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Introduction
Modelling dynamical systems into the age of DL

o Experimental data is often noisy, corrupted and does not account for the system’s

full state.
@ Generally, partially observed states cannot reconstructed its own dynamics but ...

@ ... With historical values of such a partial state, it can be done (Takens theorem).
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Figure: Delay coordinate embedding hy = [x¢, xf—r,x4_27]

Figure: Lorenz system
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Introduction
Modelling partially observed dynamical systems into the age of Deep Learning (DL)

o Latent variables enhance model expressivity but ...

o these black box models (RNN, LSTM ...) lack interpretability, robustness
guarantees and insights into the structure of the dynamics.
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Introduction
Modelling dynamical systems into the age of Deep Learning (DL)

Neural Ordinary Differential Equations (NODEs)! is a natural way of modelling a
dynamical system since NODE is a continuous equivalent ResNets (to be precise Leaky
RNN):

Xpe1 = x¢ + fo(xg, t)

P _ fotx(tnn

More often than not :

o Experiments are done with the full state x().

o Partially observed states coupled with non physical latent variables to reconstruct
the dynamics (i.e. Augmented NODEs?, LSTM ...).

Ideally what we want :

e a DL framework with a principled sound structure.

Mori-Zwanzig (MZ) formalism provides a rigorously grounded theory for our needs.

IR Chen et al. Neural ordinary differential equations. 2018.
2E. Dupont et al. Augmented Neural ODEs. 2019.
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The Mori-Zwanzig Formalism
Coping with partially observed systems

o It allows to derive exact evolution equations for coarse-grained quantities of
interest from high-dimensional systems.

o If we consider a nonlinear system evolving on a smooth manifold S = R".

dx _

i F(x), x(0)=xg

o The system is seen through the lens of the observables; Vi, g; : S— C, that obey3:

Lgi(x) = F(x)-Vgi(x)
where £ is the Liouville operator

3Liouville operator Linked to the Koopman operator K(t,s) = e(t=5)£ 515



N
The Mori-Zwanzig Equation

Coping with partially observed systems

By concatenating the observables g;, g = [g0,...,¢x], we get the MZ equation®>-:

t
3g(x,t) = M(g(x,t)) + F(x,t) —J K(g(x,t—s),s)ds

ot N 0
Markov term  Noise term

Memory term

where
M(g(x,1) = ¢ PLg(x)
F(x,t)= etQKQLg(x)
K(g(x,t=s),s)= —e(t_S)LPlIeSQEQLg(x)

with P a projector operator and its orthogonal @ =7 - P

4Y. Zhu. Mori-Zwanzig equation: Theory and Applications. 2019.
5H. Mori. A Continued-Fraction Representation of the Time-Correlation Functions. 1965.
6R. Zwanzig. Approximate Eigenfunctions of the Liouville Operator in Classical Many-Body Systems. 1966. 15
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The Mori-Zwanzig Equation

Coping with partially observed systems

Several ways are possible to cancel the noise term F(x, t) in the MZ equation. With
F(x,t) =0, we get :

0 t

S8 = Migls) - | Kiglxt-s),91s
— 0
Markov term

y(x,t)=Memory term

Additionally, we can rewrite the MZ equation as coupled PDEs’:

2.g(x,t) = M(g(x,1)) +p(x,1)
%y(x, t) =K(g(x,t),0)— Ié 02K (g(x,t—s),s)ds

On-going theoretical link of MZ with Deep Learning theory®.

79, refers to the partial derivative with respect to the second argument

8D. Venturi et al. The Mori-Zwanzig formulation of deep learning. 2022. s
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Modelling possibilities with MZ

An overview

Integro-Differential Equation (IDE)

Delay Differential Equation (DDE)

Ordinary Differential Equation (ODE)

limited and simplified
expressive and complex
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N
Practical example of MZ

Linear systems

PA=A,, QA=A,,
The MZ equation applied to the resolved variables X, (t) gives

t
Xp(t) = Ay X () + Apy J;) e(tis)A”uAurXr(s)ds +M
%,—/
X, (0):=0
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N
Practical example of MZ

Harmonic Oscillator

An harmonic oscillator dynamic is specified by

1
5c'+—x+w(2)x:0
T

than can be rewritten in matrix form as

2, 3=l

If only the velocity g = x is observed then we get :

{ a8l — _Le(t)+ (1) { 90 _ f (g(t),1)+p(1)
% = —wpglt) dy—(,f) = fo,(g(1),1)

Analytical DL-based
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Practical example of MZ

Harmonic Oscillator

— gt markov p —— estimate markov
4 gt memory 4 —— estimate memory
= = gt markov+memory —-- estimate memory+markov
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Figure: Analytical derivation of quantities of interest x Figure: NODEs estimation of Markov and memory terms

9¢t refers to ground truth and estimate to value returned by the neural network s



Neural Network based DDEs
Applied to MZ equation

@ Modelling partially observed dynamics with DDEs is a compromise between an
ODE and IDE model for the memory term’s dynamic y(x, ).

o Therefore, our MZ equation modelling is :
7800 1) = Mo(8(x,1) +9(x,1)
Ly(x,1) = folg(x, 1), g(x, t = T1),..., g, — Ty), 1)

o A DDE approach can also be justified by Takens theorem.

@ So far, our work focuses on neural-network based DDE implementation since
no tool is available. DDE solver was implemented with autodifferentiation
software JAX.
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Neural Network based DDEs
Validating the DDE approach

Mackey-Glass system (f =0.25, 7 =10, t =10 and y = 0.1):

. x(t—1)
#t) = fr = y(t)
1+x(t—1)
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Figure: DL model %(t) = fg (x(t), x(t — 7)) testset predictions
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Neural Network based DDEs

Practical Example : Van der Pol oscillator

o Stiff Van der Pol oscillator (y=2): £+ p(1 - x2)x+x=0

o If only the velocity g = % is observed then no obvious analytical form is given.

Moreover, the current NODE approach for linear system fails

— gtu
——- estimate v(t)
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Conclusion

DL-based MZ formalism is underway for modelling partially observed systems
because:

@ Deep Learning based theory for MZ.
o Theoretically and empirically sound results for linear systems.
o Neural networks based DDEs are now possible with known delays.

o Tool developped with be used for MZ modelling.
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