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Introduction
Modelling dynamical systems into the age of DL

Experimental data is often noisy, corrupted and does not account for the system’s
full state.

Generally, partially observed states cannot reconstructed its own dynamics but ...

... With historical values of such a partial state, it can be done (Takens theorem).

Figure: Lorenz system Figure: Delay coordinate embedding ht = [xt ,xt−τ ,xt−2τ ]



3/15

Introduction
Modelling partially observed dynamical systems into the age of Deep Learning (DL)

Latent variables enhance model expressivity but ...

these black box models (RNN, LSTM ...) lack interpretability, robustness
guarantees and insights into the structure of the dynamics.

ht+1 = fθt
(ht ,xt)

Figure: Example of RNN
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Introduction
Modelling dynamical systems into the age of Deep Learning (DL)

Neural Ordinary Differential Equations (NODEs)1 is a natural way of modelling a
dynamical system since NODE is a continuous equivalent ResNets (to be precise Leaky
RNN):

xt+1 = xt + fθ (xt , t)

dx(t)
dt

= fθ (x(t), t)

More often than not :

Experiments are done with the full state x(t).

Partially observed states coupled with non physical latent variables to reconstruct
the dynamics (i.e. Augmented NODEs2, LSTM ...).

Ideally what we want :

a DL framework with a principled sound structure.

Mori-Zwanzig (MZ) formalism provides a rigorously grounded theory for our needs.

1R Chen et al. Neural ordinary differential equations. 2018.
2E. Dupont et al. Augmented Neural ODEs. 2019.
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The Mori-Zwanzig Formalism
Coping with partially observed systems

It allows to derive exact evolution equations for coarse-grained quantities of
interest from high-dimensional systems.

If we consider a nonlinear system evolving on a smooth manifold S = R
n.

dx
dt

= F(x), x(0) = x0

The system is seen through the lens of the observables; ∀i,gi : S −→ C, that obey3:

Lgi (x) = F(x) · ∇gi (x)

where L is the Liouville operator

3Liouville operator Linked to the Koopman operator K(t, s) = e(t−s)L
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The Mori-Zwanzig Equation
Coping with partially observed systems

By concatenating the observables gi , g = [g0, . . . , gn], we get the MZ equation4,5,6:

∂
∂t

g(x, t) = M(g(x, t))︸     ︷︷     ︸
Markov term

+ F(x, t)︸︷︷︸
Noise term

−
∫ t

0
K(g(x, t − s), s)ds︸                   ︷︷                   ︸
Memory term

where

M(g(x, t)) = etLPLg(x)

F(x, t) = etQLQLg(x)

K(g(x, t − s), s) = −e(t−s)LPLesQLQLg(x)

with P a projector operator and its orthogonal Q = I −P

4Y. Zhu. Mori-Zwanzig equation: Theory and Applications. 2019.
5H. Mori. A Continued-Fraction Representation of the Time-Correlation Functions. 1965.
6R. Zwanzig. Approximate Eigenfunctions of the Liouville Operator in Classical Many-Body Systems. 1966.
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The Mori-Zwanzig Equation
Coping with partially observed systems

Several ways are possible to cancel the noise term F(x, t) in the MZ equation. With
F(x, t) = 0, we get :

∂
∂t

g(x, t) = M(g(x, t))︸     ︷︷     ︸
Markov term

−
∫ t

0
K(g(x, t − s), s)ds︸                   ︷︷                   ︸

y(x,t)=Memory term

Additionally, we can rewrite the MZ equation as coupled PDEs7: ∂
∂t
g(x, t) = M(g(x, t)) + y(x, t)

∂
∂t
y(x, t) = K(g(x, t),0)−

∫ t
0 ∂2K(g(x, t − s), s)ds

On-going theoretical link of MZ with Deep Learning theory8.

7∂2 refers to the partial derivative with respect to the second argument
8D. Venturi et al. The Mori-Zwanzig formulation of deep learning. 2022.
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Modelling possibilities with MZ
An overview

∂
∂t
y(x, t) = f (g(x, t),

∫ t
0 K(g(x, t − s), s)ds, t)

Integro-Differential Equation (IDE)

∂
∂t
y(x, t) = f (g(x, t),g(x, t − τ1), . . . ,g(x, t − τn), t)

Delay Differential Equation (DDE)

∂
∂t
y(x, t) = f (g(x, t), t)

Ordinary Differential Equation (ODE)

ex
pr

es
si

ve
an

d
co

m
pl

ex

lim
it

ed
an

d
si

m
pl

ifi
ed



9/15

Practical example of MZ
Linear systems

X′(t) = AX(t)

A =
[
Arr Aru
Aur Auu

]
, X =

[
Xr
Xu

]
PA = Arr , QA = Auu

The MZ equation applied to the resolved variables Xr (t) gives

X′r (t) = ArrXr (t) +Aru

∫ t

0
e(t−s)AuuAurXr (s)ds+(((((((hhhhhhhArue

tAuuXu(0)︸             ︷︷             ︸
Xu (0):=0
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Practical example of MZ
Harmonic Oscillator

An harmonic oscillator dynamic is specified by

ẍ+
1
τ
ẋ+ω2

0x = 0

than can be rewritten in matrix form as

A =
[

0 1
−ω0 − 1

τ

]
X =

[
x
ẋ

]
If only the velocity g = ẋ is observed then we get : dg(t)

dt = − 1
τ g(t) + y(t)

dy(t)
dt = −ω2

0g(t)

 dg(t)
dt = fθ1 (g(t), t) + y(t)

dy(t)
dt = fθ2 (g(t), t)

Analytical DL-based



11/15

Practical example of MZ
Harmonic Oscillator

Figure: Analytical derivation of quantities of interest ẋ Figure: NODEs estimation of Markov and memory terms

9

9gt refers to ground truth and estimate to value returned by the neural network
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Neural Network based DDEs
Applied to MZ equation

Modelling partially observed dynamics with DDEs is a compromise between an
ODE and IDE model for the memory term’s dynamic y(x, t).

Therefore, our MZ equation modelling is : ∂
∂t
g(x, t) = Mθ(g(x, t)) + y(x, t)

∂
∂t
y(x, t) = fθ(g(x, t),g(x, t − τ1), . . . ,g(x, t − τn), t)

A DDE approach can also be justified by Takens theorem.

So far, our work focuses on neural-network based DDE implementation since
no tool is available. DDE solver was implemented with autodifferentiation
software JAX.
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Neural Network based DDEs
Validating the DDE approach

Mackey-Glass system (β = 0.25, n = 10, τ = 10 and γ = 0.1):

ẋ(t) = β
x(t − τ)

1 + x(t − τ)n
−γx(t)

Figure: DL model ẋ(t) = fθ (x(t),x(t − τ)) testset predictions
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Neural Network based DDEs
Practical Example : Van der Pol oscillator

Stiff Van der Pol oscillator (µ = 2) : ẍ+µ(1− x2)ẋ+ x = 0

If only the velocity g = ẋ is observed then no obvious analytical form is given.
Moreover, the current NODE approach for linear system fails

Figure: Results for the same MZ structure used in linear systems for Van der Pol

 dg(t)
dt = fθ1 (g(t), t) + y(t)

dy(t)
dt = fθ2 (g(t), t)
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Conclusion

DL-based MZ formalism is underway for modelling partially observed systems
because:

Deep Learning based theory for MZ.

Theoretically and empirically sound results for linear systems.

Neural networks based DDEs are now possible with known delays.

Tool developped with be used for MZ modelling.
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