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Problem setting Optimal control problem

Let V ⊂Rd be an open subset and f :R+ ×V ×Rm −→Rd be a continuous locally Lipschitz function.
For every control function u ∈ L∞ (I,Rm) we are interested in the Cauchy problem :[

ẋ = f (t,x,u),

x(0) = x0,

(1)

with x0 ∈ V .

A solution associated to the control depending upon initial conditions is a function

xu : Ω −→Rd

(x0, t) 7−→ xu (t;x0).

With Ω =
⋃

x0 Ωx0 where Ωx0 = {x0} × Ix0 and Ix0 is a maximal interval on which the solution is defined.

Suppose also having two continuously differentiable functions g :R×Rd −→R and r :R×Rd ×Rm −→R that define a cost
function:

J (x0,u,T )B g(T ,xu (T )) +
∫ T

0
r(s,xu (s),u(s))ds,

where ]0,T [ ⊂ Ix0 and xu is the solution of (1) associated to a control u ∈ L∞.

The optimal control problem consists in finding a control u ∈ L∞ that minimizes J .
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Problem setting Controllability and observability

Considering an observed control system given initial condition x(0) = x0 ∈Rd

[
ẋ = f (t,x,u),

y = h(x),

(1)

with h :Rd →Rp , an observation function.

Definition (Controllability)

We say that the dynamic (1) is controllable (in time T ) when for every x0,x1 ∈Rd there exists a control function u ∈ L∞ such
that the associated solution xu verifies xu (0) = x0 and xu (T ) = x1.

Definition (Observability)

We say that the dynamic (1) is observable when for every x0,x1 ∈ Rd , if x0 , x1 then there exists a control function u ∈ L∞

such that y
(0)
u , y

(1)
u .

With y
(0)
u and y

(1)
u the outputs associated with the solutions with initial conditions x0 and x1 respectively.
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Linear-quadratic problem Problem setting

An important particular case is when the system is linear,[
ẋ = Ax+Bu + ν,

y = Cx+ω,

with Gaussian white noises ν and ω having covariance matrices V ∈Md (R) and W ∈Mp (R) respectively, and given data
A ∈Md (R), B ∈Md,m (R) and C ∈Md,p (R).

Together with a quadratic cost

J (u) =
∫ T

0
⟨Qx(t) , x(t)⟩+ ⟨Ru(t) , u(t)⟩dt,

where Q is positive semi-definite matrix and R a positive-definite one.
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Linear-quadratic problem LQG

When the LQ problem is controllable and observable, a dynamic state feedback stabilizing control is given by

u(t) = Kx̂(t),

where x̂ is an estimated state following the dynamic ˙̂x = Ax̂+Bu +LC (x − x̂) ,

x̂(0) =E [x0] .

with K = −R−1BT P and L = GCTW−1 where P and G are solutions of the Riccati equationsṖ +AT P + PA− P BR−1BT P +Q = 0,

P (T ) = 0.

Ġ −AG −GAT +GCTW−1CG −V = 0,

G(0) =E
[
xT0 x0

]
.

1Trélat, E. (2005). Contrôle optimal: théorie & applications. Paris: Vuibert.
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Ġ −AG −GAT +GCTW−1CG −V = 0,

G(0) =E
[
xT0 x0

]
.

1Trélat, E. (2005). Contrôle optimal: théorie & applications. Paris: Vuibert.



Summary

1 Problem setting
Optimal control problem
Controllability and observability

2 Linear-quadratic problem
Problem setting
LQG

3 Data driven methods
Reinforcement learning
Actor-Critic architecture
System identification

4 Test Case
Ginzburg-Landau equation
System plant
Performance
Observability statistics
Observability analysis

8/19



9/19

Data driven methods Reinforcement learning

Let
(
X ,F X

)
and

(
A,F A

)
be two measurable spaces that represent respectively the state space and the action space.

Consider given:

P : X ×A −→ [0,1]F
X

(x,a) 7−→ P (x,a, ·)
π : X −→ [0,1]F

A

x 7−→ π(x, ·)

such that:

• ∀ (x,a) ∈ X ×A: P (x,a, ·) is a probability measure called transition law.

• ∀x ∈ X : π(x, ·) is a probability measure called the policy.

This, provided an initial state-action pair (x0, a0), defines a pair of stochastic state-action processes (Xt ,At)t∈N with values
in X ×A.

Define also a gain function g : X ×A×X −→R and the reward process :

Rt+1 = g(Xt ,At ,Xt+1).

We call value function the expected cumulated rewards :

Qπ(x0, a0) = EPx0 ,a0 ,P ,π

∑
t≥1

Rt

 .
1Puterman, M.L. (2014). Markov Decision Processes : Discrete Stochastic Dynamics. John Wiley & Sons.
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Data driven methods Actor-Critic architecture

1Lillicrap T.P. et al. (2015), Continuous control with deep reinforcement learning, arXiv.
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Data driven methods System identification

Alternatively, one can approximate an unknown dynamic from input/output data {uk , yk }k∈{0,..,n} with linear control

system, i.e Â, B̂ and Ĉ such that for k ∈ {0, ..,n} xk+1 = Âxk + B̂uk + νk ,

yk = Ĉxk +ωk ,

fits the data.

We achieve this using subspace methods (N4SID), then build an LQG design for the resulting system.

1Van Overschee, P., & De Moor, B. (2012). Subspace identification for linear systems. Springer Science & Business Media.
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Test Case Ginzburg-Landau equation

Complex Ginzburg-Landau equation

q :R×R −→C
(t,x) 7−→ q(t,x).

∂tq = γ∂2
xq+ ν∂xq+µq+α |q|2 q.

1Bagheri, S., Henningson, D. S., Hoepffner, J., & Schmid, P. J. (2009). Input-output analysis and control design applied to a linear model of spatially developing
flows. Applied Mechanics Reviews, 62(2).
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Test Case System plant

∂tq = γ∂2
xq+ ν∂xq+µq+α |q|2 q+F.

Control forcing
F(t,x) = ⟨B(x) , u(t)⟩,

Bj (x) = e
−
(
x−aj

)2
σ2 .

Sensor measures
y(t) = ⟨C(·) , q(t, ·)⟩L2 ,

Ci (x) = e
− (x−si )

2

σ2 .
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Test Case Performance

Figure: Energy curves for sensor position xs = 2.5, actuator position xa = 0 and disturbance at xd = −14.0.
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Test Case Performance

Figure: Control signals for sensor position xs = 2.5, actuator position xa = 0 and disturbance at xd = −14.0.



17/19

Test Case Observability statistics

Figure: At each xs , five models are trained with different noise seeds, and tested with five other noise seeds, the performance is averaged on
those seeds.
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Test Case Observability analysis
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Test Case Observability analysis

Concluding remarks and observations

• In case of observable/controllable dynamics, one can with few data learn effective control strategies in a model-free
fashion.

• For our test cases, the (sub-optimal) strategies obtained show robustness w.r.t changes in the dynamic’s parameters and
stochastic properties of the noises.

• Control laws obtained are "reasonable" in view of the optimal ones.

• Limited theoretical marginal garantees in reinforcement learning.
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