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In this study, we reexamine a recent optimal control simulation targeting the preparation of a
superposition of two excited electronic states in the UV range in a complex molecular system. We
revisit this control from the perspective of reinforcement learning, offering an efficient alternative
to conventional quantum control methods. The two excited states are addressable by orthogonal
polarizations and their superposition corresponds to a right or left localization of the electronic
density. The pulse duration spans tens of femtoseconds to prevent excitation of higher excited
bright states what leads to a strong perturbation by the nuclear motions. We modify an open source
software by L. Giannelli et al., Phys. Lett. A, 434, 128054 (2022) that implements reinforcement
learning with Lindblad dynamics, to introduce non-Markovianity of the surrounding either by time-
dependent rates or more exactly by using the hierarchical equations of motion with the QuTiP-BoFiN
package. This extension opens the way to wider applications for non-Markovian environments, in
particular when the active system interacts with a highly structured noise.

I. INTRODUCTION

Since several decades, quantum-state manip-
ulation with electromagnetic fields is a central
problem in many areas of physics and chem-
istry to prepare particular initial states or real-
izing unitary transformations (quantum gates).
The hardware systems and the spectral range
are very different, from spins in nuclear mag-
netic resonance (NMR) [1] to molecular sys-
tems [2] or complex photosynthetic systems
[3, 4] and systems involved in emerging quan-
tum technology [5, 6] for instance, supercon-
ducting quantum interference device (SQUID)
[7], trapped ions [8] or atoms [9], nitrogen-
vacancy diamond centers [10] or quantum dots
[11]. Quantum control has developed through
various theoretical strategies as pump-dump
schemes [12, 13], coherent control [14], adia-
batic methods [15, 16], local [17, 18] or Lya-
punov control [19], Pontryagin optimal control
[20], adaptative tracking [21] and optimal con-
trol theory (OCT) [22] that involves a rich vari-
ety of optimization algorithms, for instance Ra-
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bitz monotonous convergent algorithm [23, 24]
or Krotov method [25, 26], gradient ascent pulse
engineering GRAPE [27, 28], chopped random
basis optimization CRAB [29, 30].

Recently, there has been significant interest
in applying reinforcement learning (RL), a dis-
tinctive machine learning technology, to quan-
tum control and this begs the questions : Does
RL suggest new control strategies ? How does it
compare with standard algorithms [31]? What
is the efficiency for control in dissipative envi-
ronment [32]? RL has already been applied in
control for state preparation [33] and gate real-
ization [34, 35] and quantum compiling [36] in
quantum technology. Recently RL has recov-
ered the well-known counter-intuitive STIRAP
(Stimulated Raman Adiabatic Passage) pulse
sequence in a three-state system [15, 16]. In
reference [37] the laser may be on or off lead-
ing to a so-called digital-STIRAP ensuring an
efficient transfer without the constraint of adi-
abaticity conditions [38]. Conversely, in refer-
ences [39, 40], the pulses are continuous, while
the RL algorithm optimizes either the laser de-
tuning or the Rabi frequencies.

In this work, our objective is to revisit
with RL an optimal control simulation recently
performed in a molecular system (phenylene
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ethynylene dimer) with C2v symmetry [41].
This benchmark case is interesting for differ-
ent reasons. The system consists of two quasi-
degenerate excited electronic states of different
symmetries. They are addressable by orthogo-
nal polarizations. The preparation of a super-
position of the two states corresponds to a right
or left localization of the electronic density in
a way similar to the localization in a double-
well by superposing the two lowest eigenstates.
Creating such a coherence in complex systems
with orthogonal polarizations has been recently
discussed as a prospective avenue for achieving
coherent control over excitonic energy transfer
[42]. In absence of dissipation, this is a V-type
three-state system where two excited states are
coupled to the ground state by two orthogonal
transition dipoles. An analytical solution may
be derived to prepare the superposition with
equal weights [43]. This is an important land-
mark to test the control. On the other hand,
the ideal electronic V-type system strongly in-
teracts with the surrounding leading to a non-
Markovian non-perturbative open system. The
nuclear vibrations form two baths called the
tuning and the coupling baths making fluctuate
the energy gaps (also called longitudinal noise)
and the electronic coupling (transversal noise)
respectively.

In our previous OCT simulation, we
employed hierarchical equations of motion
(HEOM), which represent an exact method
for addressing non-perturbative and non-
Markovian open systems with Gaussian statis-
tics [44–49]. In order to investigate the RL con-
trol, we start from the open source software [50]
presented in reference [40]. This software uses
the libraries QuTip [51] and TensorFlow [52].
The software already implements Lindblad dy-
namics with the QuTip collapse operators. In
this work, we introduce non-Markovianity in
different ways. In a simplified strategy, we first
consider time-dependent rates [53, 54] by us-
ing time-dependent QuTip collapse operators.
The rates are calibrated from the decoherence
matrix [54] extracted from the exact HEOM dy-
namics [55, 56]. We then address the exact non-
Markovian dynamics with the QuTip HEOM-

solver [57].
The paper is organized as follows. In section

II we describe the model treated as an isolated
or an open system interacting with two Bosonic
baths. We summarize the Lindblad and HEOM
operational equations in section III. The control
by RL or OCT is presented in section IV. The
RL results are given in section V and a com-
parison with OCT is made in section VI before
concluding in section VII.

II. MODEL

The V-type three-state model of the dimer
(1,3-bis(phenylethynyl)benzene) is schematized
in Fig. 1. It is calibrated from ab initio data
computed by B. Lasorne et al. [41, 58–60]
with the density-functional theory (DFT) for
the ground state S0 and the time-dependent
density-functional theory (TDFT) for the two
excited states (S1(B2) and S2(A1)). The en-
ergies of the two excited states (ES1 = 4.43
eV and ES2 = 4.47 eV) are taken at the equi-
librium geometry of the ground state (planar
with C2v symmetry). The two states are bright
and coupled to the ground state by orthogo-
nal transition dipoles. The axes are chosen so
that z(A1) is the C2 rotation axis, y(B2) lies
within the molecular plane, and x(B1) is or-
thogonal to it. The respective transition dipoles
are µ⃗01 = (0, µy, 0) with µy = 3.96ea0 and
µ⃗02 = (0, 0, µz) with µz = −1.83ea0.

A. Isolated system

The system is defined by selecting the ground
and the first two excited electronic states at
the equilibrium geometry of the ground state
(vertical Franck-Condon transition). It is an
ideal system assumed to be frozen at this ge-
ometry. The two excited states are coupled by
non-adiabatic interactions via a conical inter-
section [59, 60]. We choose a diabatic repre-
sentation with states of A1 or B2 symmetry so
that the electronic coupling vanishes at that ref-
erence position and the system Hamiltonian is
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simply:

H0
S =

∑2

j=0
|j⟩ ⟨j| (1)

The electronic coupling (between the two dia-
batic excited states) becomes different from zero
when any vibration of B2 symmetry is active.
The two bright states are coupled to the ground
state only radiatively and the time-dependent
Hamiltonian at the dipolar approximation is :

HS(t) = H0
S −

2∑
j=1

(
µ⃗0j E⃗j(t) |0⟩ ⟨j| + hc

)
(2)

where hc designates the hermitian conjugate.
The two fields are linearly polarized with E⃗1 =
(0, Ey, 0) and E⃗2 = (0, 0, Ez). In interaction rep-
resentation (I) and with the rotating wave ap-
proximation (RWA) [61] the Hamiltonian be-
comes :

HRW A
S,I (t) = −ℏ

2

 0 Ωy(t) Ωz(t)
Ωy(t) −2∆y 0
Ωz(t) 0 −2∆z

 (3)

where the Rabi frequencies are Ωy(t) =
µyEy(t)/ℏ, Ωz(t) = µzEz(t)/ℏ and Ej(t) (j =
y, z) are the pulse envelopes. ∆y and ∆z are
the field detunings.

The two Rabi frequencies or their variations
with respect to a guess field are the actions that
will be optimized by the RL algorithm. They
are represented in Fig. 2. In our application,
the target is the superposition of the two excited
states with equal weights

|0⟩ → 1√
2

(|1⟩ + |2⟩) . (4)

This target is different from the superposition
of the initial state and one excited state that
may be prepared by fractional-STIRAP [15] or
by a π/2 pulse.

By imposing equal Rabi frequencies at all
times, i.e. pulses of the same duration T with
amplitudes in the inverse ratio of the dipole mo-
ments, the target transition is realized if each
area is equal to π/

√
2 [43]∫ T

0
Ωj(t)dt = π/

√
2 (5)

FIG. 1: Schematic representation of the V-type
model in 1,3-bis(phenylethynyl)benzene. The
two excited states of symmetry A1 and B2 at
the geometry of the ground state are delocal-
ized over the two sites. Their superposition
with equal weights corresponds to a localiza-
tion on the left or right sites. The excited states
are addressable by orthogonal dipole moments.
The electronic sub-system is coupled to the vi-
brational baths. The tuning bath (longitudinal
noise) making fluctuate the energy gap gathers
the symmetric A1 modes and the coupling bath
(transversal noise) varying the electronic cou-
pling contains the B2 modes.

with j = y, z. It is a generalization of the well-
known π rule for complete population transfer
[62] or π/2 for creating a superposition involv-
ing the initial state.

B. Open quantum system

According to the chosen partition, all the nu-
clear vibrations belong to the baths. The A1
modes make fluctuate the energies and the B2
vibrations modify the electronic coupling that
becomes different from zero when the C2v sym-
metry is broken. The generic Hamiltonian of
the system-bath partition is then written

H(t) = HS(t) + HSB + HB (6)
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FIG. 2: Actions optimized by the RL algorithm
to prepare the target superposed state in the
V-type system. (a) The actions are the Rabi
frequencies Ωy and Ωz; (b) the actions are the
variations of the Rabi frequencies with respect
to guess fields. The laser detuning ∆y and ∆z

are assumed to vanish in this application.

where HB is the ensemble of the vibrational
modes assumed to be harmonic. The normal
modes are assumed to be the same in each
electronic states but their equilibrium positions
differ. HSB is the linear system-bath cou-
pling. The two groups of A1 or B2 modes then
constitute different baths that may be called
the tuning baths coupled to the diagonal ele-
ments |1⟩ ⟨1| and |2⟩ ⟨2| of the system Hamil-
tonian and the coupling bath coupled to the
off-diagonal elements |1⟩ ⟨2| and |2⟩ ⟨1| between
the two excited states. This kind of partition in
the case of a conical intersection has been dis-
cussed in different works applying HEOM dy-
namics [41, 43, 63, 64]. The partition leads
to a strong system-bath coupling and a non-
Markovian master equation. The analysis of the
dimer model is given in our previous work [41]
where is explained how are obtained the contin-
uous spectral densities J(ω) for the tuning and
coupling baths from ab initio data, i.e. from
the energy gradients and gradient of the elec-
tronic coupling at the reference position. The
spectral densities give the strength of the cou-
pling to the system for each energy range of the
baths. We select the main part of the spectral
densities consisting in very sharp peaks around
1700 and 2300 cm−1. The two spectral densi-

ties Jtuning(ω) and Jcoupling(ω) are presented in
Fig. 3(a). Figure 3(b) gives the corresponding
correlation functions of the collective mode of
each bath

C (t) = 1
π

+∞∫
−∞

dω
J (ω) eiω(t)

eβω − 1 (7)

where β is the Boltzmann constant. Due to the
peaked shape of the spectral densities, the ef-
fective collective modes are under-damped and
decay in about 200 fs. We zoom on the early
time range of 20 fs, which is the pulse dura-
tion chosen in our simulations. Indeed, the
pulse duration must be longer than about 10 fs
to correspond to a sufficiently narrow spectral
range to avoid the excitation of higher bright
states. It is noticeable that the collective bath
modes undergo a full oscillation within the 20
fs timescale. This serves as an indicator of non-
Markovian behavior, as we will delve into fur-
ther in the subsequent discussion.

III. DYNAMICAL METHODS

The dynamics of open quantum systems [65]
has been reviewed, as seen in references [66],
and [67] specifically focusing on control aspects.
The applications of RL control [32, 40] usually
assume a weak coupling and a Markovian bath
treated by a Lindblad master equation [68, 69].
We first summarize the main relations to intro-
duce time-dependent rates and then we recall
the operational equations for HEOM.

A. Lindblad master equation

For a N−dimensional system coupled to M
dissipative channels, the generic Lindblad oper-
ator reads:

D(t) =
M∑
k,l

Γkl

(
LkρtL

†
l − 1

2

{
L†

l Lk, ρt

})
(8)

where {A, B} = AB +BA denotes the anticom-
mutator and the rates Γkl are constant. Of-
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FIG. 3: (a) Spectral densities giving the
strength of the system-bath coupling to the
diagonal (Jtuning) or off-diagonal (Jcoupling =
JS1S2) element of the system Hamiltonian block
related to the two excited states. Jtuning is
JS1 and JS2 is assumed to be similar with
JS2 = 0.797JS1 [41]. The tuning modes are of
A1 symmetry and the coupling ones of B2 sym-
metry. (b) Real and imaginary parts of the nor-
malized bath correlation function C(t) (Eq.(7))
at room temperature (zoom on the early 20 fs
timescale). C(t) decays in 200 fs.

ten, only the main dissipative processes are re-
tained, as the radiative decay towards a sink
[40], or dephasing processes affecting the diago-
nal elements of the density matrix or relaxation
inducing population transfer due to inter-state
coupling [32]. In this work, we will consider
these two processes induced by the tuning and
coupling baths respectively leading to four oper-
ators L1 = |1⟩ ⟨1|, L2 = |2⟩ ⟨2|, L3 = |1⟩ ⟨2| and
L4 = |2⟩ ⟨1| (they are the collapse operators in
QuTip [51]). Moreover, we want to account for
non-Markovian baths, at least on an approxi-
mate way by introducing time-dependent rates
[53, 54]. This has given rise to many fundamen-
tal analysis [54, 56, 70, 71] concerning the non-
markovianity signature or the positivity of the
dynamical map [72]. Indeed, the master equa-
tion of non-Markovian dynamics can be recast
in a Lindblad form with time-dependent rates

that may be transitory negative. If the Lindblad
dissipator is expressed with the orthogonal basis
set of N2 operators formed by the normalized
identity G0 = I/

√
N and the N2 − 1 generators

of SU(N), Gi(i = 1, ..., N2 − 1) [73, 74], which
are the Pauli matrices for N = 2 and the Gell-
Mann matrices for N = 3, the corresponding
rate matrix is also called the time dependent
decoherence matrix Djk [54]

D(t) =
N2−1∑
j,k=1

Djk(t)
(

GjρtGk − 1
2 {GkGj , ρt}

)
.

(9)
The eigenvalues are the canonical decay rate Γc

k
associated to the time-dependent decay chan-
nels. The decoherence matrix is given by [54]

Dij(t) =
∑N2−1

m=1
Tr [GmGiΛt [Gm(t)] Gj ]

(10)
where Λt [.] denotes the map of the time lo-
cal non-Markovian master equation Ġm(t) =
Λt [Gm(t)] [54, 75]. This requires (N2 −1) prop-
agations of the basis operators performed here
with HEOM as shown in [55, 56]. Some ele-
ments of the decoherence matrix will be used
to calibrate the time-dependent rates of the se-
lected collapse operators.

This is a low-cost way to introduce easily
some non-Markovianity with time-dependent
collapse operators. However, its efficiency
might be somewhat limited, as the rates are
calibrated based on field-free dynamics and are
subject to potential modification by the applied
fields [56].

B. HEOM

We now summarize the main operational
equations of the HEOM method. The system
density matrix is the partial trace of the full
density matrix ρtot(t) over the bath degrees of
freedom ρ(t) = TrB [ρtot(t)]. The initial con-
dition is assumed to be factorized ρtot(0) =
ρ(0)ρeq where ρeq is the density matrix of the
baths at Boltzmann equilibrium at a given tem-
perature. The HEOM may be considered as
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a numerically exact method for non-Markovian
dynamics with harmonic baths when conver-
gence is achieved by a relevant truncation of
the hierarchy. The method is abundantly de-
scribed in the literature, see for instance refer-
ences [44] for a recent review or [49] for a peda-
gogical survey, [45–48] for applications with the
tensor-train format and [57] for a review of dif-
ferent softwares, in particular that implemented
in QuTip. We briefly recall that the master
equation is solved by a time local system of cou-
pled equations among auxiliary density matri-
ces or auxiliary density operators (ADOs) ar-
ranged in a hierarchical structure. The algo-
rithm requires a particular fit of the correlation
function C(t) as a sum of K damped oscillatory
terms also called artificial decaying modes

C (t) =
K∑

k=1
αkeiγkt (11)

and C∗ (t) =
K∑

k=1
α̃keiγkt. Analytical expres-

sions for the αk, α̃k and γk parameters can be
derived from Eq.(7) [76] when the spectral den-
sity is fitted by a sum of two-poles Tannor-Meier
Lorentzian functions [77]

J (ω) =
nl∑

l=1

plω[
(ω + Ωl)2 + Γ2

l

] [
(ω − Ωl)2 + Γ2

l

] .

(12)
The parameters fitting the spectral densities of
Fig. 3 are given in reference [41]. Each ADO is
labelled by a collective index n = {n1, · · · , nK}
specifying the occupation number of each arti-
ficial mode. The system density matrix has the
index n = {0, · · · , 0}. The HEOM equations
are:

ρ̇n(t) = LS(t)ρn(t) + i

K∑
k=1

nkγkρn(t)

− i

[
S,

K∑
k=1

ρn+
k

(t)
]

− i

K∑
k=1

nk

(
αkSρn−

k
(t) − α̃kρn−

k
(t)S

)
(13)

where LS(t) is the system Liouvillian and
n+

k = {n1, · · · , nk + 1, . . . , nK}, and n−
k =

{n1, · · · , nk − 1, . . . , nK}.
The OCT simulations make use of the HEOM

(Eqs. (13)) via our in-house developed software
[41]. In RL simulations [40] based on QuTip
software, we use the QuTip-BOFiN HEOM-
solver [57] that allows the description of the
Bosonic baths by giving the real and imaginary
parts of the correlation function C(t) = CR(t)+
iCI(t). For each bath, they are parametrized
by a combination of decaying terms CR(t) =
NR∑
k=1

cR
k e−γR

k
t and CI(t) =

NI∑
k=1

cI
ke−γI

k
t where the

ck and γR,I
k are complex. This is an alternative

to expansion of Eq.(11) already adopted for the
second order time non-local [77] or time-local
non-Markovian equations [78]. The HEOM
equations adapted to this partition of the cor-
relation function in real and imaginary part are
given in Eq.(11) of reference [57]. The analyt-
ical expressions of the ck and γR,I

k parameters
when the spectral density is fitted by the two-
pole Lorentzian functions (Eq.(12)) are given in
references [77, 78].

IV. CONTROL

A. Reinforcement learning

The RL algorithm is summarized in many
references, for instance [79, 80]. By using the
generic vocabulary, the principle is as follows.
A target must be reached in an environment.
At each time, an agent makes an observation
and gets information about its state. The agent
then chooses an action according to a policy to
modify the state. The agent obtains a reward
that estimates the progress towards the target.
In our application, we have thus to define the
environment, the agent, the action, and the re-
ward. The four points are represented in Fig.
4. The RL environment is the active system
and its surrounding, i.e., the V-three-level sys-
tem coupled to both tuning and coupling baths.
The observation is the state of the system de-
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scribed by the reduced density matrix solution
of a master equation. The agent is an algorithm
called REINFORCE [79]. It uses a neural net-
work with three hidden layers in our applica-
tion. The input layer contains all the density
matrix elements (nine in our case). The output
layer may provide discrete values or a continu-
ous distribution. The outputs are discrete when
only some actions are available, for instance if
the laser may be only on or off, giving four out-
comes in the two-pulse case [38]. When the dis-
tribution is continuous, the output layer gives
parameters of this distribution, for instance the
mean of Gaussian distributions for the actions
ay,z that provide the Rabi frequencies Ωy and
Ωz of the two pulses. The reward is the con-
trol fidelity rt = Tr(ρ†

targetρ(t)). The policy
is the conditional probability π (at |st ) that the
agent takes action a when the system state is
s. The action at a time t only depends on the
state at that time and the process is called a
Markov decision chain. Note that this does not
mean that the dynamics of the system must be
Markovian. The Markov decision chain means
that when two states s and s′ observed by the
agent are the same, the probability to choose
a is the same regardless of the history to reach
the state s.

We employ the policy gradient method [81],
which is a technique used in reinforcement
learning. It involves adjusting the policy’s pa-
rameters aiming to maximize the cumulative
reward over time. All the parameters of the
network are represented by the global index θ.
They are initialized at random. One then gen-
erates a batch of M episodes with the current
policy π (at |st ). An episode or trajectory τ is
divided in N time steps and lasts T = Nδt. For
each episode, one collects the N data triplets
(st, at, rt) where t = iδt for the ith time step.
The performance of the agent is estimated by
the so-called return R that depends on the net-
work parameters θ and is the main tool to op-
timize the policy. For each episode, the return
R(τ) may be defined in more or less sophisti-
cated ways by the simple sum of all the rewards
rt or a weighted sum of these with a discount
rate [32, 33, 82]. Here, R(τ) is the sum of the rt

FIG. 4: Representaion of a cycle of the RL. At
each time, the reduced density matrix of the
three-state system coupled to its surrounding
is the input of the neural network. The policy
π (at |st ) is optimized and provides two actions
that are the pulse Rabi frequencies. The reward
is the fidelity to reach the target, which is here
the superposed state of the two excited states.

and all the rt = 0 if t < T so that R(τ) = rN ,
i.e. it is given by the final control fidelity. For
the bunch of M episodes driven by the same
policy, the return is the expectation value

E [R] =
M∑

τ=1
pθ(τ)R(τ) (14)

where pθ(τ) is the probability of driving trajec-
tory τ . Following reference [83] we summarize
the main points of the policy optimization. The
probability of each trajectory is different since
the actions are taken at random in the current
policy. It is a product for each time step of
the probability p(st+1 |at, st) to have a transi-
tion from state st to state st+1 induced by ac-
tion at times the probability for the agent to
choose action at for state st :

pθ(τ) =
N∏
t

p(st+1 |at, st )πθ(at, st). (15)

p(st+1 |at, st) does not depend on the parame-
ters θ but only on the system dynamics. There-
fore, the gradient of the average return involves
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only the gradient of the policy

∇θpθ(τ)

=
N∑

t=1

N∏
t′=1

p(st′+1|at′ , st′)πθ(at′ , st′)

× ∇θ ln πθ(at, st)

= pθ(τ)
N∑

t=1
∇θ ln πθ(at, st). (16)

The network parameters are optimized so that
their gradient ∇θ is parallel to the gradient of
the average return with a factor η called the
learning rate ∇θ = +η∇θE [R] and by Eqs.
(14) and (16) one has

∇θ = +η

M∑
τ=1

pθ(τ)R(τ)
N∑

t=1
∇θ ln πθ(at, st)

= +ηE

[
R(τ)

N∑
t=1

∇θ ln πθ(at, st)
]

. (17)

The parameters are updated according to the
logarithmic gradient of the policy times the re-
turn and the learning rate that must be cho-
sen not too fast and not too slow. Since the
gradient contains the return, all the actions be-
come more likely, the more the return is larger.
An important point is that the optimization al-
gorithm of the network parameters is indepen-
dent of the underlying dynamical model. This
is a difference with the standard optimization
in OCT where the gradient of the final fidelity
involves the system Hamiltonian. RL operates
beyond static databases; it collects data during
training.

B. Optimal control

The optimal field is built by iterations to
maximize the cost functional that is the fi-
delity F = Tr

[
ρ†

targetρ(T )
]

at the final time
T with constraints to restrain the field intensity
and to fulfill the master equation at any time.
The optimization is performed here by Rab-
itz’ monotonously convergent algorithm [23, 84]

that involves forward and backward propaga-
tion of the system density matrices with ini-
tial condition ρ(0) and of an auxiliary sys-
tem density matrix χ(t) with final condition
χ(T ) = ρtarget. It is worth noting that
a two-point boundary-value quantum control
paradigm (TBQCP) has been presented in the
literature as an accelerated convergent algo-
rithm [85]. However for the sake of simplic-
ity this method is not used in our simulations.
Dynamics is driven with HEOM. The iterations
begin with a guess field that strongly influences
the final field. The operational relations for the
backward propagation are given in references
[41, 56]. The field at each iteration k is ob-
tained by ε(k) = ε(k−1) + ∆ε(k) where ∆ε(k) is
estimated by

∆ε(t) = 1
α

ℑm
{

Tr
(

χ(t)
[∑

p
µp, ρ(t)

])}
(18)

where α is the intensity penalty factor. Note
that we do not use RWA in this approach.

V. CONTROL BY RL

We choose a pulse duration of T = 20 fs. This
is relevant to avoid a too large spectral band
that would imply higher bright excited states
not included in the model system. For RL simu-
lations, the laser detunings are assumed to van-
ish, so the only optimized parameters are the
two Rabi frequencies Ωy and Ωz at all times.
In all the RL examples, the results are given in
reduced units for the time (t/T ) and the Rabi
frequency (TΩ). Conventional units are used in
some OCT examples.

The three hidden network layers contain 100,
50 and 30 neurons. The learning rate has its
standard value η = 10−3. Our investigation
has confirmed the critical significance of these
meta-parameters. Reducing the number of neu-
rons results in a decelerated convergence rate,
while elevating it prolongs computational du-
ration without commensurate convergence en-
hancement. Increasing the learning rate by a
factor 10 is not efficient to reach the desired
target. Data are collected during a bunch of
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M = 10 episodes that are divided in 50 time
steps.

A. RL in the isolated system

We first consider the ideal case without dis-
sipation. In RL, the process begins by two
Rabi frequencies chosen at random in a given
range. The analytical solution (Eq.(5)) is a
landmark. By assuming a constant pulse enve-
lope, the integrated Rabi frequency is TΩ and
the best value should be π/

√
2 = 2.22. We be-

gin the RL simulation with an initial interval
with TΩmin = 0 and TΩmax = 3 that would
give an area larger than the best analytical value
of 2.22. Figure 5(a) displays the first iteration
with initial random Rabi frequencies, here 1.54
for Ωy and 1.55 for Ωz. The integrated frequen-
cies are too small and the ground state is not
completely depopulated. Figure 5(b) gives the
outcome after 100 episodes. It reproduces the
analytical result and is obtained after about 60
episodes as illustrated in Fig.6. RL provides
the good integrated frequencies but with very
simple pulses since the envelopes are quasi con-
stant. Figure 6 displays the return achieved
during five simulations of 100 episodes. The
random initial conditions differ from TΩ = 1.5
by about 10 percents giving a return close to
0.75. Notably, the convergence rate exhibits
variability and doesn’t follow the typical mono-
tonic pattern observed in conventional OCT al-
gorithms. However, from 60 iterations, the rate
achieved its highest value.

To test the algorithm, we start with a larger
initial interval with TΩmax = 9. As the ini-
tial frequencies are random in this range, RL
converges towards different possibilities but it
is worth noting that it always finds a solution
close to the analytical result. Figure 7(a) illus-
trates a case where convergence occurs towards
the expected value π/

√
2 with a very good final

coherence. In Fig. 7(b) one sees that according
to the random initial values, optimization pro-
vides a solution with higher intensity and an
area close to 3π/

√
2 leading to a supplementary

complete Rabi oscillation before the final coher-

FIG. 5: Optimization of the superposed target
state (Eq.(4)) by RL in the isolated V-three-
level system and TΩmax = 3. The upper panels
give the Rabi frequencies in reduced units (TΩ),
the middle ones show the populations in each
state and the lower ones, the modulus of the
coherence ρ12 between the two excited states.
(a) First iteration with initial random Rabi fre-
quencies. The integrated frequencies are 1.54
for Ωy and 1.55 for Ωz. (b) After 100 episodes.
Both areas are 2.22 (π/

√
2), the best expected

result.

ence creation close to 0.5.

B. RL with Lindblad dynamics

In this section, we will undertake a compara-
tive analysis between scenarios involving con-
stant Lindblad rates and those incorporating
time-dependent variations. The constant rates
associated to the four selected Lindblad oper-
ators (QuTip collapse operators) Lk defined in
section III A are (in reduced units TΓ): TΓ11 =
1 (L1), TΓ22 = 0.8 (L2), TΓ12 = 0.36 (L3) and
TΓ21 = 0.16 (L4). The operators L1 and L2
couple to the tuning baths in excited states S1
and S2 respectively. The ratio of the rates is
approximated by

√
JS2/JS1 as elaborated upon

in reference [41]. The operators L3 and L4 in-
duce non-adiabatic transitions. The reduced
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FIG. 6: Return (Eq.(14)) during the optimiza-
tion in the isolated system presented in figure 5
for five different simulations displayed in differ-
ent colors. Each simulation runs 100 episodes.
The green dotted line serves as an indicator,
highlighting the target return value of 1. The
random initial conditions differ from TΩ = 1.5
by about 10 percents giving a return close to
0.75.

rate TΓ12 and TΓ21 are different as expected
from the detailed balance. They are calibrated
to roughly approximate the exact HEOM field-
free dynamics at least during the early dynam-
ics. Dynamics is performed with the QuTip me-
solve solver [51].

Non-Markovianity may be taken into account
in an approximated way by time-dependent
rates. The transitory negativity of the sum of
the canonical rates that are the eigenvalues of
the decoherence matrix (Eq.(9)) is one of the
signature. This sum obtained for the field-free
dynamics is given in Fig.8(a) in reduced units
(T = 20 fs). It is obvious that its damped oscil-
lation follows that of the bath correlation func-
tions (see Fig.3(b)). This illustrates that for
this type of partition, the non-Markovianity is
closely linked to the damped vibrational motion
of the collective modes. Indeed, if the collective
effective mode is underdamped, the nuclei os-
cillate and transitory return to the initial refer-
ence position. This tends to restore the system

FIG. 7: Optimization of the superposed target
state (Eq.(4)) by RL in the isolated V-three-
level system and TΩmax = 9. The upper, mid-
dle and lower panels are as in Fig. 5. (a)
Convergence towards the best expected result
(π/

√
2). The integrated frequencies are 2.286

for Ωy and 2.254 for Ωz. (b) Convergence to-
wards (3 π/

√
2) leading to a supplementary

Rabi oscillation. The integrated frequencies are
6.673 for Ωy and 6.825 for Ωz.

in its initial condition. The decay towards equi-
librium is not monotonous.

Figure 8(b) presents the time-dependent rates
associated to the four Lindblad operators de-
scribing the energy tuning (L1, L2) and the in-
terstate transition (L3, L4) induced by the cou-
pling bath. Their shape are approximated from
those of some elements of the decoherence ma-
trix (Eq.(9)) by considering the basis operator
Gk corresponding to the 1 − 2 transition (ana-
log of σx in the two-state case) and one oper-
ator corresponding to an energy gap. The am-
plitudes are calibrated as in the constant rate
case from the field-free HEOM dynamics. The
functions are fitted by polynomials or by the
product of a sine function times a decreasing
exponential. These functions are introduced in
the time-dependent collapse operators of QuTip
by using the mesolve solver [51].

Figure 9(a) shows the dynamics after 100
episodes with constant decay rates. The re-
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FIG. 8: (a) Sum of the canonical rates TΓc
k

(in reduced units) of the field-free dynamics.
They are the eigenvalues of decoherence matrix
(Eq.(9)). (b) Time-dependent rates TΓ asso-
ciated to the four Lindblad operators describ-
ing the energy tuning (L1, L2 with rates Γ11
and Γ22) and the interstate transition (L3, L4
with rates Γ12 and Γ21) induced by the coupling
bath.

turn is only 0.8 and it saturates after 60 iter-
ations. Figure 9(b) presents the control with
the time-dependent rates. The return is slightly
improved. However, this is due mainly to the
better depletion of the ground state and not to
a better superposition. The optimal envelopes
remain very simple and quasi constant in both
cases. It is a bit disconcerting that RL behaves
on a very similar way with constant or time-
dependent rates. We will compare these results
with the OCT optimization in section VI.

C. RL with HEOM dynamics

For a 20 fs simulation, truncating at level 6
of the hierarchy proves to be satisfactory. How-
ever, it’s worth noting that for longer dynamics,
such as achieving a field-free asymptotic state,
a higher level 9 becomes necessary. The imple-
mentation of the RL algorithm with HEOM re-
quires some comments. (i) During the Markov

FIG. 9: Optimization of the target state
(Eq.(4)) by RL with Lindblad or HEOM dy-
namics. The upper, middle and lower panels
are as in Fig. 5. The first episode with random
initial conditions is given in dashed lines. The
optimized results are given after 100 episodes.
In each case, the return saturates after about 60
episodes. (a) Dynamics with constant Lindblad
rates. The area of the Rabi frequencies are 2.35
and 2.48 respectively. (b) Dynamics with time-
dependent rates. The area are 2.38 and 2.39.
(c) HEOM dynamics at level 6 of the hierarchy
in Schödinger representation without RWA.

decision chain the solver is called repetitively
for each time step of the chain . . . st → at →
rt → st+1 → at+1 → rt+1 . . .. All the ADOs
describing the state of the surrounding must
be saved for the following decision step so that
each bath retains its configuration and does not
restart with the initial conditions of the baths
with ADOs equal to zero. This is a difficulty
that does not concern the local Lindblad dy-
namics. (ii) In our application, each spectral
density (see Fig.3) is fitted by two Tannor-Meier
Lorentzian functions [77] leading to four decay
modes for each bath. As the spectral densities
are centered at high frequencies, we do not in-
clude Matsubara terms at room temperature.
We use the description of the baths by the ex-
pansion of the real and imaginary parts of the
correlation functions using the BosonicBath ap-
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plication of the QuTip HEOMSolver [57]. When
working with reduced units the real or imagi-
nary parts of the cR,I

k coefficients must be scaled
by T 2 and the rates γR,I

k by T as usually. (iii)
In the HEOM solver, the system-bath coupling
operators are not written in interaction repre-
sentation. Therefore, we have re-transformed
the Hamiltonian in Schrödinger representation
without the RWA approximation. We use 100
time steps in each episode which is enough to
satisfy the Nyquist-Shannon sampling rule [86]
for the fields in the Schrödinger representation.

The RL optimization with HEOM in
Schrödinger representation without RWA is
given in Fig. 9(c). The actions are more erratic
due to the oscillation of the field in this rep-
resentation. After 100 episodes, the envelopes
have a slightly higher amplitude than in the
Lindblad simulations. The populations and co-
herence behave on a similar way in each sim-
ulation. The return is only 0.53 primarily due
to the less-than-optimal depletion of the ground
state and the difference of population in the two
excited states. Other examples with guess fields
are given in Fig. 10.

Finally, we explore another strategy. We im-
pose a guess field for the RL control by choos-
ing the actions to be the variation δΩ of the
Rabi frequencies with respect to the guess (see
Fig.2(b)). These trial fields are a sine square en-
velope or a constant satisfying the π/

√
2 rule.

Simulations are carried out in Schrödinger rep-
resentation without RWA at level 6 of the hier-
archy. The actions TδΩ are taken in an interval
[-2,2] in reduced units. The Rabi frequencies
of the guess fields and of the RL optimization
after 100 episodes are given in Fig.10. The en-
velopes are only very slightly modified during
the optimization. The first action is always the
largest and shifts the guess envelopes by adding
a constant value. The further fluctuations re-
main of weak amplitude. Increasing the initial
interval only modifies the initial shift. Only the
area increases, which generally enhances the de-
pletion of the ground state but not the target
coherence. The sine square envelope is the best
guess giving a return of 80%. The constant en-
velope provides only 70%.

FIG. 10: RL optimization by RL with differ-
ent guess fields. The actions are the variation
of the Rabi frequencies δΩ in a range of re-
duced units [−2, 2]. Dynamics is computed by
HEOM in Schrödinger representation without
RWA at level 6 of the hierarchy. The upper
panels give the Rabi frequencies Ωy and Ωz in
reduced units, the middle ones, the populations
and the lower ones, the modulus of the coher-
ence between the two excited states. (a) guess
fields with sine square envelopes of integrated
Rabi frequencies π/

√
2 in solid line. The corre-

sponding RL fields after 100 episodes in dashed
line (the areas are 3.77 and 3.96). (b) guess
fields with constant envelope in solid line and
the corresponding RL fields after 100 episodes
in dashed line (the areas are 3.87 and 3.95).

VI. COMPARISON RL-OCT

The envelopes generated by RL consistently
exhibit a high degree of simplicity, characterized
by their quasi-constant profile when no guess is
imposed. Given that the fields generated by
standard OCT typically exhibit a higher degree
of structure [41], we compare in Fig.11 the fields
optimized by OCT with the same initial guess
fields drawn in solid lines in Fig.10. Simula-
tions are performed utilizing our HEOM code
[41] in Schrödinger representation without RWA
at level 6 of the hierarchy. Standard OCT op-
timizes the field amplitudes and not only the
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FIG. 11: Optimization by standard OCT af-
ter 15 iterations. (a) Sine square guess fields,
(b) constant envelope guess fields. The upper
panels give the fields times the corresponding
transition dipole in reduced units TµyEy(t) and
TµzEz(t). Dynamics is computed by HEOM
in Schrödinger representation without RWA at
level 6 of hierarchy. The lower panels display
the populations and the modulus of the coher-
ence between the two excited states.

envelopes on a time grid. This offers more flex-
ibility and may slightly modify the carrier fre-
quency. The α penalty factor (Eq.18)) is fixed
to 2 × 10−4. It influences the optimization rate.
The field amplitudes increase regularly at each
iteration. We take two snapshots to remain in
the same order of magnitude as in the RL simu-
lation. The results after 15 iterations are shown
in Fig.11 (a) and (b). We draw the fields times
the dipole moment TµyEy(t) and TµzEz(t) in
reduced units so that the envelopes may be com-
pared with the reduced Rabi frequencies TΩ
used in the RL optimization. OCT reshapes the
envelopes more strongly than RL. In particular,
the two envelopes do not remain similar. How-
ever, when the maximum field amplitude are
in the same range, the return is similar around
80% for the sine square case and reaches 80%
versus 70% in RL for the constant guess.

VII. SUMMARY AND CONCLUSION

Examining the potential of RL in quantum
control has primarily been explored within the
domain of quantum information [32, 34–36].
This analysis is particularly interesting in the
context of retrieving the STIRAP scheme us-
ing either digital pulses [38] or continuous ones
[39, 40]. The outstanding property is the ability
to propose strategies without any prior knowl-
edge of the system leading to the denomina-
tion as a "model-free algorithm" [83]. The main
question is to see whether RL will find new
strategies in particular in presence of an envi-
ronment. Most of the previous works have stud-
ied examples with dissipation treated by Lind-
blad master equation, i.e. for a Markovian dy-
namics [32, 40]. However, even if RL is built
on a succession of decision Markov processes,
non-Markovian noise could influence the system
dynamics [37].

In this work, we have revisited a control in
a system with a strong non-Markovian dynam-
ics due to the coupling to baths with highly
structured spectral densities leading to long
bath correlation times. The model is calibrated
from ab initio data [41, 58, 60]. We have
used an open source software [40, 50] based on
the policy gradient method for the optimiza-
tion and on QuTip mesolve solver of the Lind-
blad master equation [51]. We have enhanced
its functionality to address non-Markovian dy-
namics. In a first approximate go-between step
we have incorporated time-dependent rate con-
stants derived from the field-free HEOM dy-
namics. Then we have interfaced the RL al-
gorithm with the HEOM solver of the QuTip
BoFiN package [57].

An analytical solution exists to create the tar-
get superposition of two excited states address-
able with orthogonal dipoles in an isolated V-
system. It is of significant interest to assess the
proficiency of RL to recover the expected solu-
tion from random initial conditions in a given
interval for the Rabi frequencies. RL finds a
very simple but efficient solution of straightfor-
ward quasi-constant envelopes satisfying the in-
tegrated Rabi frequency rule. The amplitudes
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display minimal variations, typically within a
few percentage points.

For each level of complexity of the dynam-
ics, we observe that the return saturates after
about 60 iterations even if the target is not
perfectly reached. The Rabi frequencies are
always very simple, nearly constant when no
guess is imposed. The proposal is basic and
robust. Even if it is not completely satisfac-
tory, RL does not go further. When dynamics
is driven in Schrödinger representation without
RWA, the process of optimizing using reinforce-
ment learning (RL) exhibits increased complex-
ity. This complexity is reflected in the erratic
behavior of the envelopes from one step to an-
other. However, it’s worth noting that despite
these fluctuations, a smoother average trajec-
tory is observed with only minor fluctuations.

Lindblad dynamics even with some time-
dependent rates cannot take into account a pos-
sible influence of the field on the baths. On the
contrary, the memory kernel of HEOM contains
the time dependent Hamiltonian [77] and this
could in principle induce an effect on the bath
dynamics [87]. Indeed, the decoherence matrix
and thus the rates are modified by the field
[56]. However, in our application the behavior
is qualitatively the same for the approximate
non-Markovian approach or for exact HEOM.
RL successfully captures the crucial condition
regarding the integrated Rabi frequency, yet it
does not discover novel strategies to fight dis-
sipation. It would be powerful to increase the
number of available actions, enabling optimiza-
tion of detuning parameters as well or directly
the amplitude of the fields and not only the en-
velopes. Another possibility would be to let the
algorithm choose a guess field. Furthermore,
the exploration of more sophisticated RL algo-
rithms holds promise for future investigations
[88, 89].

The simplicity of the RL envelopes suggests
to confront the standard OCT and to see if it
can yield superior results. OCT exploits the
system dynamics and may seem more flexible
since it optimizes the field amplitude and the

carrier frequency and possibly finds some chirp
effect. However, in our example OCT is not
more efficient to reach the target with dissipa-
tion. By imposing the same guess fields, RL
and OCT provide different optimal fields ensur-
ing similar return. The reshaping is stronger in
OCT that proposes different envelopes for the
two polarizations what RL does not do. When
the envelope amplitudes are maintained in the
same range as in RL, OCT slighly improves
the depletion of the ground state but not re-
ally the preparation of the superposition with
equal weights. Both strategies, RL and OCT
depend on the guess fields and the optimal fields
are different. However, they ensure similar final
dynamics and the perfect target is not achieved
neither by RL nor by OCT control due to the
strong dissipation.

Our example is a complex system strongly
coupled to a structured environment with laser
pulses in the femtosecond range. RL seems
more adapted to treat quantum information in
another spectral range operating with very sim-
ple square box envelopes and weakly coupled
Markovian noises[90].

VIII. DATA AVAILABILITY

The data are available upon request to the
authors. The modified ThreeLS.py file of Luigi
Giannelli’s open-source software [40, 50] allow-
ing dynamics with HEOM in Schrödinger rep-
resentation without RWA by using the QuTip
BoFiN package [57] is given in supplementary
material [91].
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