Carina Büscher
email: carina.buescher@uni-koeln.de

Identifying computational thinking activities in a geometric problem

Keywords: Computational thinking, algorithms, algorithmic thinking, design research

Computational thinking (CT) is increasingly seen as an important learning content, but the place of CT in school curricula in most cases is unclear. This opens the question whether mathematics education can support the development of CT. However, the question of how exactly CT can be elicited within mathematics lessons is still open. In a Design Research study with 12 learners in Grade 6 so far, it was therefore investigated which CT activities learners perform when they are asked to draw geometric figures with the Turtlecoder app, and how the development of CT is related to their mathematical knowledge. The results indicate that while working on a geometry problem, the learners follow very different patterns regarding their use of CT. The analysis also shows how, learners' CT activities can influence each other in different ways, and might be influenced by the learners' mathematical knowledge. Thus, this study sketches first starting points for integrating CT into mathematics lessons.

Theoretical background

Computational thinking (CT) is important for acquiring literacy in the digital world [START_REF] Wing | Computational thinking[END_REF] and is therefore important to learn in school. Computational thinking describes a way of thinking that makes it possible to describe a problem in a way that a computer could solve it [START_REF] Wing | Computational thinking[END_REF]. The term is therefore closely related to the notion of problem solving [START_REF] Selby | Computational thinking: the developing definition[END_REF], where CT is primarily about activities such as abstraction and decomposition to solve problems [START_REF] Barcelos | Mathematics Learning through Computational Thinking Activities: A Systematic Literature Review[END_REF]. While CT often is related to programming, such conceptualizations emphasize that CT is not the same as programming. Whereas programming is more about the technical translation of a solution to a problem into program code, CT is more about the higher-level thinking involved in problem solving [START_REF] Barr | Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community?[END_REF]. This paper uses the definition of CT by [START_REF] Selby | Computational thinking: the developing definition[END_REF]: "[Computational Thinking] is a cognitive or thought process that reflects

• the ability to think in abstractions, • the ability to think in terms of decomposition, • the ability to think algorithmically, • the ability to think in terms of evaluations, and • the ability to think in generalisations." (p. 5) Algorithms are important in many places in mathematics education, but are rarely addressed as algorithms in their structure. This is especially true for algorithmic concepts and structures such as thinking in steps, using loops for repeated executions of a step or branching to have steps executed only under certain conditions. However, there would be some overlap of learning contents in mathematics education and computational thinking that could be further exploited [START_REF] Hennessey | Hiding in Plain Sight: Identifying Computational Thinking in the Ontario Elementary School Curriculum[END_REF]. There are also a growing number of studies looking at the relationship between CT and mathematics learning [START_REF] Barcelos | Mathematics Learning through Computational Thinking Activities: A Systematic Literature Review[END_REF]. In their review study, Barcelos and colleagues (2018) show that almost 50% of the articles considered are thematically about plane geometry. However, even if a few have great potential, most geometry apps have limited, if any, capacity to build viable geometric ideas [START_REF] Larkin | The search for fidelity in geometry apps: an exercise in futility?[END_REF].

CT can be promoted without programming [START_REF] Zindel | Developing algorithmic thinking without programming by designing instructions for encryption[END_REF] or with programming (Kalelioglu et al., 2016). In their study, Kyriakides and colleagues (2016) visited a group of 15 children aged 10-11 years twice and conducted a teaching intervention involving A.L.E.X., which is an app for learning programming through games. The study investigated how the app can be used to engage learners in problem-solving processes that can foster their interest in mathematics. They identified different phenomena in the cases: there are learners who can dynamically imagine 90-, 180-and 360-degree angles as a rotation; and there are learners who walk the steps themselves before programming them to better imagine the solution process. It remains to be explored further how learning processes on CT and on geometric imagining can influence and support each other at the micro level.

This paper therefore aims to empirically reconstruct how and what CT activities can be elicited in learning processes for mathematical learning contents relating to geometry. The research question is accordingly:

RQ: What CT activities are shown by students when designing an algorithm for drawing a hexagon?

Methods

As part of the first design experiment cycle of a design research study [START_REF] Gravemeijer | Design research from the learning design perspective[END_REF], design experiments were conducted with 12 learners in a sixth-grade class. The learners participated in the design experiments in teams of two.

Design of the teaching-learning-arrangement

In the teaching-learning-arrangement, the students were tasked with designing algorithms for printing geometric figures. The Turtlecoder (code-your-life.org) was used because it provides a block-based programming environment. With a block-based programming language, in contrast to a text-based programming language, syntax errors are avoided and the focus can be placed more on semantics. In a previous session, the learners had already learned about the commands forward(<length>) and leftTurn(<angle>) or rightTurn(<angle>), which can be used to move the turtle forward or rotate it on the spot by a certain angle clockwise or counterclockwise. With this, they independently created a programme code for drawing a square. At the beginning of the second session, the learners had the following task: "Change your programme code so that a regular hexagon is drawn".

Figure 1 shows a possible programme code for drawing a regular hexagon. The turtle moves forwards by 200 pixels and then she has to rotate counterclockwise by 60°. It is important for the learners to note that the turtle must rotate around the exterior angle of the hexagon because angles are drawn from the turtle's line of sight. This is repeated for the other five sides and in-between rotations of 60°. The length of the sides was freely selectable. The angle of rotation is 60° because the sum of the exterior angles in the n-corner is always 360° (in total, the turtle rotates 360° around itself). So, for a regular hexagon, the size of each exterior angles is 360°:6=60°. One could have used a loop in the code as an alternative. This concept was not yet known to the learners at this point in the design experiments. Rather, they were to discover the need for a structure that would implement repetitive elements more quickly, before the loop was subsequently introduced.

Methods of data collection and data analysis

The sessions were videotaped, in a way that the code they were writing could be seen from behind. For this paper, the scenes in which the learners are asked to change the code of the square into a code for a hexagon have been transcribed in full.

A qualitative content analysis according to [START_REF] Kuckartz | Qualitative Text Analysis: A Systematic Approach[END_REF] was carried out in order to deductively identify the learners' use of CT for solving the problem. Building on the specification of CT by [START_REF] Selby | Computational thinking: the developing definition[END_REF], the analysis focused on learners' use of CT by identifying five CT activities that they carried out when designing the algorithm for a regular hexagon. The following operationalisations of CT activities are used:

 abstracting: seeing the general in the specific  decomposing: breaking the problem down into subproblems  algorithmic thinking: algorithmizing in sub-steps  evaluating: checking the developed algorithm/programme code  generalizing: inferring something general from several special cases

Empirical results

This study reports on four different patterns to designing the algorithm for drawing a hexagon, each composed of a different combination of CT activities. In the following, examples of these patterns are presented along with the elicited CT activities that learners carry out while engaged with the geometric problem.

Abstracting by reusing the code and evaluating different angles

After Milan and Leyla initially misunderstand the task, they left the code for the square and start trying out different angles. Leyla changes all angles to 36°, to 70°, to 75° and executes the code in each case. And Milan changes all angles to 50°, then to 70°, 71°, 72° and executes the code in each case.

Milan

Ah or not yet. Thus, as a CT activity, evaluating can be identified here. They seem to have recognised the pattern that even with the regular hexagon (as before with the square), lengths and angles remain the same within the respective code and therefore the basic structure of the programme code does not change. This presents an example of a CT activity of abstracting, as the students identify the general structure for drawing a hexagon from the specific task. For the sub-problem of the angle size, they tried out which angle fits. Through this fragmentation of the problem and the focussed consideration of a subproblem for the solution, activities of decomposing can also be reconstructed. It is also noticeable that Milan and Leyla both first adjust the angle sizes and do not yet extend the code by the further four required program lines (by moving forward twice and rotating in between to make it a hexagon). This does not happen until Turns 60 and 61, where the CT activity of algorithmic thinking is evident because they add further steps to the code. It is possible that this activity was initiated by the previous evaluating when the learners noticed that there was now a gap between the start and end points. Overall, then, Leyla and Milan show a variety of CT activities here.

Abstracting by reusing the code and calculating the angle

Anna and Ben also show mathematical considerations after trying our different angles without an adequate result. If that is correct now, it is not so difficult. 185 Ben Yes, yes, I think that's right. Yes, that's how I know it too, yes. We have it.

Anna recognises the pattern in the exterior angle sum of polygons and transfers this pattern to the hexagon (Turn 146). Thus, Anna and Ben are abstracting from the square code to the hexagon code. Since this happens very specifically, it suggests that Anna has reduced the problem to this subproblem and thus implicitly employed the CT activity of decomposing. Both then adapt their code accordingly and check whether the code is correct (turn 180). In the process, the CT activity of evaluating is revealed. They then realise that they have forgotten four programme lines each for two forward movements and two rotations in between and add this to their respective programme code (turn 182). Similar to Leyla and Milan, this CT activity of algorithmic thinking could have been triggered by the previous evaluating.

This episode also shows possible links between CT activities and mathematical knowledge: the sum of exterior angles in n corners is implicitly discovered here and applied to the hexagon.

Evaluating without abstracting

Leni (Turn 44,46,49) In contrast to Milan and Leyla, Leni does not use recurrent structures and does not adapt the code only partially, but deletes the complete code after each attempt and starts again from the beginning (Turn 44,46,(49)(50). Nevertheless, in each individual trial they add step by step certain commands and try them out. Thereby, the CT activity of algorithmic thinking does show up when writing the code and evaluating to check their code. However, unlike Milan, Leyla, Anna and Ben, she does not make partial changes to her code to vary it systematically and test it further. Thus, no abstracting or decomposing activities are recognisable. In Turn 53, she then expresses that Leni has no idea for a solution approach. Nele also starts with a new code, but has the right idea directly (Turn 45). However, it remains unclear at this point how exactly she came up with her solution.

It is possible that Nele is using her knowledge of the exterior angles in the regular hexagon as a resource to specifically adapt the code. In this case, mathematics would serve as a resource for programming. However, this is not yet clear at this point.

Evaluating and abstracting by analysing the code regarding the relationship of angle size and number of corners Inga and Daniel also deliberately try out different angles and reduce the problem to this subproblem (Turn 176, 185). Thus, CT-activities of algorithmic thinking and evaluating are recognisable. In addition, the relationship between the number of corners in the n-corner and the change of the angle sizes is questioned (Turn 180,184,(188)(189). Activities of abstracting are therefore recognisable in both learners. Possibly, the reflections could also be interpreted as generalising, when the learners discover a general law from several tried special cases.

Summary

The analysis shows that the students engage in different CT activities in different combinations and orders. These patterns of CT activities are shown in Figure 2. Differences are particularly evident in the role of abstracting. In some patterns, this activity occurs right at the beginning, usually in combination with evaluating. The learners abstract that the angle size needs to be adjusted and then try different angle sizes. In another pattern, abstracting occurs as a reflection at the end. Here, the learners have already found the correct angle of rotation and abstract the general sum of exterior angles in the polygon. Mathematically relevant tasks like designing algorithms for drawing hexagons could thus initiate CT activities, but in order to purposefully foster CT activities or mathematical knowledge, teachers need to pay close attention to the CT activities actually shown by the students.

Conclusion

Computational Thinking (CT) is a learning content that is considered to be increasingly important [START_REF] Wing | Computational thinking[END_REF], but its curricular place is still largely unclear. This study follows the approach to identify the potentials for developing CT within mathematics classrooms [START_REF] Zindel | Developing algorithmic thinking without programming by designing instructions for encryption[END_REF][START_REF] Kyriakides | Mobile technologies in the service of students' learning of mathematics: The example of game application a.L.E.X. In the context of a primary school in Cyprus[END_REF]. For this, learning opportunities must be found in which CT can be developed within mathematical learning contents.

The reported Design Research study designed a learning environment using the Turtlecoder app, in which students design algorithms for drawing a hexagon. 12 students participated in the design experiments so far. The qualitative analysis revealed different patterns in the students' computational thinking: When working on the task, different CT activities have been shown to occur in different combinations.

While not the main object of analysis, the results also seem to indicate a promising connection between mathematical knowledge and CT activities. Some learners also draw on mathematical knowledge relating to the sum of interior angles when engaging in CT activities. This promising possibility of integrating the development of CT and mathematical knowledge could provide an interesting venue for future research.

So far, only the task in which the learners have to change the code from the square to the hexagon has been analysed. The analyses will be extended to other situations in order to investigate which CT activities the learners show overall and to what extent this may depend on the respective task. Furthermore, these are first results from a first design experiment cycle. The sample is still correspondingly small and will be further expanded in upcoming design experiment cycles.

Figure 1 :

 1 Figure 1: Example code for a regular hexagon (created with the Turtlecoder on code-your-life.org)

Figure 2 :

 2 Figure 2: Patterns of CT activities in students' learning processes

 Leyla and Milan try to solve the problem by trying out different angles until Leyla finds the right solution by trying out the 60° angle (Turn 59). By letting them draw, they always get automatic feedback while trying out whether the desired figure is drawn and the code is therefore already correct

		I have it.
	57 Teacher	You have it?
	58 Milan	The hexagon [5sek.] Oh no, that's a pentagon .. Oh my god"
	59 Leyla	[changes all four angles to 60° and executes the code]
	60 Milan	[adds a forward(100) command and a leftTurn(72) command and executes
		the code]
	61 Leyla	[adds two more forward commands and a leftTurn(60) command between
		them and executes the code]
	62 Leyla	Is this correct?
	63 Milan	[turns to Leyla]
	64 Milan	So you did it with 60?
	65 Leyla	Mhm, I first had 65, then I had 70 and then 60.
	66 Milan	I first had 50, then 70, then 72 and then I had a pentagon.
	67 Milan	[changes all angles to 60°]

 tries to solve the problem similarly to Milan and Leyla by evaluating different angles.

	44 Leni	[Deletes the code of the square. She adds three forward(100) commands
		and two leftTurn(90) commands in between and executes the code]
	45 Nele	[Deletes the code of the square. She adds a forward(100) command and a
		leftTurn(60) command and executes the code [5sek.] She adds four
		forward(100) commands and four leftTurn(60) commands in between and
		executes the code]
	46 Leni	[adds four forward(100) commands and four leftTurn(100) commands in
		between and executes the code]
	47 Nele	[adds a forward(100) command and a leftTurn(60) command and executes
		the code]
	48 Nele	[executed the code again]
	49 Leni	This does not look healthy.. [deletes the code [5sek.] adds five forward(100)
		commands and five leftTurn(80) commands in between and executes the
		code]
	50 Leni	Six corners. [deletes the code again]
	51 Nele	Yes.
	52 Leni	[adds a forward(100) command and a leftTurn(70) command]
	53 Leni	I have no idea what to do.

 77 Daniel[executes his code]. (…) all the same length, then the command must be executed again and again, um so.Daniel's case shows an interplay of the CT activities of algorithmic thinking and decomposition. He decomposes the problem by recognizing and encapsulating a repeatable series of instructions (decomposition) which then have to be iterated in a loop (algorithmic thinking).a later point in time(Turn 150, 154,(157)(158)(159) Daniel and Inga consider how to adjust the angle size when the number of corners changes.

	176 Daniel	Ha, I accidentally pressed random, right turn, ah, turtle forward, like that.
		now I execute it [adds a forward(100) command and a leftTurn(45)
		command and executes the code]
	177 Inga	[looks at Daniel's laptop]
	178 Daniel	Ha, why? It's right!
	179 Inga	That is wrong, that would be an octagon.
	180 Daniel	You're seriously telling me that we need a smaller angle ... or a bigger one?
	181 Inga	[too quiet to understand]
	182 Daniel	Yes, I am.
	183 Inga	[too quiet to understand]
	184 Inga	That would then also influence the angle, i.e., the angle...
	185 Daniel	Then just let 55 try it out.
	186 Teacher	Just try it out.
	187 Inga	55 is bigger than 45, which is then too big.
	188 Daniel	Ha, you just told me that the smaller the angle, the more corners there are.
	189 Inga	I said it the other way round. Did I say it like this?

Acknowledgment

I thank my student Mr. Simon Frie, whose work on his bachelor thesis has supplied the data investigated here.