END-TO-END LEARNING OF DYNAMICAL SYSTEMS WITH THE Mori-Zwanzig formalism

T. Monsel ¹, O. Semeraro ¹, L. Mathelin ¹, G. Charpiat ^{1,2}

¹LISN, Université de Paris-Saclay, 91400 Orsay, France

²INRIA, 91400 Saclay, France

March 6, 2023

Content

- Introduction
- The Mori-Zwanzig (MZ) formalism
 - Derivation of the MZ equation
 - Modelling possibilities
 - Examples
- Applying Delay Differential Equations to MZ

Introduction

Modelling dynamical systems into the age of DL

- Experimental data is often noisy, corrupted and does not account for the system's full state.
- \bullet Generally, partially observed states cannot reconstructed its own dynamics but ...
- ... With historical values of such a partial state, it can be done (Takens theorem).

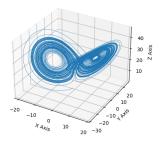


Figure: Lorenz system

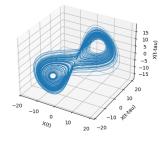


Figure: Delay coordinate embedding $h_t = [x_t, x_{t-\tau}, x_{t-2\tau}]$

Introduction

Modelling partially observed dynamical systems into the age of Deep Learning (DL)

- Latent variables enhance model expressivity but ...
- these black box models (RNN, LSTM ...) lack interpretability, robustness guarantees and insights into the structure of the dynamics.

$$\boldsymbol{h}_{t+1} = f_{\boldsymbol{\theta}_t}(\boldsymbol{h}_t, \boldsymbol{x}_t)$$

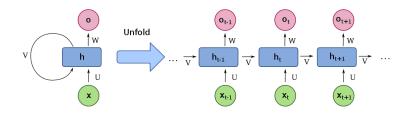


Figure: Example of RNN

Introduction

Modelling dynamical systems into the age of Deep Learning (DL)

Neural Ordinary Differential Equations (NODEs)¹ is a **natural way** of modelling a dynamical system since NODE is a continuous equivalent ResNets (to be precise Leaky RNN):

$$x_{t+1} = x_t + f_{\theta}(x_t, t)$$
$$\frac{dx(t)}{dt} = f_{\theta}(x(t), t)$$

More often than not:

- Experiments are done with the full state x(t).
- Partially observed states coupled with non physical latent variables to reconstruct the dynamics (i.e. Augmented NODEs², LSTM ...).

Ideally what we want:

• a DL framework with a principled sound structure.

Mori-Zwanzig (MZ) formalism provides a rigorously grounded theory for our needs.

¹R Chen et al. Neural ordinary differential equations. 2018.

²E. Dupont et al. Augmented Neural ODEs. 2019.

The Mori-Zwanzig Formalism

Coping with partially observed systems

- It allows to derive exact evolution equations for coarse-grained quantities of interest from high-dimensional systems.
- If we consider a nonlinear system evolving on a smooth manifold $S = \mathbb{R}^n$.

$$\frac{dx}{dt} = F(x), \quad x(0) = x_0$$

• The system is seen through the lens of the observables; $\forall i, g_i : S \to \mathbb{C}$, that obey³:

$$\mathcal{L}g_i(x) = F(x) \cdot \nabla g_i(x)$$

where \mathcal{L} is the Liouville operator

5/15

³Liouville operator Linked to the Koopman operator $K(t,s) = e^{(t-s)\mathcal{L}}$

By concatenating the observables g_i , $g = [g_0, ..., g_n]$, we get the MZ equation^{4,5,6}:

$$\frac{\partial}{\partial t}g(x,t) = \underbrace{M(g(x,t))}_{\text{Markov term}} + \underbrace{F(x,t)}_{\text{Noise term}} - \underbrace{\int_{0}^{t}K(g(x,t-s),s)ds}_{\text{Memory term}}$$

where

$$\begin{split} M(\boldsymbol{g}(x,t)) &= e^{t\mathcal{L}} \mathcal{P} \mathcal{L} \boldsymbol{g}(x) \\ F(x,t) &= e^{t\mathcal{Q} \mathcal{L}} \mathcal{Q} \mathcal{L} \boldsymbol{g}(x) \\ K(\boldsymbol{g}(x,t-s),s) &= -e^{(t-s)\mathcal{L}} \mathcal{P} \mathcal{L} e^{s\mathcal{Q} \mathcal{L}} \mathcal{Q} \mathcal{L} \boldsymbol{g}(x) \end{split}$$

with \mathcal{P} a projector operator and its orthogonal $\mathcal{Q} = \mathcal{I} - \mathcal{P}$

⁶R. Zwanzig. Approximate Eigenfunctions of the Liouville Operator in Classical Many-Body Systems. 1966.

⁴Y. Zhu. Mori-Zwanzig equation: Theory and Applications. 2019.

⁵H. Mori. A Continued-Fraction Representation of the Time-Correlation Functions. 1965.

The Mori-Zwanzig Equation

Coping with partially observed systems

Several ways are possible to cancel the noise term F(x,t) in the MZ equation. With F(x,t)=0, we get :

$$\frac{\partial}{\partial t} \mathbf{g}(x,t) = \underbrace{M(\mathbf{g}(x,t))}_{\text{Markov term}} - \underbrace{\int_{0}^{t} K(\mathbf{g}(x,t-s),s) ds}_{\mathbf{y}(x,t) = \text{Memory term}}$$

Additionally, we can rewrite the MZ equation as coupled PDEs⁷:

$$\begin{cases} & \frac{\partial}{\partial t} g(x,t) = M(g(x,t)) + y(x,t) \\ & \frac{\partial}{\partial t} y(x,t) = K(g(x,t),0) - \int_0^t \partial_2 K(g(x,t-s),s) ds \end{cases}$$

On-going theoretical link of MZ with Deep Learning theory⁸.

7/15

 $^{^{7}}$ ∂_{2} refers to the partial derivative with respect to the second argument 8 D. Venturi et al. *The Mori-Zwanzig formulation of deep learning*. 2022.

Modelling possibilities with MZ

An overview

limited and simplified

$$\frac{\partial}{\partial t}y(x,t) = f(g(x,t), \int_0^t K(g(x,t-s),s)ds,t)$$

Integro-Differential Equation (IDE)

$$\frac{\partial}{\partial t} y(x,t) = f(g(x,t), g(x,t-\tau_1), \dots, g(x,t-\tau_n), t)$$

Delay Differential Equation (DDE)

$$\frac{\partial}{\partial t} y(x,t) = f(g(x,t),t)$$

Ordinary Differential Equation (ODE)

expressive and complex

Practical example of MZ

Linear systems

$$X'(t) = AX(t)$$

$$A = \begin{bmatrix} A_{rr} & A_{ru} \\ A_{ur} & A_{uu} \end{bmatrix}, \quad X = \begin{bmatrix} X_r \\ X_u \end{bmatrix}$$

$$\mathcal{P}A = A_{rr}, \quad \mathcal{Q}A = A_{uu}$$

The MZ equation applied to the resolved variables $X_r(t)$ gives

$$X'_{r}(t) = A_{rr}X_{r}(t) + A_{ru} \int_{0}^{t} e^{(t-s)A_{uu}} A_{ur}X_{r}(s)ds + \underbrace{A_{ru}e^{tA_{uu}}X_{tr}(0)}_{X_{u}(0):=\mathbf{0}}$$

9/15

An harmonic oscillator dynamic is specified by

$$\ddot{x} + \frac{1}{\tau}\dot{x} + \omega_0^2 x = 0$$

than can be rewritten in matrix form as

$$A = \begin{bmatrix} 0 & 1 \\ -\omega_0 & -\frac{1}{\tau} \end{bmatrix} \quad X = \begin{bmatrix} x \\ \dot{x} \end{bmatrix}$$

If only the velocity $g = \dot{x}$ is observed then we get :

$$\begin{cases} \frac{dg(t)}{dt} = -\frac{1}{\tau}g(t) + y(t) \\ \frac{dy(t)}{dt} = -\omega_0^2 g(t) \end{cases} \begin{cases} \frac{dg(t)}{dt} = f_{\theta_1}(g(t), t) + y(t) \\ \frac{dy(t)}{dt} = f_{\theta_2}(g(t), t) \end{cases}$$
Analytical DL-based

Analytical

10/15

Practical example of MZ

Harmonic Oscillator

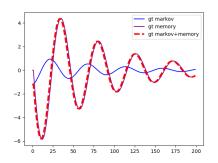


Figure: Analytical derivation of quantities of interest \dot{x}

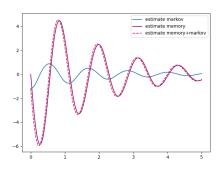


Figure: NODEs estimation of Markov and memory terms

 $^{^9} gt$ refers to ground truth and *estimate* to value returned by the neural network

- Modelling partially observed dynamics with DDEs is a compromise between an ODE and IDE model for the memory term's dynamic v(x, t).
- Therefore, our MZ equation modelling is:

$$\begin{cases} \frac{\partial}{\partial t} g(x,t) = M_{\theta}(g(x,t)) + y(x,t) \\ \frac{\partial}{\partial t} y(x,t) = f_{\theta}(g(x,t), g(x,t-\tau_1), \dots, g(x,t-\tau_n), t) \end{cases}$$

- A DDE approach can also be justified by Takens theorem.
- So far, our work focuses on neural-network based DDE implementation since no tool is available. DDE solver was implemented with autodifferentiation software JAX.

Neural Network based DDEs

Validating the DDE approach

Mackey-Glass system ($\beta = 0.25$, n = 10, $\tau = 10$ and $\gamma = 0.1$):

$$\dot{x}(t) = \beta \frac{x(t-\tau)}{1 + x(t-\tau)^n} - \gamma x(t)$$

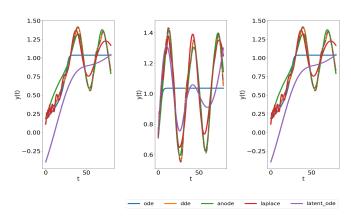




Figure: DL model $\dot{x}(t) = f_{\theta}(x(t), x(t-\tau))$ testset predictions

Neural Network based DDEs

Practical Example : Van der Pol oscillator

- Stiff Van der Pol oscillator $(\mu = 2)$: $\ddot{x} + \mu(1 x^2)\dot{x} + x = 0$
- If only the velocity $g = \dot{x}$ is observed then no obvious analytical form is given. Moreover, the current NODE approach for linear system fails

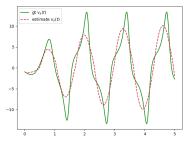


Figure: Results for the same MZ structure used in linear systems for Van der Pol

$$\begin{cases} & \frac{dg(t)}{dt} = f_{\theta_1}(g(t), t) + y(t) \\ & \frac{dy(t)}{dt} = f_{\theta_2}(g(t), t) \end{cases}$$

Conclusion

DL-based MZ formalism is underway for modelling partially observed systems because:

- Deep Learning based theory for MZ.
- Theoretically and empirically sound results for linear systems.
- Neural networks based DDEs are now possible with known delays.
- Tool developped with be used for MZ modelling.

References I

- [1] R Chen et al. Neural ordinary differential equations. 2018.
- [2] E. Dupont et al. Augmented Neural ODEs. 2019.
- [3] Y. Zhu. Mori-Zwanzig equation: Theory and Applications. 2019.
- [4] H. Mori. A Continued-Fraction Representation of the Time-Correlation Functions. 1965.
- [5] R. Zwanzig. Approximate Eigenfunctions of the Liouville Operator in Classical Many-Body Systems. 1966.
- [6] D. Venturi et al. The Mori-Zwanzig formulation of deep learning. 2022.