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Introduction and motivation
POD-Galerkin ROMs
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First principle simulations

= Numerical simulations are computationally demanding:

= Physical reasons: small scales structures and fast events require
tiny spatial and temporal discretisation

= Numerical reasons: stability of numerical schemes, dispersion or
dissipation errors

= Complex geometries

= Generally the computational cost does not scale with the
intrinsic dimension of the problem
= e.g a limit cycle might be described with a few Fourier modes
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First principle simulations
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= Numerical simulations are computationally demanding:

= Physical reasons: small scales structures and fast events require
tiny spatial and temporal discretisation

= Numerical reasons: stability of numerical schemes, dispersion or
dissipation errors

= Complex geometries

= Generally the computational cost does not scale with the
intrinsic dimension of the problem

= e.g a limit cycle might be described with a few Fourier modes
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Reduced Order Model

.,

Find a suitable subspace where the
dynamics holds
= Givenu € R", U € R and a € RY

Galerkin projection

u(z,t) = YV Ui(2)a;(t) = Ulz)a(t)

= hc < Ui, Uj >= 6ij then
P =UU”

Is a projector operator that can be used to
recover the minimal subspace where the
dynamics holds.

us

U2

Ui
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POD

Proper Orthogonal Decomposition can be used to extract principal modes from a physical simulation

(ux(mhtl) uw(ml,tZ) T um(ml,ts)\
Ug (z2,t1)  ug (2,t2) - - ug (@a,ts)

uy (21,t1)  uy (z1,t2) - - uy (z1,t)

\uy(xmtl) Uy (T, t2) - - “y(xn’tS))

The POD baseU is truncated to the first k modes according to some energy norm, such that:

[Pullr > [[(I - P)ullr
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POD
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POD-Galerkin ROM

If the dynamics of the FOM is described by:

du

- = g(u)

The associated POD-Galerkin ROM with N
ODEs reads:

& — U”g(Ua) + residuals

Residuals come from POD base truncation.
= Might affect transient dynamics. Dangerous

if the ROM is used in a control scenario (e.g.
MPC)

= If not small enough, errors can cumulate
and might lead dynamics to diverge!
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POD-Galerkin ROM

If the dynamics of the FOM is described by: . .
Y Y Incompressible flow around 2D cylinder case*
du __
o g(u)
, , , 3 AR I PR
The associated POD-Galerkin ROM with N R e e
ODEs reads: 5 —0
d T M Y X sﬂgéx
= = U" g(Ua) + residuals 0 S

Residuals come from POD base truncation. describing the d oo f h ol
= Might affect transient dynamics. Dangerous ROM cescribing the dynamics from the unstable

if the ROM is used in a control scenario (e.g. | Pase flow (11 = 0)at ¢ = Oto the stable periodic
MPC) cycle at Re = 100.

= If not small enough, errors can cumulate o , .
. . . *BR Noack et al. "A hierarchy of low-dimensional models for the
and might lead dynamics to diverge! cylinder wake. JFM (2003)
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ROM performance: Flow around 2D Cylinder

2 POD modes + the shift mode were used to recover the ROM
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ROM performance: Flow around 2D Cylinder
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ROM performance: Flow around 2D Cylinder

2 POD modes + the shift mode were used to recover the ROM
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ROM performance: Flow around 2D Cylinder

2 POD modes + the shift mode were used to recover the ROM
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ROM performance: Flow around 2D Cylinder

2 POD modes + the shift mode were used to recover the ROM
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ROM closure
Unboxing the residual
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Unboxing the residual

= Reduce the errors:

= Increasing the POD modes (not desiderable)
= Use more sophisticated ROMs than POD-Galerkin
(generally more computationally demanding)

= Try to model the residual introducing a closure term

% = U%g(Ua) + fo(a)
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Unboxing the residual

= Reduce the errors:

= Increasing the POD modes (not desiderable)
= Use more sophisticated ROMs than POD-Galerkin
(generally more computationally demanding)

= Try to model the residual introducing a closure term

da _
dt

U%g(Ua) + f4(a)
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Introduce a closure fg(a)is not a new idea

NN:

- Hesthaven, Jan S., and Stefano Ubbiali. "Non-intrusive reduced order modeling
of nonlinear problems using neural networks." JCP (2018)

- Barnett, Joshua et al. "Neural-network-augmented projection-based model
order reduction for mitigating the Kolmogorov barrier to reducibility." JCP (2023)
Filter:

- Wells, David, et al. "An evolve-then-filter regularized reduced order model for

convection-dominated flows." |JNMF (2017)
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Unboxing the residual

= Reduce the errors:
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= JuuTuis the jacobian of the FOM around the state UUTu
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Unboxing the residual

= Reduce the errors:

Introduce a closure fg(@)is not a new idea
= Increasing the POD modes (not desiderable)
= Use more sophisticated ROMs than POD-Galerkin

. . - Hesthaven, Jan S., and Stefano Ubbiali. "Non-intrusive reduced order modeling
(genera”y more ComPUtatlona”y demandlng) of nonlinear problems using neural networks." JCP (2018)
= Try to model the residual introducing a closure term

- Barnett, Joshua et al. "Neural-network-augmented projection-based model
order reduction for mitigating the Kolmogorov barrier to reducibility." JCP (2023)
Filter:

NN:

da _

- Wells, David, et al. "An evolve-then-filter regularized reduced order model for
T convection-dominated flows." |JNMF (2017)
o = U g(Ua) + fy(a)

= The residual:

da _ gTg(UUTu+ (I - UUT)u) + 8. (I - UU

= JuuTuis the jacobian of the FOM around the state UUTu
= The uncorrected ROMs

= The residual accounts for the dynamics of the complement of UU” on UU”
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The unobserved dynamics

.,

= Goal: Recover the unobserved dynamics from the observed POD modes
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The unobserved dynamics

.,

= Goal: Recover the unobserved dynamics from the observed POD modes

= According to the Takens theorem:
= Delayed coordinates of observable coordinates
used to recover the unobserved phase space.
= The reconstructed phase space is a
diffeomorphisms of the original one i.e. the
topology is preserved but not the geometric
shape.

V4
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The unobserved dynamics

.,

= Goal: Recover the unobserved dynamics from the observed POD modes

= According to the Takens theorem: H X2
= Delayed coordinates of observable coordinates
used to recover the unobserved phase space.
= The reconstructed phase space is a
diffeomorphisms of the original one i.e. the
topology is preserved but not the geometric
shape.

= The Mori-Zwanzig formalism provides a
closed form for the dynamics of partially
observed systems.

L agt) = )+ [ K(a(s))ds + (2 ........................................................... _—
a(t)being the reduced coordinates l .................... 77)! B iai(t)gi(O)

Yen Ting Lin, et al. "Data-driven learning for the Mori-Zwanzig
formalism: a generalization of the Koopman learning framework
SIAM Journal on Applied Dynamical Systems (2021)

S SAFRAN



C2 - Confidential

Demystify the MZ formalism

da(t) = Q(a(t) + [, K(a(s))ds + F(t)
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Demystify the MZ formalism

Sa(t) =R@ON+ [, K(a(s))ds + F(t)

= The markovian term: describes the dynamics of the FOM system in the observed space =>POD-ROM
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Demystify the MZ formalism

La(t) = Qa@)+|f; K(a(s))ds|+ F(t)

= The markovian term: describes the dynamics of the FOM system in the observed space =>POD-ROM
= The non-markovian term: It is a convolution of past informations and it describes the projection of the
unobserved dynamics onto the observed space.
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Demystify the MZ formalism

La(t) =|Qa@))+|[f; K(a(s))ds|+F(t)

= The markovian term: describes the dynamics of the FOM system in the observed space =>POD-ROM

= The non-markovian term: It is a convolution of past informations and it describes the projection of the
unobserved dynamics onto the observed space.

= The source term: accounts for the incomplete knowledge of the initial condition and system dynamics.
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lism

(t) [

_|_

fg K(a(s))ds

+F(t)

= The markovian term: describes the dynamics of the FOM system in the observed space =>POD-ROM
= The non-markovian term: It is a convolution of past informations and it describes the projection of the

unobserved dynamics onto the observed space.
= The source term: accounts for the incomplete knowledge of the initial condition and system dynamics.

Many data-driven system identification methods can be framed in the MZ formalism (e.g. ARMAX).
Convolution on past informations is a standard procedure also for generative models in Deep Learning (e.g.

WaveNet, LSTM, Transformers)
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Demystify the MZ formalism

o) RN

fot K(a(s))ds

+

F(t)

= The markovian term: describes the dynamics of the FOM system in the observed space =>POD-ROM
= The non-markovian term: It is a convolution of past informations and it describes the projection of the

unobserved dynamics onto the observed space.
= The source term: accounts for the incomplete knowledge of the initial condition and system dynamics.

Many data-driven system identification methods can be framed in the MZ formalism (e.g. ARMAX).
Convolution on past informations is a standard procedure also for generative models in Deep Learning (e.g.

WaveNet, LSTM, Transformers)

.4

We need some assumptions to
effectively apply the MZ formalism
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Hypothesis

1. The FOM is observable via the first Kk POD modes:
We didn't prove it but, higher harmonic POD modes are enslaved to dominant POD modes. The
dynamics of the last POD modes are non-linearly correlated with the first POD modes*

2. The dynamics associated to the unobserved POD modes is dissipative**

*Loiseau, Jean-Christophe, and Steven L. Brunton. "Constrained sparse Galerkin regression."JFM (2018)
*Callaham, Jared L., et al. "On the role of nonlinear correlations in reduced-order modelling." JFM (2022)
**Ahmed, Shady E., et al. "On closures for reduced order models—A spectrum of first-principle to machine-learned avenues." PoF (2021).
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Hypothesis

1. The FOM is observable via the first Kk POD modes:
We didn't prove it but, higher harmonic POD modes are enslaved to dominant POD modes. The
dynamics of the last POD modes are non-linearly correlated with the first POD modes*

2. The dynamics associated to the unobserved POD modes is dissipative**

Ignore the source term

dat) = a) + [, K(a(s))ds

)
mm)  la(t) =0Q(>a(t) + ' a(s)erDds, AeR,

Exponential kernel
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Hypothesis

1. The FOM is observable via the first Kk POD modes:
We didn't prove it but, higher harmonic POD modes are enslaved to dominant POD modes. The
dynamics of the last POD modes are non-linearly correlated with the first POD modes*

2. The dynamics associated to the unobserved POD modes is dissipative**

$at) =) + [ K(a(s))ds

Ignore the source term

—>
—>

Exponential kernel

La(t) = Qa(t) + [' a(s)eeds, AR,

The exponential kernel is not the unique choice. One possibility is to use Recurrent NNs*** aiming at predict

residual; = RNN(a,residual;1). => hard to train if ROM is unstable and diverges after few iterations.

*Loiseau, Jean-Christophe, and Steven L. Brunton. "Constrained sparse Galerkin regression."JFM (2018)

*Callaham, Jared L., et al. "On the role of nonlinear correlations in reduced-order modelling." JFM (2022)

**Ahmed, Shady E., et al. "On closures for reduced order models—A spectrum of first-principle to machine-learned avenues." PoF (2021).
***Wang, Qian, et al.. "Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig
formalism." JCP (2020)
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The exponential kernel

.,

= |t is a convenient choice:

= To correlate the residual with recent observations (and not far in the past)
Well describe a dissipative dynamics as long as A € R,
It is a filter of width 1/A. Already used in LES* and SFD**

= Easy to integrate with an augmented ODE.

a=ROM(a) +y yis like the memory gate for recurrent
y=a—\y Neural Networks or Recevoir Computing

a, y have the same dimension. This might introduce an information bottleneck
We introduced an encoding E : RY — R™ and decodingR : R"® — RY map

*Pruett, C. D., et al. "The temporally filtered Navier-Stokes equations: properties of the residual stress." PoF (2003)
**Akervik, Espen, et al. "Steady solutions of the Navier-Stokes equations by selective frequency damping." PoF (2006)
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Deep Learning solution
CD-ROM formulation
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CD-ROM

a= ROM(a) + Ry, (y) = Ey,, Ry, are MLP and Ais a trainable diagonal R’?*"
. matrix
y = Eo, (a) — Ay
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CD-ROM

a= ROM(a) + Ry, (y) = Ey,,Rg, are MLP and Ais a trainable diagonal R’?*"#
. matrix
y = Eo, (a) — Ay

» The training procedure:

argming, o, A = J(a) = [[atrger — a|
st. a=CD-ROM(a,0g,0x,A)

= The target residuals don't need to be computed to train the MLPs. The distance between the
target trajectory (awe:(t) = UTupns(t)) and the predicted one is considered as loss function.
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CD-ROM

= Ey,, Ry, are MLP and Ais a trainable diagonal R’}#*"*
matrix

&= ROM(a) + R, (y)
y = Ey, (a) — Ay

» The training procedure:

arg ming, 0,4 = J(3) = [@arger — 2|y
s.t. a = CD-ROM(a,0g,0r,A)

= The target residuals don’t need to be computed to train the MLPs. The distance between the
target trajectory (awe:(t) = UTupns(t)) and the predicted one is considered as loss function.

= The augmented Lagrangian is minimized to solve the constrained optimization problem*
= The gradients are back propagated through the ROM model —>the ROM sensitivity is taken into account
= Straightforward to compute vector-Jacobian products with automatic differentiation
= Aportion of the true trajectory is used to initialize the memory y

L(a(t),a'(t),0g,0r,A) =
J(a(t)) —al(¢) J; a(t) — CD-ROM(a(t), 0z, O, A)dt

*Chen, Ricky TQ, et al. "Neural ordinary differential equations.” Advances in neural information processing systems (2018).
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Results
- Flow around 2D cylinder

- Fluidic Pinball
- Parametric Kuramoto-Sivashinsky
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Flow around 2D cylinder

s B0
2 POD modes + the shift mode were used to train the ROM correction

Evolution of the shift mode's trajectory during Neural ODE training
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Flow around 2D cylinder
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Fluidic Pinball

.,

Chaotic Fluidic Pinball*
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CD-ROM describing the chaotic dynamics of the
flow behind 3 cylinders at Re=130

*N. Deng, et al. "Low-order model for successive bifurcations of
the fluidic pinball.” JFM (2019)
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Fluidic Pinball

s B0
10 POD modes were used to train the ROM correction

Evolution of the Pinball trajectory during training
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Fluidic Pinball
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Vorticity field comparison after 110 time units
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Fluidic Pinball
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Train

Test
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Train Trajectory : Coefficient of the first mode of the 10 modes Pinball ROM
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Test Trajectory : Coefficient of the first mode of the 10 modes Pinball ROM
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Fluidic Pinball
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Estimated probability density functions for the coefficient of each mode. Plain blue line: Statistics
of the trajectory simulated with the corrected model; dotted black line: Statistics of the projected
DNS data. Labels refer to the mode index.
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Fluidic Pinball
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Oe) = myco = Xijy & (€ — [l — 1))

C2 - Confidential

i)

Correlation dimension
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Parametric Kuramoto-Sivashinsky

.,

1D Kuramoto-Sivashinsky 2
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Parametric Kuramoto-Sivashinsky
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Conclusions & perspectives
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Conclusions

= Conclusions:
= Anew correction has been proposed leveraging on MZ formalism

= The proposed method can be integrated in time with standard time-marching schemes —
important in control scenario

= For all cases the same data used to recover the POD modes has been used to train the MLPs
= Works well also with unstable ROM since the sensitivity of the ROM is considered during the
training
= The time scales used to correct the ROM are interpretable via 1/
» Perspectives:
= Better exploit the MZ-formalism to have a more theoretically grounded architecture
= Explore new temporal kernels
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Further conclusions

B
markovian non-markovian
d o ‘! t A _t
Sat) =R [ a(s) ¢ ds] AR,
Menier, E., et al. CD-ROM: Complemented = The markovian term is the POD-Galerkin ROM
Deep-Reduced order model. CMAME (2023) = The non-markovian kernel takes care of the truncation errors
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Further conclusions

.,

markovian non-markovian

Ga) :l(a(t,‘F ffoo a(s)e’cds, X cR,

The markovian term is the POD-Galerkin ROM
The non-markovian kernel takes care of the truncation errors

Menier, E., et al. CD-ROM: Complemented
Deep-Reduced order model. CMAME (2023)

Menier, E., et al. Continuous Methods:
Adaptively intrusive reduced order model
closure. NEURIPS workshop (2022)

The markovian term is the incomplete ROM
The non-markovian kernel takes care of the non-reducible terms
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Further conclusions
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Menier, E., et al. CD-ROM: Complemented
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markovian non-markovian

Sat) =R [ a(s) ¢ ds] AR,

Deep-Reduced order model. CMAME (2023) .

Menier, E., et al. Continuous Methods:

Adaptively intrusive reduced order model

closure. NEURIPS workshop (2022)

Menier, E., et al. Interpretable learning of

The markovian term is the POD-Galerkin ROM
The non-markovian kernel takes care of the truncation errors

The markovian term is the incomplete ROM

*» The non-markovian kernel takes care of the non-reducible terms

effective dynamics for multiscale systems.
arXiv preprint arXiv:2309.05812 (2023
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The markovian term is the approximation of the Koopman operator
with a finite number of observables

The non-markovian kernel takes care of the finite number of
observables
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