chapter 6) that a quasi-norm on an operator ideal
2 is a mapping A: 2 — R, such that:

1. A(Idx) = 1 whenever X is 1-dimensional,

2. there exists a constant K > 1 such that A(S +T) < K(A(S) + A(T)) whenever
S, T belong to 2 and S + T makes sense,

3. AlUoToS) < |U|-A(T)-||S| whenever T belongs to 2 and U 0T o S makes sense.

Hence, to every quasi-normed operator ideal (2, A), we can associate a degree d4 defined
by da(X,F) = A(tp,x) for every approximation pair (X, F'), where ¢y x denotes the
inclusion map of F' into X. It is interesting to observe that all examples of degrees given
in Examples B.17 come in this fashion:

1. The dimension is the degree associated to the ideal of nuclear operators (see [47],
6.3.1); this is a consequence of Auerbach’s lemma.

2. The internal degree d(F') = dp(F, ﬁgim(F)) is the degree associated to the ideal
of Hilbert operators (see [47], 6.6.1).

3. The type p and cotype g constants are the degrees associated to the ideals of
type p and cotype q operators, normed with the type p and cotype ¢ constants,
respectively (see [48], Section 3.a).

4. The degree defined in 4. of Examples [3.17is the degree associated to the ideal of
discretely p-factorable operators (see [47], 19.3.11).

5. The degree defined in 5. of Examples 317 is the degree associated to the ideal of
o-nuclear operators (see [47], 23.2.1); this is a consequence of Theorem 23.2.5 in
[47].

We warn the reader that given a quasi-normed operator ideal (2, A), the class of da-
small spaces does in general not coincide with the space ideal associated to 2 (see [47],
2.1.2). This is for instance not the case for examples 4 and 5 above.

We will not further develop the link between degrees and quasi-normed operator
ideals in this paper, as this would be of limited practical use. Indeed, exhibiting a degree
adapted to a given situation is in general much easier than exhibiting a quasi-normed
operator ideal, as shown by the examples above.
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We can also define a notion of asymptotic smallness:

Definition 3.19. Let d be a degree. A Banach space X is said to be asymptotically
d-small if there exists a constant K such that for every n € N, there exists a finite-
codimensional subspace X,, £ X such that every n-dimensional subspace F' € X, satis-

fies d(X,F) < K.

When d(X, F) = dpp(F, Egim(F)), asymptotically d-small Banach spaces are exactly
asymptotically Hilbertian Banach spaces (see Definition [[.12]).

If d is an internal degree, then a subspace of a d-small space is itself d-small, and
a subspace of an asymptotically d-small space is itself asymptotically d-small. This is
not true in general; for example, L,([0,1]) is an L,-space, and for 1 < p # 2 < o,
the only non-Hilbertian subspaces of L,([0,1]) which are £, are the complemented ones
[38]. Similarly, the property of having Gordon-Lewis local unconditional structure is not

stable under passing to subspaces; consider ¢, spaces for 1 < p # 2 < 00, a consequence
of, e.g., [35].

Remark 3.20. A useful property of degrees is the fact that for F € G € Y < X, where
the spaces F' and G are finite-dimensional and the spaces X and Y are arbitrary, we
have d(X, F) < d(Y,G). To see this, just consider the morphism (Idp,Idy) from (Y, G)
to (X, F).

In the rest of this subsection, we fix a degree d.

Lemma 3.21. For every n € N, there exists a constant Cq(n) such that for every
(X, F) € AP with dim(F) = n, we have d(X,F) < Cyq(n). In particular, every finite-
dimensional space is d-small.

Proof. Let (X,F) € AP with dim(F) = n. If n > 1, then let T : ¢ — F be an n-
isomorphism. Then (7!, T) is a morphism from the pair (€7, £}) to the pair (X, F), with
norm at most n. So, letting Cy(n) = Kg(n,d(}, 7)), it follows that d(X, F) < C4(n).
The proof of the case n = 0 is similar, replacing ¢} by {0}.

U

Lemma 3.22. The properties of being d-small, d-large, and asymptotically d-small are
mvariant under isomorphism.

Proof. Let X and Y be two Banach spaces, and T: X — Y be an isomorphism. First
suppose that X is d-small, and let K = suppegup<=(x)d(X, F). Let G € Sub=(Y).
Then ((I'1)g,T) is a morphism from the pair (X,T71(G)) to the pair (Y,G), so
d(Y,G) < Kq(|(T" el - [T, d(X, T7HG))) < Kq(|TH] - |7, ). This bound does
not depend on G, so Y is d-small.

Now suppose that X is asymptotically d-small and fix a constant K witnessing it. We
show that Y is asymptotically d-small, witnessed by the constant L = Kq(|T~!|-|T|, K).
Let n € N. There exists a finite-codimensional subspace X,, < X such that for every
n-dimensional subspace F' € X,,, we have d(X, F) < K. Let Y,, = T'(X,,), and consider
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G < Y, an n-dimensional subspace. Then ((T~1);g,T) is a morphism from the pair
(X, T7Y(@)) to the pair (Y,Q), so d(Y,G) < Kq(|T7Y - |T],d(X,T~1(G))). Since
T7YG) € X,,, we have d(X,T~(G)) < K, so d(Y,G) < L, as wanted.

O

Lemma 3.23.

1. A complemented subspace of a d-small space is d-small.

2. A complemented subspace of an asymptotically d-small space is asymptotically d-
small.

Proof. Fix X a Banach space, Y a complemented subspace of X, and P: X — Y a
projection.

1. Suppose X is d-small, and let K = suppegup<=(x) d(X, F). Let F' S Y be a finite-
dimensional subspace. Then (Idg, P) is a morphism from the pair (X, F) to the
pair (Y, F'), so we have d(Y, F) < Ky(|P|,d(X,F)) < K4(|P|,K). Hence Y is
d-small.

2. Suppose X is asymptotically d-small, witnessed by a constant K. We show that
Y is asymptotically d-small, witnessed by the constant Ky(|P|,K). Let n € N,
and fix a finite-codimensional subspace X,, € X such that for every n-dimensional
subspace F' € X,,, we have d(X,F) < K. Let Y;, = X,, nY. For an n-dimensional
subspace F' € Y, (Idg, P) is a morphism from the pair (X, F') to the pair (Y, F),
so we have d(Y, F) < K4(|P|,d(X, F)) < K4(| P|, K), as wanted.

O

Lemma 3.24. Let X be a Banach space, and Y be a finite-codimensional subspace of
X. Then:

1. X is d-small iff Y is d-small;
2. X is asymptotically d-small iff Y is asymptotically d-small;

Proof. Since Y is complemented in X, we know by Lemma B.23] that if X is d-small
(resp. asymptotically d-small), then so is Y. So in both cases, we just have one direction
to show.

1. Suppose that Y is d-small, and let K = supgegup<=(y) d(Y,G). By Lemma .21}
we can suppose that X is infinite-dimensional. We denote by k the codimension
of Y in X. Recall that by Lemma 3 in [21], every k-codimensional subspace of X
is A(k)-isomorphic to Y, where the constant A(k) only depends on k.

Let F < X be finite-dimensional; we want to bound d(X, F). Find Z € X a sub-
space with codimension k containing F'. Let T: Z — Y be an A(k)-isomorphism.
We have d(Y,T(F)) < K. Moreover, (T}p,T~!) is a morphism from the pair
(Y,T(F)) to the pair (X, F), so d(X,F) < Kg(|T| - |T7Y, K) < Kq(A(k), K), as
wanted.

34



2. Suppose that Y is asymptotically d-small. Then there exist a constant K and
finite-codimensional subspaces Y,, € Y for all n, such that for every n-dimensional
subspace F' € Y,,, we have d(Y, F) < K. In particular, for such an F', we also have
d(X,F) < K, showing that X is asymptotically d-small.

O

Proposition 3.25. Let X be a Banach space, and H be the set of subspaces of X that
are d-large. Then H is a D-family.

Proof. Lemma [B.2T] shows that H contains only infinite-dimensional subspaces. The
stability of H under finite-dimensional modifications comes from Lemma Now we
need to prove that H is Ellentuck-Gs. For every n € N, let U,, = {Y € Sub(X) | IF €
Sub=*(Y) d(Y, F) > n}, so that H = (),,cyUn. We show that all the U,,’s are open.

Fix n € Nand Y € U,. Let F € Sub~*(Y) be such that d(Y, F) > n. We know
that lim,_1 Kq(s,n) = n, so there exists ¢ € (0,1) such that K4(1*£,n) < d(Y,F).
We show that [F,Y]. € U,. Let Z € [F,Y]., and let Z' € [F,Y] and T: Z' — Z be
an isomorphism such that |7 —Idy | < e. Then |T| < 1+¢ and |77 < £. So

1+e
1—¢

T
(TF P, T_l) is a morphism of norm at most from the approximation pair (Z, T(F))

to the pair (Y, F). Thus, d(Y,F) < Kd(%—:,d(Z,T(F))). If we had d(Z,T(F)) < n,
we would have d(Y, F) < Kq4(1££,n), contradicting the choice of €. So d(Z,T(F)) > n,

witnessing that Z € U,,. U

Corollary 3.26. Given a sequence (dp)nen of degrees and a space X, the family of
subspaces of X that are large for all the d,,’s is a D-family, and in the same way, for
fixed N € N, the family of subspaces of X that are large for at least one d,, n < N, is
also a D-family.

Proof. Since the class of G5 subsets of a topological space is closed under countable
intersections and under finite unions, this is a consequence of Proposition [3.25] O

For instance, for 2 < gy < o fixed, the family of subspaces of X that do not have
any cotype ¢ < qo is a D-family.

If d is a degree and X a Banach space, the D-family defined in Proposition
will be denoted by ’Hé( , or by Hg4 when there is no ambiguity. An Hgz-good FDD will
simply be called d-good. In the case of families defined by a degree, we have a useful
strengthening of the notion of good FDD’s:

Definition 3.27. An FDD (F},),en of a Banach space X is d-better if d( X, F,,) —— 0.

n—00

This implies that (F,) is a d-good FDD. Indeed, if A € N is infinite, then for every
n € A, we have d([F,, | m € A],F,) > d(X, F,). Below we prove a weak converse to
this; this can be seen as the d-better version of Lemma [3.8]

Lemma 3.28. Let (F,)nen be an FDD of a d-large Banach space X. Then there exists
a blocking (Gp)nen of (Fy) which is a d-better FDD.
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Proof. Let C' be the constant of the FDD (F},). For each k € N, let X, = [F; | | > k]
and let P,: X — X} the projection associated to the FDD. We build (G,) by in-
duction as follows. Suppose that the G,,’s have been built for m < n, and let &, =
(max supp(Gn—1)) + 1 if n > 1, k, = 0 otherwise. The space X}, is d-large, so there
exists H, € Sub~®(Xy,) such that d(Xy,,H,) > n. Now consider an isomorphism
Tn: Xy, — X, such that |T,|-||T,, || < 2 and such that T,,(H,,) S [Fy | kn < k < kpt1]
for some ky, 1. Let G, = [Fy | kn < k < kp11]. This finishes the construction of (Gy,).
To prove that (G,) is d-better, fix n and consider the morphism ((T5,)1m,,, T, L o Pg,)
from the pair (X,G),) to the pair (Xy,, H,). It has norm at most 2(1 + C), so n <
d( Xk, , Hy) < K4(2(1 + C),d(X,G,)). In particular, for every constant K, as soon as
n> Ky(2(1+C), K), we have d(X,G,,) > K. This shows that d(X,G),) .
O

As an illustration, note that if d(F’) is the dimension of F', then any FDD is d-good,
while a d-better FDD is an FDD where the dimensions of the summands tend to infinity.

4 The first dichotomy

In this section, we generalize Gowers’ Ramsey-type Theorem 210 to D-families. As an
application, we prove our first dichotomy (Theorem [£4]), a local version of Gowers’ first
dichotomy (Theorem [L.20]).

4.1 A local version of Gowers’ Ramsey-type theorem

In this subsection, we fix a Banach space X, and a D-family H of subspaces of X. We
work in the approximate Gowers space Gy = (H, Sx,d).|, S, &%, €) defined in last section
(see Corollary B.6]). Each time we will mention Gowers’ game or the asymptotic game,
we will be referring to the games relative to this space. Note that Gowers’ game relative
to this space is in general different from the original game defined by Gowers. For Y € H,
the game Gy has the following form:

I Y Y

II Yo Y1
where the y,,’s are elements of Sx, and the Y,,’s are elements of H, with the constraint
that for all n € N, Y,, € Y and y, € Y,,. The outcome is, as usual, the sequence
(yn)nEN € (SX)N-

Our local version of Gowers’ Theorem 2.10] is the following:

Theorem 4.1. Let X < (SX)N be analytic, let Y € H, let A be a sequence of positive
real numbers and let € > 0. Then there exists Z € Hyy such that:
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e cither Z has an H-good FDD (Gp)nen, with constant at most 1 + €, and all of
whose normalized block-sequences belong to X¢;

e or player II has a strategy in Gz to reach (X)a.
Moreover:

o if H = Hy for some degree d, then we can even assume that the FDD (G,) is
d-better;

e if Y comes with a fized FDD (Fy)nen, then we can also assume that (G,) is a
block-FDD of (E},).

Gowers’ Theorem 2.10/is just the special case of the last theorem when H = Sub®(X)
(which is a D-family, the family of d-large subspaces of X for the internal degree d(F') =
dim(F)).

Proof of Theorem [{.1 We start with the general case; the “moreover” part will be dealt
with separately at the end of the proof. We proceed in the same way as in the proof of
Theorem 210 we apply the abstract Gowers’” Theorem to the approximate Gowers
space Gy, endowed with the system of relatively compact sets (Kx,®x) defined in
Subsection (recall that the elements of Kx are the unit spheres of finite-dimensional
subspaces of X, and that Sp ®x Sg = Sri+¢). In case we get Z € H)y such that player
IT has a strategy in Gz to reach (X')a, we are done. So we now suppose that there exists
U € H,y such that player I has a strategy 7 in SFy to build a sequence (K, )neny with
bs((Kp)nen) S X€. We can assume that the strategy 7 is such that for every run of the
game SFy:

I U Uy

I1 Sao Sa,
played according to 7, we have [G; | i < n] n U, = {0} and the natural projection
[Gi|i<n]®U, — [G; | i < n] has norm at most 1 + . We build an FDD (G,,)nen
of a subspace of U, with constant at most 1 + &, such that [G,, | n € N] € H, and all of
whose normalized block-sequences belong to X¢; by Lemma 3.8 this will be enough to
conclude.

Let (U )nen be a decreasing sequence of Ellentuck-open subsets of Sub(X) such that
(NpenyUn = H. We describe a run (Uy, Sg,, Ur, Sy, - . .) of the game SFy where I plays
according to 7, by describing the moves of II. Suppose that Uy, S, - - -, Un—1, Sg,_, have
just been played. According to the strategy 7, player I plays U,, a finite-codimensional
subspace of U. Since U € H, we have [G; | i < n|]®U, € H < U,. So we can find a

finite-dimensional subspace G,, < U, such that [[Gl |i<n],[Gi|i<n]® Un] < Uy,
We make II play Sg,, , finishing the construction.

Exactly in the same way as in the proof of Lemma [3.9, we can prove that (G;,)nen is
an FDD of a subspace Z € H 7, with constant at most 1 + ¢. Since the game SFy; has
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been played according to 7, we have that bs((Sq,, Jnen) S X', which exactly means that
every normalized block-sequence of the FDD (G,,) is in X

In the case where H = H, for some degree d, then by Lemma B.28, we can replace
the FDD (G,,) with one of its blocking which is d-better, and this blocking will still
satisfy the conclusion of the theorem.

We now prove the refinement of the theorem in the case where Y has a fixed FDD
(Fy)nen. Without loss of generality, we assume that the sequence A = (A, )pen is

decreasing, that Ay < 1, and that (1 + %) Gfﬁg) < 1+ e. The general case applied to

X = (X)% (which is still analytic) and to the sequence A’ = % gives a U € Hy such
that either player II has a strategy in Gy to reach (X’)as, or U has an H-good FDD
(K»n)nen with constant at most 1 + 5 all of whose normalized block-sequences belong to
(X")¢. In the first case, we are done, since (X’)ar € Xa. In the second case, we apply
Lemma BI0to Y = Y, (Ef)peny = (Fu)nen, Ur = [K,, | n > k] for every k € N. This
gives us a Z € ‘Hy spanned by an H-good block-FDD (G, )nen of (F7,), and an isomorphic
embedding T': Z — U such that for every n € N, [(T —1dz) (g, jk=n]| < ATl" and T'(G,) <
U,. Modifying T' if necessary, we can even assume that for every n, T(G),) has finite
support on the FDD (K,,) (of course, doing such a modification does not necessarily
preserve the fact that the FDD (T(G,,))nen is H-good, but this fact will not matter in
this proof). Since T'(G,,) € U, for every n, we have that lim,,_,o, min supp(G,,) = « (the
supports being taken with respect to the FDD (K,,)). Thus, extracting a subsequence
if necessary, we can assume that (T'(G,,)) is a block-FDD of (K,,).

We now prove that the FDD (G,) is as wanted. Recall that |T"— Idz | < Ao,
so [T <1+ A and |[T7Y] < ﬁ. Since (T'(G,)) is a block-FDD of (K,), which
has constant at most 1 + 5, we deduce that (T'(G),)) as well has constant at most

27
1+ £. Hence, (G,) has constant at most (1 + 5) (}fﬁg) < 1+ ¢, as wanted. Now let

(x;)ien be a normalized block-sequence of (G,,) ; we prove that (z;) € X¢. For every 1,

x; € [Gp | n =] so||T(x;)—x;| < & Hence, letting y; = %ﬁgu, we have |z; —y;l| < AL
Observe that (y;)ien is a normalized block-sequence of (T'(G,,)), so of (K,,); hence, it is
in (X’)¢. Thus, (z;) is in ((X”)°) o/, which is contained in X°. This finishes the proof.

O

Remark 4.2. The essential difference between Theorem 1] and Smythe’s local version
of Gowers’ Ramsey-type theorem proved in [57] is the fact that, in Smythe’s theorem,
the original Gowers’ game appears: player I is allowed to play whatever subspace he
wants, not only elements of H. The cost is that the conditions on the family H are much
more restrictive in Smythe’s theorem than in our theorem. Thus, it is not clear at all
that Smythe’s theorem could apply for the families we shall consider (for instance, the
family of non-Hilbertian subspaces of a given Banach space).
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4.2 The dichotomy

We now want to prove a local version of Gowers’ first dichotomy (Theorem [[.20]), that
is, a similar dichotomy where we moreover ensure that the subspace given as a result
will be in a fixed D-family. To do this, we will need local versions of the two possible
conclusions. In particular, we will need a weakening of the notion of HI space.

Definition 4.3. Let X be a Banach space and let H be a D-family of subspaces of X.
We say that a subspace of X is H-decomposable if it is equal to the direct sum of two
elements of H. The space X is hereditarily H-indecomposable, or H-HI, if X € H and X
contains no H-decomposable subspace.

If d is a degree, we call a space X hereditarily d-indecomposable, or d-HI, if it is
hereditarily ’Hé( -indecomposable. In other words, if it is d-large and if no subspace of it
is a direct sum of two d-large subspaces.

In the case where H = Sub®(X), i.e. where d is the dimension, we recover the notion
of HI spaces.

Theorem 4.4 (The first dichotomy). Let X be a Banach space, and let H be a D-family
of subspaces of X, containing X. Then there exists Y € H such that:

o either Y has an H-good UFDD;
e orY is hereditarily Hy -indecomposable.

Moreover, if X comes with a fixed FDD, then in the first case, the UFDD of Y can be
taken as a block-FDD of the FDD of X.

This is a true dichotomy in the sense that both classes it defines are, in some way,
hereditary with respect to H (every block-FDD of a UFDD is a UFDD, and if YV is
hereditarily #H;y-indecomposable, then every subspace Z € H;y is hereditarily H;z-
indecomposable); and these classes are very obviously disjoint, since a subspace Y with
an H-good UFDD has continuum-many decompositions as a direct sum of elements of
H.

We spell out the version of the dichotomy when the D-family is induced by a degree
d, taking into account Lemma

Theorem 4.5 (The first dichotomy for degrees). Let X be a Banach space, and let d
be a degree such that X is d-large. Then there exists Y < X a d-large subspace which
either has a d-better UFDD, or is hereditarily d-indecomposable.

Proof of Theorem [{4 We fix A = (A;);en a sequence of positive real numbers satisfying
the following property: for every normalized basic sequence (x;);ey in X with constant at
most 2, and for every normalized sequence (y;)ien in X such that Vi e N |z; — y;]| < A,
the sequences (x;) and (y;) are 2-equivalent. Let X be the set of sequences (z;)ien €
(Sx)N satisfying the following property: for every N € N, there exists an eventually null
sequence (a;)ien € RY such that |, . o, @ii| > N |,y @izi|. The set X is a Gg subset
of (Sx)N. We apply Theorem Bl to X, to the set X, to the sequence A, and to ¢ = 1.
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First case: There exists Y € H with an H-good FDD (F,)nen such that no normalized
block-sequence of (F,) belongs to X. Moreover, if X comes with a fized FDD, then (F,)
s a block-FDD of the FDD of X.

We then show that (F),) is a UFDD. Let, for every n, y, € F, and let A € N
be infinite and coinfinite, and suppose that ), _yn converges; we show that > _,yn
converges. Without loss of generality, we can assume that 0 € A. Consider a sequence
0 =ng <ny <ng < .. of integers such that A = |J; oyen[7i, ni+1 — 1]]. For every i € N,
consider x; € [Fy, | n; < n < njy1] with |z;| = 1 and a; € R such that 3, <, .., Yn =
a;z;. Then (x;)en is a normalized block-sequence of (F},), so does not belong to X.
Hence, there exists N € N such that for every k < [, we have:

Z a;r;l| <N

k<i<l
1 even

Z a;T;| .

k<i<l

We show that ] _, yn converges using Cauchy criterion. Fix € > 0; there is n. € N

such that for every ¢ = p > n., we have HZ < g; we can moreover assume that

ne is one of the ng’s. Fix ¢ = p > n.. Fixing k and [ such that ny_1 < p < ni and
n; < q < nyy1, we have:

Diovn| < | D wa| | D wa| | Dl e
psn<q psEn<ng nEp<n<ng ny<n<q
neA neA
< 2+ Z a;T;
k<i<l
i even
< 2+ N Z a;x;
k<i<l
= 2+ N Z UYn
nEp<n<ny
< (N +2)g,

concluding this first case.

Second case: There exists Y € H such that player II has a strategy in Gy to reach
(X)a-

We then show that Y is hereditarily Hy-indecomposable. Fix U,V € H;y and
N e N. We will build u € U and v € V such that |u| > &|u + v|, which will be enough

to conclude. Consider a run of the game Gy:
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I ZoﬁU ZlﬂV ZQﬁU Z3ﬂV
II 20 Al z92 z3 . e
where II plays using a strategy to reach (X)a, and where I plays as follows:

e if n is even, I plays Z,, n U where Z, is a finite-codimensional subspace of Y such
that the natural projection [z; | i < n]@® Z, — [z; | ¢ < n] has norm at most 2,
and such that Z, € Z,,_1 if n > 1;

e if nis odd, I plays Z, nV for Z, exactly as previously.

At the end of the game, player IT has built a normalized basic sequence (z,)neny with
constant at most 2, which is in (X)a, and such that for n even, z, € U, and for n odd,
zn€V.

Now choose a sequence (z),)neny € X such that for every n € N, |2, — 2, < A,
Choose (an)nen € RY eventually null such that Y oo, @nzhll > N [2,cn an2h|. By the
choice of A, the sequences (z,,) and (z],) are 2-equivalent, so we have:

neN

1 A w~ 1.~
Z ApZnl = 5 Z AnZy,| > E Z AnZzy, || = Z Z AnZnll -
n even n even neN neN
Thus, u = Y}, wven @n2n and v = D>, 14 an2y satisfy the wanted property. O

5 The second dichotomy

In this section, we prove our second dichotomy, a local version of Ferenczi—Rosendal’s
dichotomy between minimal and tight spaces (Theorem [[22]). We also discuss some
consequences, in particular concerning ergodicity.

5.1 The statement of the dichotomy

In this subsection, we state our second dichotomy. As for the first one, we first need to
provide appropriate local versions of the notions of minimality and of tightness. In the

whole section, we fix a Banach space X, a D-family H of subspaces of X, and a degree
d.

Definition 5.1. We say that X is H-minimal if X € H and if X isomorphically embeds
into every element of H. If H is induced by the degree d, then we say that X is d-minimal.

So X is d-minimal if it is d-large and embeds into any of its d-large subspaces - again
note that d-minimality is not a notion of “smallness”. In particular, if d is the dimension
(or equivalently if X = Sub®(X)), we recover the usual notion of minimality. Also
observe that if X is H-minimal, then it is separable; this is for instance a consequence
of Lemma [3.91
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Definition 5.2. Let (F},)nen be an FDD of a subspace of X.

1. The FDD (F,) is said to be H-tight if every Y € H is tight in (F},).
2. The space X is said to be H-tight if X € H and if X has an H-tight FDD.

If H is induced by the degree d, then we say that the FDD (F},) is d-tight, and that
the space X is d-tight.

So X is d-tight if it is d-large and has an FDD in which every d-large Banach space
is tight. When d(F') is the dimension of F', we recover the usual notion of tight FDD.

Note that H-minimality is a hereditary notion in the sense that if X is H-minimal,
then every Y € H is Hy-minimal. The notion of H-tightness is also hereditary in the
following sense:

Lemma 5.3. Let (F),)nen be an FDD of a subspace of X.

1. If a Banach space Y is tight in (F,), then it is also tight in all of its block-FDD'’s.

2. If (F,,) is H-tight, then all of its block-FDD’s are H-tight. In particular, if the FDD
(Fy,) witnesses that X is H-tight, then every Y € H generated by a block-FDD of
(Fp) is Hyy-tight.

Proof. We only prove 1., since 2. is an immediate consequence. Let (G, )men be a block-
FDD of (F},), and let Iy < I; < Iy < ... be a sequence of nonempty successive intervals
witnessing the tightness of Y in (F},). Observe that every infinite subsequence of (I;)
still witnesses the tightness of Y in (F},). Thus, without loss of generality, we can assume
that for every m € N, there is at most one 7 € N such that I; n supp(G,,) # @. If there
are infinitely many I;’s that intersect no set of the form supp(G,,), then by tightness,
Y &[Gy, | meN] soY is tight in (G,,). Otherwise, passing again to a subsequence if
necessary, we can assume that for every i € N, I; intersects at least one of the supp(G,,)’s.
We let, for every i € N, J; = {m € N | I, nsupp(G,) # @}. Then the J;’s are nonempty
intervals and satisfy Jy < J; < Jo < ...; moreover, by construction, for every infinite
A < N we have [Gp, | m ¢ Ujcq il S [Fn|n ¢ Ujealil, so Y £ [Gr | m & Ujeq Jil-
This shows that Y is tight in (Gy,).

O

Corollary 5.4. If X is H-tight (resp. d-tight), then it has an FDD which is H-tight
and H-good (resp. d-tight and d-better).

Proof. In the case of a D-family, starting from any H-tight FDD (F},),en of X, we can
find a blocking (G, )nen of this FDD which is H-good, using LemmaB.8 The FDD (G),)
is still H-tight, by Lemma 5.3l In the case of a degree, the proof is the same, using this
time Lemma to pass to a better blocking. O

Theorem 5.5 (The second dichotomy). Suppose that X € H. Then X has a subspace
Y € ‘H such that:
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o cither Y is Hyy-minimal;
o orY is Hyy-tight.

Moreover, if X comes with a fixred FDD, then in the second case, the H-tight FDD of Y
can be taken as a block-FDD of the FDD of X.

This is a true dichotomy: indeed, as we already saw, the notions of H-minimality
and H-tightness are hereditary in a certain sense, and obviously an H-tight space cannot
be H-minimal.

It is worth spelling out the version of the second dichotomy for degrees:

Theorem 5.6 (The second dichotomy for degrees). Suppose that X is d-large. Then X
has a d-large subspace Y which is either d-minimal or d-tight.

In the case where d(F') = dim(F'), we get back Theorem [.22]

The rest of this section is organized as follows. In Subsection [5.2] we prove Theorem
Then, in Subsection (3] we study the properties of H-minimal and H-tight spaces,
and we deduce some consequences of Theorem

5.2 The proof of Theorem

This proof is inspired by the proof by Rosendal of a variant of the minimal/tight di-
chotomy [52]. This dichotomy will again be proved using combinatorial methods, how-
ever its proof is quite delicate and thus, cannot be done in the formalism of approximate
Gowers spaces. We will, instead, use the formalism of Gowers spaces, and work with
countable vector spaces instead of Banach spaces.

In the general case, we can reduce to the case where X has an H-good FDD, using
Lemma 39 In the case where X already comes with a fixed FDD, then we can assume
that this FDD is H-good, using Lemma [B.8 So, in what follows, we will consider that
X comes with a fixed H-good FDD (FE,)nen, and we will prove that either X has a
subspace Y which is Hy-minimal, or that (E,) has an H-tight block-FDD.

Let C be the constant of the FDD (E,). For every n € N, let d,, = >,,_, dim(E},)
and fix (e;)d,<i<d,,, @ normalized basis of E,. Let K be a countable subfield of R
having the following property: for every eventually null sequence (z;)ieny € K", we have
125en zi€i]| € K. Such a field can be built in the following way: we fix Ky = Q, for every
n € N, we let K, 1 be the subfield of R generated by K, and by all reals of the form
12 5en zi€il, where (x;)ien is an eventually null sequence of elements of K, and finally
we let K =,y K- In the rest of this subsection, vector spaces on K will be denoted
by capital script roman letters, and closed R-vector subspaces of E (of finite or infinite
dimension) will be denoted by block roman letters. Let 2" be the K-vector subspace of
X generated by all the e;’s. For  a (finite- or infinite-dimensional) K-vector subspace
of 2, we let % be its closure in X. This is an R-vector subspace of X, and we have
Z = X. Also let Sy be the set of normalized vectors of %. Since, for z € #\{0}, we
have H%H € %, we deduce that Sy is dense in Sy.
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Lemma 5.7. Let % be a K-vector subspace of 2 . Then % is R-finite-dimensional if
and only if % is K-finite-dimensional, and in this case, their dimensions are equal.

Proof. Let (fo,..., fr—1) be a K-free family in #'. Let N € N be such that all the f;’s are
in spang(eg,...en—1), and let M be the matrix of the family (f,... fx) in the family
(€0, ...,en—1). Then, on the field K, the matrix M has at least one k x k nonzero minor.
But the determinant does not depend on the field, so this is also true on R. Hence, the

family (fo,..., fk—1) is R-free. We deduce that dimg(%') > dimg (%).
Conversely, if (fo,..., fr—1) isa K-generating family in % , then this is a R-generating

family in spang (%), which is equal to % since it is finite-dimensional. So dimg (%) <
dimg (%).

O

All along this subsection, we will use the following notation: if (%;);es is a sequence
of finite-dimensional vector subspaces of 2", we let [%; | i € I] be the K-vector subspace
of 2" spanned by the %;’s. For every n € N, we let &, be the K-vector subspace of F,
generated by the e;’s for d,, < i < d,+1, and we let & = (&),)nen. Obviously we have
& = E, and 2 = [&, | n e N|. For (Z,)nen a sequence of nonzero finite-dimensional
K-vector subspaces of 2" whose sum is a direct sum, we define a block-FDD of (.%,,) as
a sequence (¥, )men of nonzero finite-dimensional K-vector subspaces of 2 for which
there exists a sequence Ag < A; < ... of finite sets of integers such that for every m,
we have ¥, € ®nea,, #n. In what follows, we will only consider block-FDD’s of &. A
block-FDD (%, )men of & will often be denoted by the letter .%; thus, when we speak
about a block-FDD % without further explanation, it will be supposed that its terms
are denoted by %, and we will also let [#] = [%, | m € N]. Observe that if % is
a block-FDD of &, then (ﬁ—m)meN is a block-FDD of (E,). So we will say that .% is
good if and only if (ﬁ—m) is an H-good block-FDD of (E,). If # is a block-FDD of &
and mg € N, we will denote by .Z (™) the block-FDD (Fm+mo )men- I F is good, then
Z(mo) is also good.

We now define the Gowers space in which we will work. We let P be the set of good
block-FDD’s of &. If #,9 € P, we let & < ¥ if % is a block-FDD of 4. We let % <* ¢
if there exists m € N such that .#(™ < &. We let II be the set of pairs (% ,z) where
% is a nonzero finite-dimensional subspace of 2" and z is an element of 2". For .# € P
and a sequence (%, o, - .., %, xx) € Seq(Il), we say that (2, xo, ..., U, xr) < F if
U, < [F] and xp € [ | < k).

Lemma 5.8. G = (P, 11, <, <*, <) is a Gowers space.

Proof. The only nontrivial thing to verify is that the diagonalization axiom is satisfied.
So let (FF)en be a <-decreasing sequence of elements of P. We apply Lemma B.I1] to
Up =Y}, = [FF], to FF = ZF_ and to Dy, = Spzx). We get an H-good FDD (G, )nen of
a subspace of X such that for every k € N, (Gpi)nen is a block-FDD of (EF),en, and
such that G} has a basis in Dj,. This last condition shows that G, can be written as %,
where %, is a finite-dimensional subspace of [.Z*]. Since (G 4x)nen is a block-FDD of

44



(ZF)nen, and since all of the %, ,1’s, for n € N, are vector subspaces of [.#*], we deduce
that (4,4 x)nen is a block-FDD of .Z*. Thus, 4 = (%,)nen is in P, and we have, for
every ke N, ¥ <* F* as wanted.

U

From now, we work in the Gowers space G. The asymptotic game Fg, Gowers’
game Gz, or the adversarial Gowers’ games A4 and B, will always be considered with
respect to this space. To save writing, we will make the following abuse of notation: in
a play of F'z or G played as follows:

I 7Y F1

11 %0, i) %1, T1
we will consider that the outcome of the game is the sequence (zg,x1,...) (according to
the definition given in Section 2], this should be (%, o, %1, 1, ...)). Similarly, in a play
of Az or Bz played as follows:

I 02/0, o, gO %1, xI1, gl

.70 %, Yo, F' ", y1, F*
we will consider that the outcome of the game is the pair of sequences ((xg,z1,...),
(Yo, y1,---)). Hence, for instance saying that player IT has a strategy in B# to produce
two equivalent sequences means that player IT has a strategy to ensure that the sequences
(x;)ien and (y;)ieny produced during the game are equivalent, for the usual notion of
equivalence between sequences in a Banach space.

Observe that in this Gowers space, for &#,¥ € P, if # < ¢, then there exist m,n € N
such that .Z (M) = @™

Lemma 5.9. There exists F € P having the following property: either player I has a
strategy in Ag to produce two inequivalent sequences, or player II has a strategy in Bg
to produce two equivalent sequences.

Proof. The set of pairs ((x;)eN, (¥i)ien) € (%Nf that are equivalent is an F, subset of

(5?,” N)2 for the product of the discrete topologies on 2. Thus, this result is a direct
consequence of Theorem 2.4]

O

We now fix an .% € P as given by Lemma 5.9 We say that a sequence (u;);ey € 27N
is & -correct if there exist 4 < .% and a partition of N into nonempty successive intervals
Iy < I < ... such that for every m € N, the finite sequence (u;)ers,, is a basis of %,.
The next proposition contains the combinatorial content of Theorem

Proposition 5.10. At least one of the following statements is satisfied:

1. For every .7 -correct sequence (u;)ien, player I has a strategy in Fg to build a
sequence (z;)ien that is not equivalent to (u;);

2. There exists an F-correct sequence (u;)ien such that player IT has a strategy in
Gz to build a sequence (x;)ien that is equivalent to (u;).
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Proof. We assume that 1. is not satisfied and we prove 2. For the rest of the proof,
we fix an .#-correct sequence (u;)ien such that player I has no strategy in F'z to build
a sequence that is not equivalent to (u;). By the determinacy of this game (for the
fundamentals on the theory of determinacy, see [34], Section 20), player II has a strategy
7 in Fz to build a sequence which is equivalent to (u;). By correctness of the sequence
(u;), we can also fix ¥ < % and a partition of N in nonempty successive intervals
Iy < I; < ... such that for every m € N, (u;)er,, is a basis of ¥,,,.

First step: Player II has a strategy in Az to build two equivalent sequences.

We describe this strategy on a play (¢, %, 0,7, %,40,%9,...) of Az, in which
the FDD’s played by II will always be equal to ¢. This game will be played at the
same time as an auxiliary play (9, %4, 20, #°*, #1, 21, ...) of Fz during which player
IT always plays according to her strategy 7. Actually, the %;’s played by I in Ag will
not matter at all in this proof, so we will omit them in the notation; the only thing to
observe is that for every i € N, we will necessarily have z; € [¢]. At the same time as
the games are played, a sequence of integers 0 = kg < k1 < ... will be constructed. The
idea is that the turn i of the game Az will be played at the same time as the turns
ki ki +1,...,k;+1—1 of the game Fz. Suppose that we are just before the turn i of the
game Az, so the z;’s, the FI1’s, the ¥;’s, and the y;’s have been defined for all j < 7.
Also suppose that the integers k; have been defined for all j < 4, and that we are just
before the turn k; of the game Fz, so the J#*’s, the #4’s and the z;’s have been played
for all k£ < k;. We represent on the diagram below the turn ¢ of the game A&, and the
turns k;, ..., k;1 1 — 1 of the game F.

I Fi Fi
Fgz

Im ... Wiis 2k szﬁrl*l’ Zkiy1—1
Az

II ., 9 Vi Yiy -+ -

We now describe how these turns are played. In A, the strategy of player IT will
first consist in playing 4. Then player I answers with a vector z; € [4] and an FDD
Ft < .F. Thus, z; can be decomposed on the basis (uj)ren: we can find k;j1; € N
and (af)k<k¢+1 e K%i+1 guch that x; = Zk<k¢+1 afuk. Moreover, we can assume that
kiv1 > k.

Now, during the k; 1 — k; following turns of the game F'z, we will let player I play
F' (so we have, for every k; < k < k;y1, #% = Z'). According to the strategy 7, player
IT will answer with #4,, 2k, Whip1—15 Zkip—1- We now let % = #j, + ...+ Wy -1,
and y; = > <kirn afzk. Since all the #}’s, for k; < k < k;y1 are finite-dimensional
subspaces of [.Z], then 7; is itself a finite-dimensional subspace of [.#¢]. And since all

46



the z’s, for k; < k < k41, are elements of #g + ...+ #j,,,—1 = Yo+ ...+ ¥, then y; is
itself an element of #5 + ... + ¥#;. So we can let II play ¥; and y; in Ag, what finishes
the description of the strategy.

The fact that in Fz, player IT always plays according to the strategy 7, ensures that
the sequences (ug)reny and (zx)gen are equivalent. Observe that the sequence (z;);en is
built from (ug) in exactly the same way that the sequence (y;)ien is built from (zx); so
this ensures that (x;)en and (y;)ien are equivalent, concluding this step of the proof.

Second step: Player II has a strategy o in Bg to build two equivalent sequences.

Indeed, by the first step, I has no strategy in A2 to build two inequivalent sequences;
so the conclusion immediately follows from the choice of .%.

Third step: Player II has a strategy in G to build a sequence (y;)ien that is equiv-
alent to (u;).

This is the conclusion of the proof. We describe this strategy on a play of G4 that
will be played simultaneously with a play of Bg where IT will play according to her
strategy o, and a play of F'z where II will play according to her strategy 7 (for a fixed
i € N, the turns 7 of all of these three games will be played at the same time). The moves
of the players during the turn ¢ of the games are described in the diagram below.

I T
Fz
I U, v, H
By
II ,ﬁl "f/z‘,yi,...
I H
Gz

We describe these moves more precisely. Suppose that in Gz, player I plays J#".
We look at the move %% made by II in Bz according to her strategy o, and we let I
copy this move in Fz. In this game, according to her strategy 7, player II will answer
with some %; and z;. Now, in Bz, we can let I answer with %, z; and . In this
game, according to her strategy o, player IT answers with some ¥; and some y;. Then
the strategy of player II in G & will consist in answering with ¥; and y;.

Let us verify that this strategy is as wanted. The outcome of the game Fg is the
sequence (z;);en; the use of the strategy T by II ensures that this sequence is equivalent
to (u;). The outcome of the game B is the pair of sequences ((x;)ien, (¥i)ien); the use
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by II of her strategy o ensures that these two sequences are equivalent. We deduce that
the sequences (u;) and (y;) are equivalent, concluding the proof.
O

Now let, for every m € N, F,,, = Zm. The sequence (Fyn)men is an H-good block-
FDD of (E,) and we can let Y = [F,,, | m € N]. By Proposition [5.10], Theorem will
be proved once we have proved the two following lemmas:

Lemma 5.11. Suppose that there exists an F -correct sequence (u;)ien such that player
IT has a strategy in Gz to build a sequence (x;)ien that is equivalent to (u;). Let Z =
[u; | € N|. Then Z is Hz-minimal.

Lemma 5.12. Suppose that for every % -correct sequence (u;)en, player I has a strategy
in Fz to build a sequence (x;)ien that is not equivalent to (u;). Then the FDD (F})ien
is H-tight.

We start with the following technical lemma:

Lemma 5.13. For every U € Hyy, there exists a 9 < .F such that [¢] isomorphically
embeds into U.

Proof. This is a consequence of Lemma [B.11l Indeed, apply it to Y =Y, to Frlf = Fy,, to
Up = U, and to Dy, = S;#z). Then Lemma [3.11] gives us a subspace Z < Y generated by
an ‘H-good block-FDD (G, )nen of (F},), such that Z can be isomorphically embedded into
U. Moreover, for every n € N, G, has a basis made of elements of S| 7], so Gy, = 4, for
some finite-dimensional subspace ¥, of [.#]. Hence, 4 = (¥, )nen is a good block-FDD

of #, and [¢] isomorphically embeds into U, as wanted. O

Proof of Lemma 511l By the definition of correctness, we have Z € H. We want to
prove that Z isomorphically embeds into every element of H;z; by Lemma B.I3] it is
enough to prove that Z isomorphically embeds into @ for every ¢ < .%. For this,
consider a play of G where player I always plays ¢, and II plays using her strategy.
The outcome will be a sequence (z;);eny of elements of 4 which is equivalent to (u;).

Thus the mapping u; — x; uniquely extends to an isomorphic embedding Z — [¥¢].
O

Proof of Lemma 212 By Lemma[5.13] it is enough to prove that every subspace of the

form [¢], for ¥ < .7, is tight in (F},). So we fix such a & and we let Z = [¥].

First step:  For every K > 1, there exists an infinite sequence of nonempty intervals
of integers Ié( < IE < ... such that for every infinite A = N with 0 € A, we have
Z gk [Fo|n¢ Upeall ]

We let, for every n € N, d, = >, _ dim%,, and we fix a normalized basis
(4i)dn<i<dn.1 of %, that is also a 2-bounded minimal system (see Subsection [LL3); this
can be done by taking, first, an Auerbach basis of ¥4,, and then a small perturbation
of it. The sequence (u;)ieny we just built is % -correct and is a 4C-bounded minimal
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system. Thus, we can fix a strategy 7 for player I in Fz to build a sequence (z;);en that
is not equivalent to (u;). In the game Fz, we will consider that player II is allowed to
play against the rules, but immediately loses if she does; hence, we can consider that
the strategy 7 is a mapping defined on the whole set II<N of finite sequences of elements
of II. For every such sequence s, 7(s) is an element of P such that 7(s) < .%; hence
without loss of generality, we can assume that 7(s) = .Z(7() for some 7(s) € N. This
defines a mapping 7: II<N — N.

Let R={xre X |1 < |z| < K}. Let 6 > 0 be having the following property: for
every 4C K2-bounded minimal system (z;);c; and for every family (v;)ics in X, if:

then the families (x;) and (y;) are equivalent. For every finite-dimensional subspace %
of [.#] and for every i € N, we let 9;(%) be a finite (27+2§)-net in % n R. Given
n € N, we say that a sequence (%, 2o, . .. %—_1,2;_1) € II<N is n-small if it satisfies the
following properties:

e there exists a sequence of successive nonempty intervals of integers Jy < ... <
Ji—1 < n such that for every j < i, %; = [Fm | m € Jj];

e for every j <1, we have x; € 9;([% | k < j]).

For n fixed, there are only finitely many m-small sequences. Hence we can define a
sequence (ng)ren of integers in the following way: let ng = 0, and for k£ € N, choose
Ng41 > Ny such that for every ny-small sequence s € II<N, we have njy1 = 7(s). We
now let, for every ke N, [ lg( = [ng,ng+1 — 1]. We show that the sequence of intervals
IE < I < ... is as wanted.

Suppose not. Then there exists an infinite A € N with 0 € A, and there exists an
isomorphic embedding T: Z — [F, | n ¢ e I&] such that |71 =1 and |T| < K
In particular, the sequence (T (u;))ien is K-equivalent to (u;), so it is a 4C K?-bounded
minimal system. We also have that, for every i € N, 1 < ||T'(u;)| < K. For every i € N,
we fix y; € [Fn | n ¢ Upea IE] 0 R such that |y; — T(u;)| < 270424, Since A is infinite,
we can find k;1 € A such that supp(y;) < Igﬂ (here, the Support is taken with respect
to the FDD .%). We can also let ky = 0; hence, we defined a sequence (k;);en of elements
of A. We can even assume that for every i, we have k; 1 = k; +2. We let, for every i € N,
Ji = [ni; 41,0, — 1], and % = [#, | n € J;]. Hence, we have a partition of N into
an infinite sequence of nonempty successive intervals: [ ,ﬁg <Jy<1 lﬁ < Ji < .... Since
all the k;’s are in A, we have that [Z, | n ¢ Upca IX] S [Zn | n € Ujen Jil; s0 all the
yi's are in [F, | n € J;en Ji]. Thus, for every i € N, we have y; € [F, [ n € U, <, Jj] =
[%; | j <1i]. Hence, we can find z; € 0;([%; | j < i]) satisfying |z; — v < 270+2)5. In
particular, |z; — T(uZ)H 2-0+1§. So we have:

D Hx”; (i) < 3w — T(w)] <6,

€N ieN
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so since (T'(u;)) is a 4C K2-bounded minimal system, and by the choice of §, we deduce
that the sequences (T'(u;)) and (x;) are equivalent. In particular, the sequences (u;) and
(x;) are equivalent.

Towards a contradiction, we now prove that (u;) and (z;) are not equivalent. For
this, we first observe that for every i € N, the sequence (%, xo, ... %—1,%i—1) is nk,-
small. Thus, letting p; = 7(%, o, ... %—-1,xi—1), we deduce that p; < ng,11 = min J;.
In particular, %; < [Z)]. Since, moreover, z; € [%; | j < i], we deduce that in the
following play of Fg:

| A, Z(p1)

II %0, o %1, I1 .
player IT always respects the rules. Since, moreover, player I plays according his strategy
7, we deduce that he wins the game and that the outcome (z;) is not equivalent to (u;).
This is a contradiction.

Second step: Z is tight in (F,).

This is the conclusion of the proof. We keep the sequences of intervals (IZK )ien built
as a result of the previous step. We recall the following classical result: for every d € N,
there exists a constant ¢(d) = 1 such that for every Banach space U and for every two
subspaces V, W < U both having codimension d, V' and W are ¢(d)-isomorphic (see [21],
Lemma 3) — incidentally, an upper bound ¢(d) < 4d(1 + v/d)? may be obtained, through
the fact that any d-codimensional subspace is (\/& + 1 + ¢)-complemented for any € > 0
(a consequence of local reflexivity and the Kadets-Snobar theorem, Theorem 12.1.6 in
[1]) and John’s result that all d-dimensional spaces are v/d-isomorphic to ¢4 (Theorem
12.1.4 in [1]).

We build a sequence 11 < Iy < ... of nonempty successive intervals of integers in the
following way. All the I;’s, for [ < k, being defined, we can choose I; such that:

e for every positive integer N < k, I}, contains at least one interval of the sequence
(I )ien;

o max([) = dj +max(max([évk),min(lk)), where dy, = dim([F,, | n < min(I})]) and
Nk = [/{?C(dk)]

We show that the sequence (I)r>1 witnesses the tightness of Z in (F,).
Claim 5.14. For every infinite A < N\{0} and for every ko € A, we have:

N,
F,|n¢ UIk Cedyy) | Fn|n @Iy v U I,
keA keA
k:>k;()

Proof. Let ng = min Iy, so that di, = dim[F,, | n < ng|. It is enough to prove that:

[Fn | n<ngl®|Fn

N
Ec(dko) F,|né¢ IO ko U I
keA
k:>k;()

n=ng ne¢ UIk

keA
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Since max(Iy,) = dy, + max(max(]évko), min(/,)), then in particular:
dim[F,, | max(max([évko),min(lko)) <n < max(ly,)] = dg,.
So we can find a finite-dimensional subspace H < [F,, | n € Iy,] with Iév " < supp(H)

and dim(H) = di, (here, the supports are taken with respect to the FDD (F},)). Since
ko € A, we have:

Hn|F,\n>=ng, né¢ UIk] = {0}.
keA
Thus, both subspaces:
[Fr|n<ngl®|F,|n=ng, n¢ UIk]
keA
and
H®|F,|n>=np, né¢ UIk]
keA

have codimension dy, in:

[Foln<ny ®H®

F, n>no,n¢UIk],

keA
so they are ¢(dy, )-isomorphic. Hence, to conclude the proof, it is enough to see that:

Ho|F,

n}no,ngéUIk]g F, n¢[évkou UIk

keA keA
k>k0

The inclusion:

Hc |Fyngl* U &
keA
k>k0
N,
is a consequence of the fact that supp(H) < Iy, and I, o < supp(H). And to prove the
inclusion:

N,
an>n0,n¢UIk c | F, n¢IOk°u UIk ,
keA keA
k‘>k‘0

.. . N ..
it is enough to see that for all n > ng, if n € I, "0 thenn e (Ukea Ik- This is a consequence

of the fact that ng = min(ly,) and max([évko) < max(ly,).
O
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We now conclude the proof of the lemma. Let A < N\{0} be infinite and assume,
towards a contradiction, that Z = [F,, [n ¢ | Jica I ]. Then we can choose ky € A such
that Z Ty [Fo|n ¢ Ugea I ]. Using the claim and the fact that koc(dy,) < Ni,, we get
that:

ZSn, |Folné "0 U &

keA
k>k0

. N .. . .
But by construction, I ko (U kea I k) contains infinitely many intervals of the sequence
k>k0

N, . . el e e N, . . o
<I ; ko) , including its initial term I "0 This contradicts the definition of the sequence
ieN

v ieN
D

5.3 H-minimal and H-tight spaces

In this section, we prove several properties of H-minimal and H-tight spaces. We deduce
consequences of Theorem We start with studying H-tight spaces.

Definition 5.15. We say that the D-family H is invariant under isomorphism if for
every Y, Z € Sub®(X) such that Y and Z are isomorphic, we have Y € H < Z € H.

Theorem 5.16.

1. Suppose that X is H-tight and that H is invariant under isomorphism. Then X is
ergodic.

2. Suppose that X is d-tight. Then X is ergodic.

An important consequence of Theorem and Theorem [£.16] is the following:
Corollary 5.17.

1. Suppose that X € H, that X is non-ergodic and that H is invariant under isomor-
phism. Then there exists Y € H which is Hy-minimal.

2. Suppose that X is d-large and non-ergodic. Then X has a d-minimal subspace.

To prove Theorem [B.16], we will use a sufficient condition for the reducibility of Eg
proved by Rosendal in [50] (Theorem 15). Let E{ be the equivalence relation on P(N)
(identified with the Cantor space) defined as follows: if A, B € P(N), we say that AE(B
if there exists n € N such that |A n [0,n]| = |B n [0,n]| and A\[0,n] = B\[0,n]. The
result proved by Rosendal is the following:

Proposition 5.18. Let E be a meager equivalence relation on P(N), with E{ < E.
Then Eqg <p E.
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To prove Theorem (.16l we will combine Proposition B.I8] with ideas developed by
Ferenczi and Godefroy in [I8]. In this paper, they prove that if (e;)ien is a basis and
X a Banach space, then X is tight in (e;) if and only if the set of A € N such that
X C [e; | i € A] is meager in P(N). This extends immediately to the case when (e;) is
replaced by an FDD (F;).

Proof of Theorem [510. As usual, we only prove the result for D-families. By Corollary
(.4l we can find an H-good, H-tight FDD (F},)nen of X. We fix (€;);en a sequence of
elements of X, and a partition of N into nonempty successive intervals Jy < J; < ...
such that for every n € N, (¢;)ies, is a basis of F,,. For every infinite A € N, we let
Xa = [e; | i € A], and we define the equivalence relation E on P(N) by AEB if and
only if X4 and Xp are isomorphic. Since the mapping A — X4 from P(N) to Sub(X)
is Borel (see Lemma [LH]), it is enough to prove that Eg <p E.

We have E{, € E: indeed, if AE(B, then fixing n € N witnessing it, we have X4 =
Xajo,n] ® Xanfon] and Xp = Xa\jo,n] ® XBnon]; and moreover dim(X gn[0n]) =
dim(Xpn[o,n)) is finite, so X4 and Xp are isomorphic. So, by Proposition B.I8| it is
enough to prove that E is meager. Since E is analytic, it has the Baire property, so
by Kuratowski-Ulam’s theorem (see [34], Theorem 8.41), it is enough to prove that for
every A € P(N), the F-equivalence class of A is meager. We distinguish two cases.

First case: H,x, = 2.

For all N e N, let Uy = {B e P(N) | In = N J, < B}. This is a dense open subset
of P(N), so C := (\yenUn is comeager in P(N). For B € C, the space Xp contains
infinitely many of the F,’s. Since (F},) is an H-good FDD, this implies that H;x, # @.
Since H;x, = @ and since H is invariant under isomorphism, this implies that X4 and
Xp are not isomorphic. Hence, the set of B € P(N) such that Xp is isomorphic to X4
is meager in P(N).

Second case: H;x, # <.

In this case, X 4 has a subspace which is tight in (F},), so X 4 itself is tight in (F},). Let
Iy < I < ... be a sequence of intervals witnessing it. For all k € N, let K = Une]k Jn-
We have that for every infinite D € N, X4 & [e; | i ¢ Upep Ki]. For all N € N, let
Uy = {B e PN) | 3Jk > N Ky, nB = @}. This is a dense open subset of P(N), so
C :=\yenUn is comeager in P(N). If B € C, then there exists an infinite D € N such
that Xp < [e; | i ¢ Uep Kk]- In particular, Xp cannot be isomorphic to X 4. Hence,
the set of B € P(N) such that Xp is isomorphic to X4 is meager in P(N).
U

We now study the properties of H-minimal spaces.

Definition 5.19. We say that X is uniformly H-minimal if X € H and if there exists a
constant C such that X C-isomorphically embeds into every element of H. We say that
X is uniformly d-minimal if it is uniformly Hgz-minimal.
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The statement of the following proposition was improved from a previous version of
this paper thanks to an observation of O. Kurka.

Proposition 5.20.

1. Suppose that the D-family H is invariant under isomorphisms. If X is H-minimal,
then it is uniformly H-minimal.

2. If X is d-minimal, then it is uniformly d-minimal.

Proof. 2. is a consequence of 1. and the fact that Hy is invariant under isomorphisms.
To prove 1., we start with the following claim:

Claim 5.21. There exists Y € H which is uniformly H,y-minimal.

Proof. Let (Uy)nen be a decreasing sequence of Ellentuck-open subsets of Sub(X) such
that H = (),eyUn- The hyperplanes of X are in H, and they are pairwise isomor-
phic with a uniform constant. Thus, there exists a constant K > 1 such that X K-
isomorphically embeds into all of its hyperplanes. As a consequence, we get that for
every m € N, X K"™-isomorphically embeds into all of its subspaces of codimension m.

Suppose that 1. is not satisfied. We build inductively a decreasing sequence (Y}, )nen
of elements of 1 and an increasing sequence (F},)nen of finite-dimensional subspaces of
X in the following way. Let Yy = X and Fy = {0}. If Y,, and F}, have been defined, then
by assumption, Y}, is not uniformly Hy, -minimal, so there exists Y,,+1 € H}y, such that
Y,, does not (anim(F"))—embed into Y, 1. The subspace Y;, 11+ F}, is also in H, so in U,,;
thus, we can choose F, 1 such that F,, € F,,11 € Y41+ Fy, and [F41, Vo1 + F] S U,.
This achieves the induction.

We now let Y = |J, o Fn- For every n € N, we have Y < Y41 + F,,, so Y €
[Fri1, Yni1+En] S Uy; hence, Y € H. Since X is H-minimal, there exists a C-isomorphic
embedding T: X — Y for some constant C. For all n € N, let X,, = T~Y n Y,,11).
Recall that Y € Y, 11 + F,,; we deduce that X, has codimension at most dim(F},) in X.
Hence, X K4m(Fr) jsomorphically embeds into X,,, so X (CK dim(F, n))-isomorphically
embeds into Y, ;1. In particular, Y,, (CK dim(F, "))—isomorphically embeds into Y, ;1. For
n = C, this contradicts the definition of Y, 1. O

We now prove that X is uniformly H-minimal. Let Y € ‘H be uniformly H y-minimal,
with constant K, given by Claim 52Tl Let C be such that X C-isomorphically embeds
into Y. If Z is an arbitrary element of H, then Z also C-isomorphically embeds into Y,
so the uniformly H ;y-minimal space Y C K-isomorphically embeds into Z, and therefore
X C?K-isomorphically embeds into Z. O

An interesting consequence of Proposition [5.20]in the case of internal degrees is that,
if X is d-minimal, then d-large subspaces of X are uniformly d-large, in the following
sense:
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Lemma 5.22. Suppose that d is an internal degree, and that X is d-minimal. Then
there exists a mapping I': N — R with lim,,_,o, I'(n) = 00 having the following property:
for every d-large subspace Y < X, and for every n € N, there exists an n-dimensional
subspace F €'Y with d(F) = T'(n).

Proof. Recall that if d is an internal degree, when writing d(F) for F € Ban~%*, we
actually mean d(X,F') for any X € Ban such that F € X. In particular, given an
isomorphism S: G — F for any F,G € Ban=%, then (S,S™!) is a morphism from the
pair (F, F') to the pair (G,G), so we have d(G) < K4(|S|| - |S~!], d(F)).

By Proposition 520, there exists a constant C such that X C-isomorphically embeds
into all of its d-large subspaces. For all n € N, let y(n) = sup{d(F) | F € Sub~*(X),
dim(F') = n}, which is finite by Lemma 3.2l By Remark B:20] v is non-decreasing, and
since X is d-large, it tends to infinity. Now let, for all n € N,

Ka(Cy1) < M}

I'(n) = sup {tE]RJr 5

with the convention that sup @ = 0. This defines a mapping I': N — [0, c0]; we will see
later that it actually only takes finite values.

We first show that lim, ., I'(n) = . Fix K > 0. There is ng € N such that

v(no) = 2K4(C, K). Now fix n = ng. For all ¢t < K, we have K4(C,t) < K4(C,K) <
@ < @, so by definition of I'(n), we have I'(n) = K, as wanted.

Now, we fix Y a d-large subspace of X, and n € N, and we build an n-dimensional
subspace F' € Y such that d(F') > I'(n) (this will in particular show that I'(n) is finite).
Let T: X — Y be a C-isomorphic embedding. Fix G € X an n-dimensional subspace
with d(G) > @ Let F' = T(G). Then by the remark at the beginning of the proof,
@ < d(G) < K4(C,d(F)). In particular, if t € Ry is such that Ky(C,t) < @, then
t < d(F). Thus, I'(n) < d(F), as wanted.

U

A d-minimal space that is not minimal has to be saturated with d-small subspaces.
If d is an internal degree, then for such a space X, Lemma is quite surprising: it
implies that for subspaces Y < X, either the degrees of finite-dimensional subspaces of
Y are bounded, or their maximal value grows quite fast to infinity (at least at the same
speed as I'), but no intermediate growth is possible. This suggests that the structure
of finite-dimensional subspaces of such a space X must be rather peculiar. We do not
know any example of a d-minimal space that is not minimal, and this last remark makes
us think that maybe, such spaces do not exist when the degree d is internal.

Question 5.23. Does there exist an internal degree d such that some infinite-dimensional
spaces are d-large, and for which all d-minimal Banach spaces are minimal? Does there
exist one for which there exist d-minimal, non-minimal Banach spaces?

An immediate consequence of Lemma [5.22] is the following;:
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Corollary 5.24. If d is an internal degree, then d-minimal spaces cannot be asymptot-
ically d-small.

As a consequence, we obtain:

Theorem 5.25. If d is an internal degree, then d-large, asymptotically d-small Banach
spaces are ergodic.

Proof. Suppose X is a d-large, asymptotically d-small Banach space. Then all subspaces
of X are asymptotically d-small, so X has no d-minimal subspaces. By Corollary 517
X is ergodic. O

Theorem [£.27]is a generalization of Anisca’s Theorem [[.13], which corresponds to the

case of the degree defined by dpy(F, Egim(F)). This degree is studied in details in the
next section.

6 The Hilbertian degree

In this last section, we study the consequences of all the previous results in the special
case of the Hilbertian degree, that is, the internal degree defined by dpas(F, Egim(F)), for
which small spaces are exactly Hilbertian spaces, as a consequence of Kwapién’s theorem
[36]. We shall denote this degree da:
dy(F) = dpps (F, 03y

To save notation, do-better FDD’s will sometimes be called better FDD’s in this section.
Let us spell out that a non-Hilbertian space is therefore a do-HI space if it contains no
direct sum of two non-Hilbertian subspaces, and do-minimal if it embeds into all of its
non-Hilbertian subspaces (“minimal among non-Hilbertian spaces”). An FDD is ds-tight
if all non-Hilbertian spaces are tight in it. In the case of the Hilbertian degree, our two
dichotomies can be summarized as follows:

Theorem 6.1. Let X be a non-Hilbertian Banach space. Then X has a non-Hilbertian
subspace Y satisfying one of the following mutually exclusive properties:

(1) Y is do-minimal and has a dy-better UFDD;
(2) Y has a da-better da-tight UFDD;
(3) Y is do-minimal and da-hereditarily indecomposable;

(4) Y is do-tight and da-hereditarily indecomposable.
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It is clear from the definitions that if a Banach space X does not contain any isomor-
phic copy of £5, then the do-HI property is just the HI property and the ds-minimality
is just classical minimality. It is also easy to check that if X is not f-saturated, then
our two local dichotomies do not provide more information than the original ones.

In the case of ¢s-saturated Banach spaces, Theorem is more interesting and can
be seen as the starting point of a Gowers list for /5-saturated, non-Hilbertian spaces. It
would be interesting to extend and to study more carefully this Gowers list (this could
also be done in the case of other degrees). In particular, in the case of fs-saturated
spaces, the only class of those defined by Theorem that we know to be nonempty is
(2), as it will be seen in Corollary

Question 6.2. Which classes of those defined by Theorem [6.1 contain f2-saturated Ba-
nach spaces?

It would also be interesting to know where the classical ¢5-saturated spaces lie in this
classification. Perhaps the most iconic example of such a space is James’ quasi-reflexive
space [29]. Another important one is Kalton-Peck twisted Hilbert space [32] Z2. Since
Z5 has a 2-dimensional UFDD which is symmetric and therefore is a good UFDD, the
cases (3) and (4) are excluded for subspaces of Z;. Of course other twisted Hilbert
spaces than Zs are also relevant. Note that Kalton proved that (non-trivial) twisted
Hilbert spaces fail to have an unconditional basis [31]. Another ¢o-saturated space of
interest could be G. Petsoulas’ space [46], whose properties have some similarities (but
are weaker) than those of do-HI spaces. Another example was announced very recently
by Argyros, Manoussakis and Motakis and will be commented upon in the subsection
on ds-HI spaces.

Question 6.3. Does James’ space belong to one of the classes defined by Theorem [G 117
If not, in which of those classes can we find subspaces of James’ space?

Question 6.4. Does Kalton-Peck space contain a non-Hilbertian do-minimal subspace?

6.1 The property of minimality among non-Hilbertian spaces

In this subsection, we study basic properties of minimality among non-Hilbertian spaces
(or de-minimality). This property is particularly important in the study of ergodicity,
since in the case of the Hilbertian degree, Corollary [5.17] takes the following form:

Theorem 6.5. FEvery non-ergodic, non-Hilbertian separable Banach space contains a
do-minimal subspace.

In particular, Ferenczi-Rosendal’s Conjecture [L9 reduces to the special case of ds-
minimal spaces.

Concerning their relationship with Johnson’s Question [[L2], we can even say more.
Indeed, the following result has been proved by Anisca [2] (originally under a finite
cotype hypothesis which may be removed due to, e.g., Theorem [[.T4]).
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Theorem 6.6 (Anisca). A separable Banach space having finitely many different sub-
spaces, up to isomorphism, contains an isomorphic copy of £s.

The result of Anisca is based on the construction, in unconditional spaces with finite
cotype not containing copies of fo, and for each n, of a subspace having n-dimensional
UFDD’s but no UFDD of smaller dimension.

In particular, this applies to Johnson spaces and we get:
Proposition 6.7. Every Johnson space is do-minimal.

In the rest of this paper, do-minimal spaces that are not minimal will be called
non-trivial ds-minimal; these spaces are necessarily fo-saturated. We do not know
any example of a non-trivial do-minimal space. If X is such a space, then Lemma
shows that there is a uniform lower bound on the growth rates of the functions
n +— sup{dpy(F,05) | F € Sub~®(Y), dim(F) = n}, where Y ranges over non-
Hilbertian subspaces of X. This very surprising property suggests that either non-trivial
ds-minimal spaces do not exist, or the structure of their finite-dimensional subspaces is
rather peculiar. Note that, however, this uniform growth property holds for the spaces
L, for 2 < p < o0, which are not fy-saturated (nor da-minimal) but contain copies of £5.
This is a consequence of the fact that the spaces L, for 2 < p < o0 are finitely repre-
sentable in all of their non-Hilbertian subspaces (this can be obtained from Proposition
3.1 in [44]).

Question 6.8. Does there exist a non-trivial do-minimal space?

We now study additional properties of do-minimal spaces, in particular those related
to the existence of basic sequences. In the case of the Hilbertian degree, Corollary [5.24]
takes the following form:

Proposition 6.9. An asymptotically Hilbertian Banach space cannot be dy-minimal.

Example 6.10. Let (p,)nen be a sequence of real numbers greater than 1 and tend-
ing to 2, and let (kj)nen be a sequence of natural numbers tending to oo such that
lim,, o0 dBM(Egz,ES”) = o0. Consider the space X = (@neN E’;g)&. This space has a
better UFDD and is non-Hilbertian, ¢s-saturated and asymptotically Hilbertian (this
last property can be obtained as a consequence of Corollary 5 in [37]). In particular, it
cannot have a do-minimal subspace. So by Theorem 5.6, some block-FDD of its UFDD

is dQ—tight.
Example [6.10] shows:

Corollary 6.11. The class of non-Hilbertian, {5-saturated Banach spaces having a better
do-tight UFDD is nonempty.

The property of being asymptotically Hilbertian is closely related to property (H) of
Pisier.
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Definition 6.12 (Pisier, [49]). A Banach space X is said to have the property (H) if
for every A > 1, there exists a constant K (\) such that for every finite, normalized,
A-unconditional basic sequence (z;);<, of elements of X, we have:

N
KOy S ;x

< K(\)v/n.

Recall that all normalized A-unconditional basic sequences in Hilbert spaces are \-
equivalent to the canonical basis of f2 (see for instance [I], Theorem 8.3.5). A conse-
quence is that every Hilbertian space has property (H). Thus, property (H) is a property
of proximity to Hilbertian spaces. The proof of the following result of Johnson (unpub-
lished) can be found in Pisier’s paper [49].

Proposition 6.13 (Johnson). Every space with property (H) is asymptotically Hilber-
tian.

In particular, de-minimal spaces fail property (H). A consequence is the following:

Lemma 6.14. Let X be a do-minimal space. Then there exists A\g = 1 satisfying
the following property: in every non-Hilbertian subspace Y of X, one can find finite-
dimensional subspaces F' with a normalized Ag-unconditional basis for which the Banach-
Mazur distance dpys(F), f;im(F)) is arbitrarily large.

Proof. By Proposition[(.20], X uniformly embeds into all of its non-Hilbertian subspaces.
In particular, it is enough to prove the result in the case where ¥ = X. Let Ay be
witnessing that X fails property (H). Towards a contradiction, suppose the existence
of a constant C' such that every finite-dimensional subspace of X with a normalized
Ap-unconditional basis is C-isomorphic to a Euclidean space. Let F' be such a subspace
and (z;)i<p be its unconditional basis. Choose an isomorphism T": F' — ¢§ with |T| < C
and |T71| = 1, and let y; = T(x;) and 2z; = m for all @ < n. Then (yi)i<n is
C)\o-unconditional, and so is (2;)i<n. Hence, (z;) is C'A\g-equivalent to the canonical basis
of £5. Since, for all i < n, we have 1 < |y;|| < C, and since (z;) is C'A\p-unconditional, we
have, for every sequence (a;)i<p, € R™:

2, aizi

<n

< < C%)\

> aiyi

<n

2, aizi

<n

)

1
CXo
hence (y;) and (z;) are C?\g-equivalent. Moreover, we know that (x;) and (y;) are C-
equivalent. We deduce that (z;) is C*\2-equivalent to the canonical basis of ¢3. In
particular, for K = C*\2, we have:
n
\/?— <D @i < K,

<n

contradicting the choice of .
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Theorem 6.15.
1. Fvery do-minimal space has a non-Hilbertian subspace with a Schauder basis.

2. FEvery do-minimal space having an unconditional FDD has a non-Hilbertian sub-
space with an unconditional basis.

A consequence of this theorem is that the alternative (1) in Theorem can be
replaced with “Y is do-minimal and has an unconditional basis”.

Knowing that every non-Hilbertian subspace of a Johnson space is isomorphic to the
space itself, another consequence is:

Corollary 6.16. Every Johnson space has a Schauder basis. Moreover it has an uncon-
ditional basis if and only if it is isomorphic to its square.

Proof. If it has an unconditional basis then it is isomorphic to its square by Theorem
[L7l Conversely if it is isomorphic to its square then it is not do-HI and by the first local
dichotomy (Theorem [4.5]), it must have a UFDD. It follows from Theorem that the
space has an unconditional basis. O

A few additional restrictions on the existence of Johnson spaces follow from Corollary
Every Johnson space is HAPpy (every subspace has the Approximation Property).
If a Johnson space X has an unconditional basis then it is reflexive, all its subspaces
have GL-lust and therefore the GL-property, so X has weak cotype 2 (Theorem 40 in
[39]). On the other hand since X is not weak Hilbert, X cannot have weak type 2 in this
case (see [49] for these notions). For non-Hilbertian examples of HAPpy spaces with a
symmetric basis (and therefore also non asymptotically Hilbertian), see [30].

Theorem naturally opens the following two questions (the first one had already
been asked by Pelczynski [43]):

Question 6.17.

1. Does every non-Hilbertian space have a non-Hilbertian subspace with a Schauder
basis?

2. Does every non-Hilbertian space with unconditional FDD have a non-Hilbertian
subspace with an unconditional basis?

Proof of Theorem [G.1].

1. Let X be a do-minimal space, and fix Ag as given by Lemma for X. Build
an FDD (F),)nen of a subspace of X, along with a decreasing sequence (Y;,)nen of
finite-codimensional subspaces of X, by induction as follows. Let Yy = X. The
subspace Y,, and all the F},’s, for m < n, being built, we can find F}, € Y,, with a
normalized Ag-unconditional basis such that dgs(Fr,, Kgim(F")) > n. We then find
a finite-codimensional subspace Y, 11 € Y, with Y,,11 n [F,, | m < n] = {0}, such
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that the first projection [F, | m < n]® Y,+1 — [Fn | m < n] has norm at most
2. This finishes the induction.

The sequence (F,)neny we just built is an FDD of a non-Hilbertian subspace Y of
X. It has constant at most 2, and all the F},’s have a basis with constant at most
Ao. Thus, concatenating these bases, we get a basis of Y with constant at most
2+ 4\, as wanted.

. Let X be a do-minimal space with a UFDD (F,)nen. If (F),) has a normalized
block-sequence spanning a non-Hilbertian subspace, then we are done. So from
now on, we assume that every normalized block-sequence of (F},) spans a Hilbertian
subspace. Since normalized block-sequences of (F,,) are unconditional, we deduce
that all of them are equivalent to the canonical basis of £5. Our first step is to
prove that this holds uniformly.

Claim 6.18. There exists a constant C satisfying the following property: every
normalized block-sequence of (Fy,) is C-equivalent to the canonical basis of ls.

Proof. We prove the formally weaker, but actually equivalent, following statement:
there exist ng € N and a constant C' such that every normalized block-sequence
of (F})n=n, is C-equivalent to the canonical basis of ¢5. Suppose that this does
not hold. Then for every ng, N € N we can find a finite normalized block-sequence
(2)i<io Of (Fi)n=n, which is not N-equivalent to the canonical basis of @0. Ap-
plying this for successive values of N, we can build by induction a normalized
block-sequence (x;)ien of (F,) and a sequence 0 = iy < i3 < ip < ... such that
for every N € N, the sequence (x;);y <i<in +1 18 not N-equivalent to the canonical

basis of K;N 17N particular, (z;);en is not equivalent to the canonical basis of
{5, a contradiction.

O

We now finish the proof of Theorem [6.I5] proceeding similarly as in 1. Fix Ag
as given by Lemma [6.14] for X. Observe that for every ng € N, we can find a
finite-dimensional subspace G < [F,, | n = ng], finitely supported on the FDD

(Fy), having a normalized 2\p-unconditional basis and such that dp (G, Egim(G))
is arbitrarily large: indeed, it is enough to take a small perturbation of a (non-
necessarily finitely supported) finite-dimensional subspace G' < [F,, | n > ng]
with a normalized \g-unconditional basis and large dgps(G’, Kgim(G/)). Using this
remark, we can build a better block-FDD (Gj)ren of (F},) such that all of the Gy’s
have a 2\g-unconditional basis. Let i, = >;,_, dim G; for every k € N, and denote
by (2;)i,<i<i,,, the unconditional basis of G. To conclude the proof, it is enough

to prove that the sequence (x;);en is unconditional.

So let (a;)ieny be a finitely supported sequence of real numbers and (g;);eny be a
sequence of signs. For every k € N, let by, c; = 0 and yg, 2, € Sg, be such that

61



bryr = Zik<i<ik+1 a;x; and cpzp = Zikskik“ g;a;x;. In particular, we have b, =

Hzik<i<ik+1 a;zi| and ¢ = Hzik<i<ik+1 g;a;x;|, so since the sequence (), <i<iy,
is 2)\g-unconditional, we have that ¢; < 2A\gbg. Now, since (yx)gen and (zx)gen are
normalized block-sequences of (F},), they are C-equivalent to the canonical basis

of ¢5. Thus, we have:

Z €Ty

ieN

D, cu

keN

< C- /Zci
keN

< 200 - Zbg
keN

< 2)\002- Zaixi ,
1€eN

proving that the sequence (;)en is 2XoC?-unconditional.

6.2 Properties of d,-HI spaces

Recall that do-HI spaces are non-Hilbertian Banach spaces that do not contain any
direct sum of two non-Hilbertian subspaces. HI spaces are of course ds-HI. We could
only discover two other examples of do-HI spaces. Before presenting them, we recall a
basic result in operator theory. For its proof, see [41], Proposition 3.2. The terminology
of the next definition is from [26].

Definition 6.19. An operator T: X — Y between two Banach spaces is infinitely
singular if there is no finite-codimensional subspace Xy < X such that T)x,: Xo —
T(Xp) is an isomorphism.

Proposition 6.20 (Folklore). An operator T: X — Y between two Banach spaces is
infinitely singular if and only if for every e > 0, there exists a subspace X, < X such
that HTFXEH <L e,

Example 6.21. Let Y be an HI space. Then X =Y @ {5 is do-HI. Indeed, denote by
py: X — Y and py,: X — ¢35 the two projections. Suppose that two non-Hilbertian
subspaces U,V € X are in direct sum. Then (py,) v and (pey) vy are infinitely singular,
so by Proposition .20, we can find subspaces U' < U and V' < V on which py, has
arbitrarily small norm. In particular, U’ and V' can be chosen in such a way that

H(m?)TU@V’ < 3. Thus, py induces an isomorphism between U’ @ V' and py (U’ @
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V’). In particular, py (U’) and py (V') are two subspaces of Y that are in direct sum,
contradicting the fact that Y is HI.

Example 6.22. In [6], Argyros and Raikoftsalis build, for every 1 < p < oo (resp. for
p = ) a space X, having the following properties: X, = X, @, (resp. X, = X, ® co),
and for every decomposition as a direct sum X, = Y @ Z, then ¥ = X, and Z = ¢,
(resp. Z = ¢y), or vice-versa. The space X, is built as an HI Schauder sum of copies
of £, (resp. ¢p); the construction of such a sum is quite involved and is exposed in [4],
Section 7. In [6], the following results are proved for the space X,:

1. X, does not contain any direct sum of two HI subspaces (see the proof of Lemma
1 in [6]);

2. for every subspace Y < X, not containing any HI subspace, and for every € > 0,
there exists a projection P of X, with image isomorphic to ¢, (resp. to ¢g) such

that H(Idggp —P) TYH < ¢ (see Lemma 3 in [0]).

This implies that X2 is do-HI. Indeed, if two subspaces Y,Z < X5 are in direct sum,
then by 1., one of them does not contain any HI subspace, for example Y. Choosing a
projection P as given by 2. for ¢ = %, we get that Py is an isomorphism onto its image,
which is contained in an isomorphic copy of £5; so Y is Hilbertian.

The interest of ds-HI spaces in the study of ergodicity, and in particular of our
conjectures Conjecture [LT5] and Conjecture [LT6 comes from the following result:

Theorem 6.23. Let X be a non-ergodic, non-Hilbertian separable Banach space. Then
X has a non-Hilbertian subspace Y such that:

e cither Y has an unconditional basis;
o orY is simultaneously do-minimal and do-HI.

Proof. By Corollary 517 we can assume that X is do-minimal. By Theorem [4.3] either
X has a subspace with a better UFDD, or a ds-HI subspace. In first case, Theorem

6.15] shows that we can find a further non-Hilbertian subspace having an unconditional
basis. O

It would of course be interesting to remove the second alternative, thus reducing
somehow the problem to spaces with unconditional bases. This motivates the following
question:

Question 6.24. Does there exist a non-ergodic Banach space which is simultaneously
do-minimal and do-HI?

Both examples of do-HI spaces given above contain an HI subspace. In particular,
they are ergodic, and they cannot be dy-minimal. Thus, Question reduces to the
special case of ds-HI spaces that do not contain any HI subspace. The latter spaces are
exactly those do-HI spaces that are fo-saturated. We know no examples of such spaces.
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Question 6.25. Do there exist {o-saturated do-HI spaces?

After this article was submitted, Argyros, Manoussakis and Motakis announced in [5]
that they were able to build an fs-saturated do-HI space, thus giving a positive answer
to Question The construction will be published in a forthcoming paper, and the
preprint [5] exposes the construction of analogues of that space.

We now come back to Question [6.241 We conjecture that the answer to this question
is negative, and we actually have the following stronger conjecture:

Conjecture 6.26. A Banach space cannot be simultaneously ds-minimal and ds-HI.

This conjecture is motivated by the fact that the do-HI property is a weakening of
the HI property, and it is known that HI spaces have many different subspaces, up to
isomorphism. For example, Gowers—Maurey’s Theorem [[L.18 says that HI spaces cannot
be isomorphic to any proper subspace of themselves. This implies, in particular, that
they cannot be minimal. It would be tempting to adapt Gowers—Maurey’s approach to
ds-HI spaces. Note that, however, in the case of ds-HI spaces, we cannot hope to have a
result as strong as Gowers—Maurey’s one, since both spaces presented in Example
and in Example are isomorphic to their hyperplanes and even, to their direct sum
with £5. However, we can hope that these spaces cannot be isomorphic to “too deep”
subspaces of themselves. This is at least the case for our first example, as shown by the
following lemma:

Lemma 6.27. Let Y be an HI space and let X =Y @ fo. Then every subspace of
X that is isomorphic to X is complemented in X by a (finite- or infinite-dimensional)
Hilbertian subspace.

Proof. Denote by Py: X — Y and Pp,: X — /5 the projections. Let U < X be an
isomorphic copy of X; we can write U = V @ W, where V = Y and W = ¢5. Suppose
that (Py ),y is infinitely singular. Then by Proposition .20, we can find a subspace
V" < V on which Py has small norm. In particular, P, would induce an isomorphism
between V" and a subspace of £o, a contradiction. Thus, (Py )y is not infinitely singular:
we can find a finite-codimensional subspace V' of V such that Py induces an isomorphism

between V' and Py (V).

Observe that V' >~ Py (V’), and that V' and Py (V') are respectively subspaces of

V and Y, that are HI and isomorphic. By Gowers—Maurey’s Theorem [L.I8], we deduce

that the codimension of Py (V') in Y is equal to the codimension of V’ in V, so is finite.

So write Y = Py (V') @ F, where F has finite dimension. We have Py (V') € V + /s,

soY SV +4+l+F,s0X=V+Ul+F=U-+/{ + F. Letting Z be a complement of
Un (ly+ F)in ly + F, we get that Z is Hilbertian and that X = U @ Z.

U

Question 6.28. Let X be do-HI and let Y be a subspace of X which is isomorphic to X.
Does it follow that Y is complemented by a (finite- or infinite-dimensional) Hilbertian
subspace?
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