Data-Driven estimation of a turbulent flow from wall sensors

Lionel MATHELIN

LIMSI–CNRS, Orsay, France Dpt. Applied Math., Univ. Washington, USA

Joint work with S. MURALIDHAR and B. PODVIN

US-Japan workshop - March. 2018

Motivation: Inverse problems (IP)

state: $\boldsymbol{u} \approx F\boldsymbol{y}$

parameters: $\mathbf{y} \approx D \mathbf{x}$

space sometimes HD or temporal fields)

(spatial

F: forward model (expensive, uncertain, non-linear)

state space is HD

data: $S \approx Ou$

O: observation operator data limited, noisy & indirect

Data-Driven estimation of a turbulent flow

Standard approach (deterministic framework) — ROM-based state estimation

Derive a reduced-order model: $\mathbf{y} \approx \hat{\mathbf{y}} = D \mathbf{x}$. D typically are PCA modes.

From a correlation kernel or a "training" (unsorted) sequence $\mathbf{Y} := (\mathbf{y}^{(1)} \dots \mathbf{y}^{(n_{snap})})$:

$$D\Sigma V^* \stackrel{\text{thin SVD}}{\approx} Y.$$

For a given number n_D of retained modes, leads to the best approximation in the following sense:

$$\widehat{Y} = D \, \widehat{X} \in \underset{\operatorname{rank}\left[\widetilde{Y}\right] \leq n_D}{\operatorname{arg\,min}} \left\| Y - \widetilde{Y} \right\|_F \quad \text{with} \quad \widehat{X} = \Sigma \, V^*.$$

- $\mathbf{y} \in \mathbb{R}^n$ field of interest,
- $D \in \mathbb{R}^{n \times n_D}$ the approximation basis [Dictionary],
- $\mathbf{x} \in \mathbb{R}^{n_D}$ the basis coefficients as estimated from the n_s sensors,
- $\boldsymbol{s} \in \mathbb{R}^{n_s}$, sensor information.

Standard approach (deterministic framework) — ROM-based state estimation

On site, what is measured is $\mathbf{s} = G \mathbf{y}$ only. $G: \mathbf{y} \mapsto \mathbf{s}$: forward operator.

Observer such that

$$\widehat{\boldsymbol{x}} \in \operatorname*{arg\,min}_{\widetilde{\boldsymbol{x}} \in \mathbb{R}^{n_D}} \left\| \boldsymbol{s} - \boldsymbol{G} \boldsymbol{D} \, \widetilde{\boldsymbol{x}} \right\|_2, \qquad \text{[data misfit]}$$

or simply $\widehat{\boldsymbol{x}} = (GD)^+ \boldsymbol{s}$.

The reconstructed field is finally:

 $\widehat{\boldsymbol{y}} = D\,\widehat{\boldsymbol{x}} = D\,(G\,D)^+\,\boldsymbol{s}.$

Standard approach (deterministic framework) — ROM-based state estimation

On site, what is measured is $\mathbf{s} = G \mathbf{y}$ only. $G: \mathbf{y} \mapsto \mathbf{s}$: forward operator.

Observer such that

$$\widehat{\mathbf{x}} \in \underset{\widetilde{\mathbf{x}} \in \mathbb{R}^{n_D}}{\operatorname{smply}} \|\mathbf{s} - GD\widetilde{\mathbf{x}}\|_2, \quad \text{[data misfit]}$$

or simply $\widehat{\mathbf{x}} = (GD)^+ \mathbf{s}. \quad \longleftarrow \quad \text{requires } n_s \ge n_D \quad \text{(if no additional hyp.)}$

The reconstructed field is finally:

 $\widehat{\boldsymbol{y}} = D\,\widehat{\boldsymbol{x}} = D\,(G\,D)^+\,\boldsymbol{s}.$

Without additional hypotheses, impossible to estimate $n_D > n_s$ modes

 \longrightarrow derive an over-complete dictionary D for sparse representation of the field $\pmb{y}\in\mathcal{M}_{\pmb{y}}$ to be infered

 $\boldsymbol{y} \approx \boldsymbol{D} \boldsymbol{x}, \qquad \boldsymbol{x} \in \mathbb{R}^{n_D}$

Without additional hypotheses, impossible to estimate $n_D > n_s$ modes

 $\begin{array}{l} \longrightarrow \text{ derive an over-complete dictionary } D \text{ for sparse representation of the field} \\ \textbf{\textit{y}} \in \mathcal{M}_{\textbf{\textit{y}}} \text{ to be infered} \\ \\ \textbf{\textit{y}} \approx D \textbf{\textit{x}}, \quad \textbf{\textit{x}} \in \mathbb{R}^{n_{D}} \\ \\ \longrightarrow \quad \textbf{\textit{n}}_{s}\text{-sparse approximation} \\ \textbf{\textit{y}} \approx D \textbf{\textit{x}} \quad \text{with} \quad \|\textbf{\textit{x}}\|_{0} \leq n_{s}, \quad \forall \textbf{\textit{y}} \in \mathcal{M}_{\textbf{y}} \end{array}$

Find
$$\{D, X\} \in \operatorname*{arg\,min}_{\widetilde{D}, \widetilde{X}} \left\| Y - \widetilde{D} \widetilde{X} \right\|_{F}$$
 s.t. $\left\| \widetilde{\mathbf{x}}^{(i)} \right\|_{0} \leq n_{s}, \quad \forall i, \quad X := \left(\mathbf{x}^{(1)} \dots \mathbf{x}^{(n_{\mathsf{Snap}})} \right).$

Repeat

• Sparse Coding :
$$X \in \underset{\widetilde{X}}{\operatorname{arg\,min}} \left\| Y - D\widetilde{X} \right\|_{F}$$
 s.t. $\left\| \widetilde{\mathbf{x}}^{(i)} \right\|_{0} \le n_{s}, \forall i.$

CodeBook Update : Update *D* and *X* in order to lower ||*Y* − *DX*||_F while maintaining the support of {*x*⁽ⁱ⁾}.

Repeat

• Sparse Coding :
$$X \in \underset{\widetilde{X}}{\operatorname{arg\,min}} \left\| Y - D \widetilde{X} \right\|_{F}$$
 s.t. $\left\| \widetilde{\boldsymbol{x}}^{(i)} \right\|_{0} \leq n_{s}, \forall i.$

CodeBook Update : Update *D* and *X* in order to lower ||*Y* − *DX*||_F while maintaining the support of {*x*⁽ⁱ⁾}.

But typically $\mathbf{x}^{(i)} \in \mathbb{R}^{n_D}$ cannot be estimated from measurements: Observability issue

 \longrightarrow determine *D* for estimating $\mathbf{x}^{(i)}$ from $\mathbf{s}^{(i)}$ instead of $\mathbf{y}^{(i)}$.

 \rightarrow dictionary *D* both accurate and observable: *D*(*Y*, *S*).

----- Observability-oriented Dictionary Learning

On-site data: $\boldsymbol{s} = G(\boldsymbol{y})$.

Let $M_y = \{y_1, \dots, y_{n_{snap}}\}$ examples of plausible fields. One looks for a recovery procedure minimizing the Bayes risk

$$\mathbb{E}_{(\boldsymbol{s},\boldsymbol{y})}\left[\left\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\left(\boldsymbol{s}\right)\right\|_{2}^{2}\right] = \iint \left\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\left(\boldsymbol{s}\right)\right\|_{2}^{2} \rho\left(\boldsymbol{s}|\boldsymbol{y}\right) \rho\left(\boldsymbol{y}\right) \, \mathrm{d}\boldsymbol{s} \, \mathrm{d}\boldsymbol{y},$$
$$\approx \propto \left\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}\left(\boldsymbol{S}\right)\right\|_{F}^{2}. \quad [\textit{iid samples}].$$

with

$$\mathbf{y} \approx \widehat{\mathbf{y}} = D(\mathbf{x}),$$

 $\mathbf{s} \approx \widehat{\mathbf{s}} = D_{\mathbf{s}} \mathbf{x}.$

$$\longrightarrow \{D_{\boldsymbol{s}}, X, D\} \in \operatorname*{arg\,min}_{\widetilde{D_{\boldsymbol{s}}}, \widetilde{X}, \widetilde{D}} \left\| Y - \widetilde{D}\,\widetilde{X}\left(S; \widetilde{D_{\boldsymbol{s}}}\right) \right\|_{F}.$$

On-site data: $\boldsymbol{s} = \boldsymbol{G} \boldsymbol{y}$.

Using block-coordinate descent, alternate solve for

Observability-oriented Sparse Coding

$$\boldsymbol{x}^{(i)} \in \operatorname*{arg\,min}_{\widetilde{\boldsymbol{x}}} \left\| \boldsymbol{s}^{(i)} - \boldsymbol{D}_{\boldsymbol{s}} \, \widetilde{\boldsymbol{x}} \right\|_{2}, \quad \mathrm{s.t.} \quad \|\boldsymbol{x}\|_{0} \leq n_{s},$$

Estimation CodeBook Update

$$D \in \operatorname*{arg\,min}_{\widetilde{D}} \left\| Y - \widetilde{D} X \right\|_{F}.$$

Feature CodeBook Update

$$\boldsymbol{d}_{\boldsymbol{s},l} \propto \left(\boldsymbol{S} - \boldsymbol{D}_{\boldsymbol{s},\backslash l} \, \boldsymbol{X}_{\backslash l}\right) \, \widehat{\boldsymbol{x}}_{l}^{\mathsf{T}}, \qquad \left\|\boldsymbol{d}_{\boldsymbol{s},l}\right\|_{2} = 1, \quad \forall \, 1 \leq l \leq n_{D},$$

Bayesian Compressive Sensing

Relax $\|\boldsymbol{x}\|_0$ (NP-hard optimization problem) in $\|\cdot\|_1$.

$$\boldsymbol{x} \in \underset{\boldsymbol{\widetilde{x}} \in \mathbb{R}^{n_D}}{\operatorname{arg\,min}} \left\| \boldsymbol{s} - \boldsymbol{D}_{\boldsymbol{s}} \, \boldsymbol{\widetilde{x}} \right\|_2^2 + \tau \, \left\| \boldsymbol{\widetilde{x}} \right\|_1,$$

Bayesian Compressive Sensing

Relax $\|\boldsymbol{x}\|_0$ (NP-hard optimization problem) in $\|\cdot\|_1$.

$$\boldsymbol{x} \in \underset{\widetilde{\boldsymbol{x}} \in \mathbb{R}^{n_{D}}}{\operatorname{arg\,min}} \left\| \boldsymbol{s} - D_{\boldsymbol{s}} \, \widetilde{\boldsymbol{x}} \right\|_{2}^{2} + \tau \, \left\| \widetilde{\boldsymbol{x}} \right\|_{1},$$

Full information on the solution \longrightarrow Bayesian modeling Independent data during training.

$$\mathbf{x} \in \underset{\widetilde{\mathbf{x}} \in \mathbb{R}^{n_{D}}}{\arg \max} \ q\left(\widetilde{\mathbf{x}} \middle| \mathbf{s}\right) \propto L\left(\mathbf{s} \middle| \widetilde{\mathbf{x}}\right) \ p\left(\widetilde{\mathbf{x}}\right), \qquad \widehat{\mathbf{s}} = D_{\mathbf{s}} \ \mathbf{x},$$

with

$$\begin{split} L(\boldsymbol{s}|\boldsymbol{x},\beta) &\sim \mathcal{N}\left(\boldsymbol{s}\Big|\boldsymbol{D}_{\boldsymbol{s}}\,\boldsymbol{x},\beta^{-1}\right),\\ \boldsymbol{\rho}\left(\boldsymbol{x}\right) &= \frac{\lambda}{2}\,\exp\left(-\frac{\lambda}{2}\,\left\|\boldsymbol{x}\right\|_{1}\right), \qquad \text{[Laplace prior]},\\ \boldsymbol{\tau} &= \lambda/\beta \qquad \text{[sparsity penalty]}. \end{split}$$

Bayesian Compressive Sensing (cnt'd)

Sparsity regularization penalty τ unknown Laplace prior not conjugate to the likelihood model $\end{pmatrix} \longrightarrow hi$

n

 \longrightarrow hierarchical formulation

$$p(\mathbf{x}|\boldsymbol{\gamma}) = \prod_{i=1}^{n_D} \mathcal{N}(\mathbf{x}_i|\mathbf{0},\gamma_i), \quad \boldsymbol{\gamma} = (\gamma_1 \dots \gamma_{n_D}), \quad (1)$$

$$p(\gamma_i|\lambda) = \frac{\lambda}{2} \exp\left(-\frac{\lambda \gamma_i}{2}\right), \quad (2)$$

$$p(\lambda|\nu) = \Gamma(\lambda|\nu/2,\nu/2).$$

Bayesian Compressive Sensing (cnt'd)

Sparsity regularization penalty τ unknown Laplace prior not conjugate to the likelihood model \rightarrow hierarchical formulation

$$p(\mathbf{x}|\gamma) = \prod_{i=1}^{n_D} \mathcal{N}(x_i|0,\gamma_i), \quad \gamma = (\gamma_1 \dots \gamma_{n_D}), \quad (1)$$

$$p(\gamma_i|\lambda) = \frac{\lambda}{2} \exp\left(-\frac{\lambda \gamma_i}{2}\right), \quad (2)$$

$$p(\lambda|\nu) = \Gamma(\lambda|\nu/2,\nu/2).$$

Each of the n_D independent hyperparameters γ_i controls the strength of the prior \longrightarrow introduces sparsity in the model.

 \rightarrow three-stage hierarchy. Eqs. (1)-(2) result in a Laplace distribution $p(\mathbf{x}|\lambda)$.

Sequential Sparse Bayesian Learning

 $\rightarrow q(\mathbf{x}|\mathbf{s}, \boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\lambda})$ is a multivariate Gaussian distribution $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$,

$$\boldsymbol{\mu} = \beta \Sigma D_{\boldsymbol{s}}^{\mathsf{T}} \boldsymbol{s}, \qquad \boldsymbol{\Sigma} = \left(\beta D_{\boldsymbol{s}}^{\mathsf{T}} D_{\boldsymbol{s}} + \Lambda\right)^{-1}, \quad \boldsymbol{\Lambda} = \operatorname{diag}\left(\gamma_{1}^{-1}, \ldots, \gamma_{n_{D}}^{-1}\right).$$

Follows Babacan et al. (2010).

Hyperparameters maximize the (log-) marginal likelihood

$$\log p(\mathbf{s}, \boldsymbol{\gamma}, \boldsymbol{\beta}, \boldsymbol{\lambda}) = \log \int p(\mathbf{s} | \mathbf{x}, \boldsymbol{\beta}) p(\mathbf{x} | \boldsymbol{\gamma}) p(\boldsymbol{\gamma} | \boldsymbol{\lambda}) p(\boldsymbol{\lambda}) p(\boldsymbol{\beta}) d\mathbf{x}$$

 \longrightarrow MAP estimate: $\hat{y} = D \mu$.

Recovery performance

Prediction SBL 100 0.2 90 0.15 80 0.1 70 0.05 60 0 > 50 -0.05 -0.1 40 -0.15 30 -0.2 20 -0.25 10 -0.3 100 150 200 250

х

Lionel MATHELIN

Some remarks

- Offline/Online strategy for inference. First learn about the system at hand, then exploit,
- Basis learning philosophy is a key for a realistic and successful approach,
- Need to balance between representation accuracy and observability when using a dictionary → observability-oriented sparse Bayesian learning.

A more challenging situation: estimating a 3-D turbulent channel flow

Estimation of the velocity field: $\mathbf{y} \in \mathbb{R}^{2 \ 10^7}$ 30 pressure sensors at the lower wall: \mathbf{s}_{inst} . Dataset: 7,000 snapshots: *Y* No model available. Catalog of data from past experiments and/or simulations.

A more challenging situation: estimating a 3-D turbulent channel flow

Estimation of the velocity field: $\mathbf{y} \in \mathbb{R}^{2 \ 10^7}$ 30 pressure sensors at the lower wall: \mathbf{s}_{inst} . Dataset: 7,000 snapshots: Y No model available. Catalog of data from past experiments and/or simulations.

Disclaimer: I will not solve the problem...

lionol		LET LINE
LIUTE	IVAL	

Data-Driven estimation of a turbulent flow

Preliminary observations

- $\stackrel{\sim}{\sim}$ The spectrum of the database is very slowly decaying \longrightarrow cannot exploit low-rank structure.
- $\stackrel{\sim}{\sim}$ To fill a *d*-D hypercube with ϵ -balls $\mathcal{B}_{\epsilon}(L^2)$, one needs

 $n_{\rm snap} \sim \epsilon^{-d} d^{d/2}$ samples

 \longrightarrow NN-based approach is doomed to fail.

 $\stackrel{\sim}{\sim}$ Not so much data \longrightarrow precludes deep-* approaches.

Preliminary observations

- $\stackrel{\sim}{\sim}$ The spectrum of the database is very slowly decaying \longrightarrow cannot exploit low-rank structure.
- $\stackrel{\sim}{\sim}$ To fill a *d*-D hypercube with ϵ -balls $\mathcal{B}_{\epsilon}(L^2)$, one needs

$$n_{\rm snap} \sim \epsilon^{-d} d^{d/2}$$
 samples

 $\stackrel{\sim}{\sim}$ Not so much data \longrightarrow precludes deep-* approaches.

What we may do

- Alleviate the loss of Markovianity by embedding the measurements
- Unfold the measurements to disentangle the information.
- Discover the manifold the flow data lie on. Hopefully of reasonable dimension.
- "Flatten" its relationship with the measurement features.

Flow features Ψ

Nonlinear manifold learning: Diffusion Maps

Flow features Ψ

Nonlinear manifold learning: Diffusion Maps

Kernel $N_{\rm DM}$ to quantify the distance between snapshots $\{y_i\}_i$:

$$N_{\mathrm{DM}}\left(\boldsymbol{y}_{i}, \boldsymbol{y}_{j}
ight) = \exp\left(-\left(\boldsymbol{y}_{i} - \boldsymbol{y}_{j}
ight)^{\mathsf{T}} \Sigma_{N_{\mathrm{DM}}}^{-1}\left(\boldsymbol{y}_{i} - \boldsymbol{y}_{j}
ight)
ight).$$

With *D* the degree matrix, the Markov matrix quantifies the transition probabilities:

$$P = D^{-1} N_{\rm DM}, \qquad A = D^{-1/2} N_{\rm DM} D^{-1/2},$$

t-step transition matrix, with $t \in \mathbb{N}$ the diffusion "time" (acting as a scale):

$$P^t = R \, \Gamma^t \, L^{\mathsf{T}}.$$

Flow features Ψ_Y are modes of the diffusion map:

$$\Psi_Y = \Gamma^t R^T$$
.

Data-Driven estimation of a turbulent flow

Measurement features Φ

Lagrangian writes

$$\mathcal{L} := \lambda \|W\|_{F}^{2} + \|\Psi_{Y} - \Psi_{Y} W \Phi(S)\|_{F}^{2},$$

$$\propto \operatorname{Tr} \left[\lambda W W^{\mathsf{T}} + \Xi \Xi^{\mathsf{T}} + \alpha^{\mathsf{T}} (\Psi_{Y} - \Psi_{Y} W \Phi_{S} - \Xi)\right], \quad [\text{Dual version}]$$

with $\Xi := \Psi_Y - \Psi_Y W \Phi_S$ and α the matrix of adjoint variables.

Measurement features Φ

Lagrangian writes

$$\mathcal{L} := \lambda \|W\|_{F}^{2} + \|\Psi_{Y} - \Psi_{Y} W \Phi(S)\|_{F}^{2},$$

$$\propto \operatorname{Tr} \left[\lambda W W^{\mathsf{T}} + \Xi \Xi^{\mathsf{T}} + \alpha^{\mathsf{T}} (\Psi_{Y} - \Psi_{Y} W \Phi_{S} - \Xi) \right], \qquad \text{[Dual version]}$$

with $\Xi := \Psi_Y - \Psi_Y W \Phi_S$ and α the matrix of adjoint variables.

The measurement features Φ are determined using a Multi Kernel Learning technique. Generalized minimax problem to learn the kernel of measurement features $K_{i,j} := \langle \Phi_{s_i}, \Phi_{s_j} \rangle$:

$$K(\cdot, \cdot) = \sum_{k} \mu_{k} K_{k}(\cdot, \cdot).$$

Measurement features Φ

Lagrangian writes

$$\mathcal{L} := \lambda \|W\|_{F}^{2} + \|\Psi_{Y} - \Psi_{Y} W \Phi(S)\|_{F}^{2},$$

$$\propto \operatorname{Tr} \left[\lambda W W^{\mathsf{T}} + \Xi \Xi^{\mathsf{T}} + \alpha^{\mathsf{T}} (\Psi_{Y} - \Psi_{Y} W \Phi_{S} - \Xi) \right], \qquad \text{[Dual version]}$$

with $\Xi := \Psi_Y - \Psi_Y W \Phi_S$ and α the matrix of adjoint variables.

The measurement features Φ are determined using a Multi Kernel Learning technique. Generalized minimax problem to learn the kernel of measurement features $K_{i,j} := \langle \Phi_{s_i}, \Phi_{s_j} \rangle$:

$$K(\cdot,\cdot) = \sum_{k} \mu_{k} K_{k}(\cdot,\cdot).$$

The adjoint variables $\tilde{\alpha}$ satisfy a Sylvester equation:

$$\lambda \left(\Psi_{Y} \Psi_{Y}^{\mathsf{T}} \right)^{-1} \widetilde{\alpha} + \widetilde{\alpha} \, K_{SS} = \Psi_{Y}.$$

Wrapping-up...

Finally

 $\boldsymbol{s} \longrightarrow \Psi_{\boldsymbol{y}} \approx \widetilde{\alpha} K_{\mathcal{S}}(\boldsymbol{s}).$

Wrapping-up...

Finally

$$\boldsymbol{s} \longrightarrow \Psi_{\boldsymbol{y}} \approx \widetilde{\alpha} K_{\mathcal{S}}(\boldsymbol{s}).$$

How to recover y from Ψ_y ? \longrightarrow pre-image kernel problem.

If Gaussian kernel and isotropic \longrightarrow Nyström extension technique to estimate the transition probabilities $p(\mathbf{y}, \mathbf{y}_i)$ and distances $D(\Psi_{\mathbf{y}_i}, \Psi_{\mathbf{y}})$.

 \longrightarrow easy to relate to distances $d(\mathbf{y}_i, \mathbf{y})$.

 \rightarrow can estimate $\hat{y} \approx y$ from knowning its distance to training samples $\{y_i\}_i$.

Wrapping-up...

Finally

$$\boldsymbol{s} \longrightarrow \Psi_{\boldsymbol{y}} \approx \widetilde{\alpha} K_{\mathcal{S}}(\boldsymbol{s}).$$

How to recover y from Ψ_y ? \longrightarrow pre-image kernel problem.

If Gaussian kernel and isotropic \longrightarrow Nyström extension technique to estimate the transition probabilities $p(\mathbf{y}, \mathbf{y}_i)$ and distances $D(\Psi_{\mathbf{y}_i}, \Psi_{\mathbf{y}})$.

 \longrightarrow easy to relate to distances $d(\mathbf{y}_i, \mathbf{y})$.

 \rightarrow can estimate $\hat{y} \approx y$ from knowning its distance to training samples $\{y_i\}_i$.

At the end of the day:

$$\boldsymbol{s}_{\mathrm{inst}} \longrightarrow \boldsymbol{s} \longrightarrow \Phi\left(\boldsymbol{s}\right) \longrightarrow \widehat{\Psi}\left(\widehat{\boldsymbol{y}}\right) \longrightarrow \widehat{\boldsymbol{y}}$$

Very much work in progress...

- Basis learning philosophy is a key enabler,
- Need to balance between representation accuracy and observability.

On-going efforts:

- More robust determination of the preimage,
- Anisotropic features kernel (→ Laplace-Beltrami operator),
- Observability of the flow features yet to be enforced,
- More robust definition of the Bayes risk, *e.g.*, Wasserstein distance.