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Summary

@ Problem setting
@ Optimal control problem
o Controllability and observability
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IZUIELIESGRER  Optimal control problem

Let V C R be an open subset and f : R, x V x R" — R be a continuous locally Lipschitz function.
For every control function u € L (I, R™) we are interested in the Cauchy problem :

x=f(t,xu), (1)
x(0) = xq,

with xg € V.
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IZUIELIESGRER  Optimal control problem

Let V c R9 be an open subset and f: Ry x VxR" — R4 be a continuous locally Lipschitz function.
For every control function u € L™ (I, R™) we are interested in the Cauchy problem :

X = f(t,x,u),
x(0) = xq,

with xg € V.
A solution associated to the control depending upon initial conditions is a function

xu:Q—>]Rd

(x0,£) = xy (£5x0).

With Q = Uy, Qx, where Qy, = {xo} x Iy, and Iy, is a maximal interval on which the solution is defined.
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IZUIELIESGRER  Optimal control problem

Let V c R9 be an open subset and f: Ry x VxR" — R4 be a continuous locally Lipschitz function.
For every control function u € L™ (I, R™) we are interested in the Cauchy problem :

X = f(t,x,u),

x(0) = xq,

with xg € V.
A solution associated to the control depending upon initial conditions is a function

xu:Q—>]Rd

(x0,t) — x5, (£;x0)-

With Q = Uy, Qx, where Qy; = {xo} x Iy, and Iy, is a maximal interval on which the solution is defined.

Suppose also having two continuously differentiable functions g: R x R — R and r: Rx RY x R" — R that define a cost

function:
T

J (xg,u,T) = g(T,xu(T))+J (s, x4 (s), u(s))ds,
0

where 0, T[ C I, and x,, is the solution of (1) associated to a control u € L*.

The optimal control problem consists in finding a control u € L that minimizes J .
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Considering an observed control system given initial condition x(0) = xg € R4

x=f(t,xu), (1)
v = h(x),

with 1: RY — RP , an observation function.

Definition (Controllability)

We say that the dynamic (1) is controllable (in time T) when for every xg, x| € R there exists a control function u € L such
that the associated solution x,, verifies x,,(0) = xg and x,(T) = x7.

Definition (Observability)

We say that the dynamic (1) is observable when for every xg,x; € R?, if xo = x| then there exists a control function u € L®
such that yl(,o) # y,&l).

. 0 1 . . . PR s .
With y,& ) and y,& ) the outputs associated with the solutions with initial conditions xy and x; respectively.
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Summary

© Linear-quadratic problem
@ Problem setting
e LQG
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ar-quadratic problem  [ENSSNISEISTI

An important particular case is when the system is linear,

[X:AerBquv,

y=Cx+w,

with Gaussian white noises v and w having covariance matrices V € My (R) and W € M, (R) respectively, and given data
AeMy(R), Be My, (R)and Ce My, (R).

Together with a quadratic cost
T
Tt = | (@xto), o+ at), uiear,

where Q is positive semi-definite matrix and R a positive-definite one.
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Linear-quadratic problem [¥ele}

When the LQ problem is controllable and observable, a dynamic state feedback stabilizing control is given by

where £ is an estimated state following the dynamic

£=Af+Bu+LC(x-%),
£(0) = E[xg].
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Linear-quadratic problem [¥ele}

When the LQ problem is controllable and observable, a dynamic state feedback stabilizing control is given by

where £ is an estimated state following the dynamic

[Jé:A)2+Bu+LC(x—3€),
£(0) = E[xg].

with K = =R !BTP and L = GCTW~! where P and G are solutions of the Riccati equations
. : T Tyw-1
P+ATP+PA-PBR'BTP+Q =0, G-AG-GA" +GC' W™ CG-V =0,
P(T)=0. G(O):E[xgxo].

LTrélat, E. (2005). Controle optimal: théorie & applications. Paris: Vuibert.

7/19



Summary

© Data driven methods
@ Reinforcement learning
o Actor-Critic architecture
@ System identification
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PEIERIVEIRNIGREEN  Reinforcement learning

Let (X, .7-')() and (A,]-'A) be two measurable spaces that represent respectively the state space and the action space.
Consider given:

X A
P:XxA— (0,17 X — 0,117
(x,a) — P(x,a,-) x> 71t(x,)
such that:
e V(x,a) € X x A: P(x,a,-) is a probability measure called transition law.
e VxeX: 7(x,-)is a probability measure called the policy.

This, provided an initial state-action pair (xq,a¢), defines a pair of stochastic state-action processes (X, A;);cy with values
in X x A
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PEIERIVEIRNIGREEN  Reinforcement learning

Let (X, .FX) and (A,]-'A) be two measurable spaces that represent respectively the state space and the action space.
Consider given:

X A
P:XxA— (0,17 X — 0,117
(x,a) — P(x,a,-) x> 71t(x,)
such that:
e V(x,a) € X x A: P(x,a,-) is a probability measure called transition law.
e VxeX: 7(x,-)is a probability measure called the policy.

This, provided an initial state-action pair (xq,a¢), defines a pair of stochastic state-action processes (X, A;);cy with values
in X x A

Define also a gain function g: X x Ax X — R and the reward process :
Re1 = 8(Xp Ap Xpy1).
We call value function the expected cumulated rewards :

Qr(x0,a9) = E]Pxo,ao,P,TT ZRt '
t>1

Lputerman, M.L. (2014). Markov Decision Processes : Discrete Stochastic Dynamics. John Wiley & Sons.
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Data d QUGB Actor-Critic architecture

Critic
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1 Lillicrap T.P. et al. (2015), Continuous control with deep reinforcement learning, arXiv.
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PEERIEIRNIGNLER  System identification

Alternatively, one can approximate an unknown dynamic from input/output data {14k, ¥k }e(o,..,ny With linear control

system, i.e A, B and C such that for k € {0,..,n}
Xk+1 = Axk + Buk + Vi,

Vk = ka + Wy,
fits the data.

We achieve this using subspace methods (N4SID), then build an LQG design for the resulting system.

Lvan Overschee, P., & De Moor, B. (2012). Subspace identification for linear systems. Springer Science & Business Media.
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Summary

@ Test Case
@ Ginzburg-Landau equation
@ System plant
@ Performance
@ Observability statistics
o Observability analysis
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NS Ginzburg-Landau equation

ComprLEX GINZBURG-LANDAU EQUATION

ax

g:RxR—C
(t,x) — q(t, x).

949 =y93q+vdxq+puq+algq.

(c)

1Bagheri, S., Henningson, D. S., Hoepffner, J., & Schmid, P. J. (2009). Input-output analysis and control design applied to a linear model of spatially developing

flows. Applied Mechanics Reviews, 62(2). 1
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CONTROL FORCING

F(t,x) = (B(x), u(t)),

SENSOR MEASURES

y(t) = (C(), q(t,- )2,
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Averge energy in time

Averge energy in space
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Figure: Energy curves for sensor position xs = 2.5, actuator position x, = 0 and disturbance at x; = -14.0.
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Figure: Control signals for sensor position x; = 2.5, actuator position x; = 0 and disturbance at x; = -14.0.
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Figure: At each x;, five models are trained with different noise seeds, and tested with five other noise seeds, the performance is averaged on

those seeds.
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Spatial distribution of eigenvectors (absolute value).
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Concluding remarks and observations

e In case of observable/controllable dynamics, one can with few data learn effective control strategies in a model-free
fashion.

e For our test cases, the (sub-optimal) strategies obtained show robustness w.r.t changes in the dynamic’s parameters and
stochastic properties of the noises.

e Control laws obtained are "reasonable” in view of the optimal ones.

e Limited theoretical marginal garantees in reinforcement learning.
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