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ABSTRACT. This paper presents an R-based approach to mapping dynamics of the flooded 
areas in the Inner Niger Delta (IND), Mali, using time series analysis of Landsat 8-9 satellite 
images. As the largest inland wetland in West Africa, the habitats of IND offers high potential 
for biodiversity of the flood-dependent e c o systems. I ND i s o ne o f t he m ost p roductive areas 
in West Africa. Mapping flooded areas based on satellite images enables to provide strategies 
for land management and rice planting and modelling vegetation types of IND. Our approach 
is based on using libraries of R programming language for processing six Landsat images, and 
each image was taken on November from 2013 to 2022. By capturing spatial and temporal 
structures of the satellite images on 2013, 2015, 2018, 2020, 2021 and 2022, the remote sensing 
data are combined to yield estimates of landscape dynamics that is temporally coherent, while 
helping to analyse fluctuations of spatial extent in fluvial wetlands caused by the hydrological 
processes of seasonal flooding. Further, by allowing packages of R to support image processing, 
an approach to mapping vegetation by NDVI, SAVI and EVI indices and visualising changes in 
distribution of different land cover classes over time is realised. In this context, processing Earth 
observation data by advanced scripting tools of R language provides new insights into complex 
interlace of climate-hydrological processes and vegetation responses. Our study contributes to 
the sustainable management of natural resources and improving knowledge on the functioning 
of IND ecosystems in Mali, West Africa.
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1. INTRODUCTION

1.1. Background

The analysis of the environmental dynamics using remote sensing data has received considerable 
attention in Earth sciences during the last decades (Mertikas et al., 2021; Payra et al., 2023; 
Sultana et al., 2023). Satellite images are widely recognised as a valuable source of spatial 
information (Costel and Bariou, 1992; Lerat, 1987; Richards, 2013). To process these data 
effectively and accurately, a variety of algorithms for processing satellite images have been
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developed in remote sensing domain. A general approach of using multi-temporal satellite 
images for environmental monitoring is based on their pairwise comparison aimed at evaluating 
changes in land cover patterns (Hiernaux et al., 2021; Ogilvie et al., 2015). Time series analysis 
of Earth observation data has proven to be effective in the evaluation of landscape changes 
using several images covering the same area in various consecutive years. For instance, 
satellite-derived trends are used as monitoring methods in a wide variety of environmental 
applications: mapping and monitoring wetlands (Wu, 2018), assessment of deforestation and 
forest degradation (Haarpaintner and Hindberg, 2019; Mashhadi and Alganci, 2022; Masolele 
et al., 2021; Schneibel et al., 2017), monitoring wetland dynamics (Kovács et al., 2022; Xie et al., 
2022), evaluation of vegetation cover fraction and soil depletion (Dube et al., 2017; Gallo et al., 
2023), computing vegetation indices (Lemenkova and Debeir, 2022a; Liu et al., 2022; Venter 
et al., 2020), estimating variations in land surface temperature (Carrillo-Niquete et al., 2022), 
assessment of spatio-temporal variations in night lights emissions in urban studies (Rehman 
et al., 2021) and more.

Such case studies assume that evaluating land cover changes using time series analysis of satellite 
images is possible by a comparison of images taken with repetitive time gap of years during 
the same months. This is based on finding the differences in spectral reflectance of land cover 
types in various bands of a satellite image for the same spatial extent and processing images 
using various classification techniques (Gandhi and Sarkar, 2016; Merry et al., 2023; Shahi et al., 
2023). Since spatial object depicted on the image scenes has different brightness reflected in 
distinct colours of pixels, a proper combination of spectral band followed by image classification 
enables to highlight target features that categorise land surface objects. Hence, one can compare 
the shifts in spatial geometry of the land patterns on the Earth using a sequence of satellite 
images taken in different years for the same region.

This assumption, however, requires effective methods of image processing for analysis of a 
time series rapidly and accurately. While many existing GIS software involve a variety of 
manual operations for processing each image (Epuh et al., 2022; Spiekermann et al., 2015; 
Tappan and McGahuey, 2007), the success in classification of the satellite images requires the 
development of more advanced approaches. The tasks of satellite image processing require 
machine-based programming algorithms for accurate classification and mapping. Thus, remote 
sensing data processing and analysis for mapping vegetation indices involve several steps of 
workflow including the analysis and composites of spectral bands, computing the indices using 
algorithms, originating from existing formulae and visualising and mapping the results, which 
makes it a cumbersome task by traditional GIS software. In contrast, automated workflow, 
which involves programming languages such as R, recognises specific features of images using 
machine-based algorithms and scripts and computer vision algorithms of image processing 
that can classify the images using spectral reflectance data or compute the vegetation indices 
accurately and rapidly where manual image processing takes more efforts and time.

We believe that the traditional GIS approaches do not meet the requirements of modern 
applications of image processing in time series. For example, the efficiency of time series 
analysis based on rapid and accurate processing of the image set is a fundamental requirement 
to be able to perform comparative analysis of the land cover types by classification of multiple 
scenes taken on different years. The satellite image collections are growing at significant 
rates. For instance, only the Landsat-8 and Landsat-9 are collecting daily 1,500 new scenes 
archived into the USGS public repositories (U.S. Geological Survey, 2015). Together with other 
satellites (Sentinel by ESA, MODIS by NOAA) including commercial ones (SPOT), this creates 
a precious pool of spatial information (Maini and Agrawal, 2006). The processing of such big
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data requires automated tools for rapid and effective handling to convert them from the raw 
source of information into practical knowledge.

In contrast, programming methods of image processing use machine-based algorithms for 
detecting object features and pattern recognition (Barma et al., 2020; Lemenkova and Debeir, 
2022c; Lighezzolo et al., 2019; Mosca et al., 2020). In such cases, the automated discrimination 
of land cover types is supported by the embedded algorithms of image processing with minimised 
control and supervision from the user. Furthermore, while a set of programming libraries can 
be used to process the lines of the prewritten code in general tasks, the interactive nature of 
image processing and the algorithms of classification call for the ability to allow users to define 
land cover classes (Liu and Mason, 2009). Thus, besides the statistical analysis of R applied in 
various research and reported in relevant studies (Bivand, 2000; Grunsky, 2002; Lemenkova, 
2019), it can also be effectively used in mapping for discriminating land cover types.

Land cover types automatically discriminated on the satellite images can be divided into diverse 
categories to be recognised and retrieved from the images using real situation of the local 
vegetation patterns. For instance, vegetation associations can include various types of forests, 
grasslands and savannah, wetlands and floodplains, bare soil, urban lands, cultivated agricultural 
spots, built-up areas and artificial objects (buildings, roads, etc.) (Lillesand et al., 1994). The 
automated approach classifying pixels for object interpretation on the satellite images uses the 
programming methods. This is based on the machine-based discrimination of similar spectral 
characteristics and assigning them to the target land use classes.

The k-means clustering technique was used for unsupervised image classification as a commonly 
accepted method for remote sensing data processing (Bovolo et al., 2018; Esche and Franklin, 
2002; Hou et al., 2016; Paola Patricia et al., 2020). The k-means clustering in image processing 
by R presents a method of image partition that divides the raster matrix with n pixels (or cells of 
this matrix) into k groups. Here, each pixel of the image scene belongs to one cluster based on 
the value of its spectral reflectance. The criterium of this partition is the nearest mean where 
the cluster centroids present the centres of the groups. More specifically, the initial class means 
are the two important class parameters of the pixels on the satellite images that were defined 
using the characteristics of spectral reflectance of the recording of the pixels (i.e., cells of the 
image matrix). Such algorithm is implemented via the image analysis techniques in unsupervised 
classification by R. Spectral reflectance is a common parameter of the image’s pixels which 
represent the earth surface features.

The environmental vegetation studies use remote sensing data to analyse the phenology of 
plants by evaluating information collected from the satellite sensors (Karkauskaite et al., 2017; 
Schucknecht et al., 2017). Measured strength of light absorbed and reflected by green leaves of 
vegetation gives the information regarding the health and greenness of canopy. Such algorithm 
identified spectral reflectance and values of Digital Numbers (DN) of pixels by creating new 
data for detecting higher and lower values in vegetation indices which point at the amount of 
chlorophyll related to health and growth conditions of the plants (Alcaras and Parente, 2023; 
Lemenkova and Debeir, 2023a). Thus, the data gathered by satellite sensors measure strength of 
reflected light that indicates vegetation health through values in Red and NIR bands.

The core approach of the VI analysis consists in the properties of pigments in plant leaves 
which strongly absorb wavelengths of Red visible light and reflect those of near-infrared (NIR) 
light (Garzonio et al., 2017). Therefore, using a combination of Red/NIR band values gives 
information on the state and condition of health in leaves in plants. Detected wavelengths of light 
absorbed and reflected by green plants split the image scene through regions of VI values with
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high and lower values around canopy areas (Lemenkova and Debeir, 2023b; Marino and Alvino, 
2019). The areas of the vegetation coverage are then defined and used to evaluate the level 
of greenness to discriminate the healthy plants on the images against the wilting and diseased 
plants. This process is based on colour values of pixels to identify vegetation vigour for canopies 
breaking the images into areas of healthy or diseased vegetation and bare land.

After the values of the VI are calculated for each pixel on the image scene, the image is converted 
to a map showing the distribution of these values across the scene with values of pixels evaluated 
for the VI using the algebra of band combination for each index, respectively. By tracking the 
image for these values, the segments of various VI values are traced and marked with assigned 
values of VI as parts constituting the matrix of pixels on each image scene. This resulted in a 
matrix of pixels representing the level of vegetation healthiness and greenness (Ma et al., 2019). 
For the NDVI index, for instance, higher values signify healthy vegetation, lower values – sparse 
of decease vegetation, while negative values – no vegetation, water areas, etc. The interpretation 
of the VI values may slightly differ in various indices.

1.2. Objectives and Motivation

In this paper, we present a case study of remote sensing data assessment by R language for 
environmental monitoring of Inner Niger Delta, Mali, West Africa (Figure 1). As largest inland 
wetland in West Africa, the habitats of Inner Niger Delta offers high potential for biodiversity of 
the flood-dependent ecosystems with endemic woody plants and endangered species. Moreover, 
rich water and land resources of the Inner Niger Delta create high agricultural potential and 
favourable conditions for irrigated agriculture and rice crop. As a result, the Inner Niger Delta is 
one of the most productive areas of rice in West Africa and environmentally vulnerable region of 
Mali.

Despite the environmental importance of this region, there are relatively few published papers 
on the analysis of the land cover dynamics in Inner Niger Delta, Mali, using Earth observation 
data. Existing studies have focused on the meteorological observations from the gauge stations, 
fieldwork measurements and locally obtained agro-hydrological information (e.g. Dadson 
et al. (2010)) assessing ecosystem services (Rebelo et al., 2013), simulations of datasets by 
statistical analysis (Mascaro et al., 2015), hydrodynamic modelling based on streamflow data 
and water levels to estimate the inundation extent (Haque et al., 2021, 2020). In contrast, 
obtaining information about the object through the analysis of its characteristics acquired from 
the space-borne data collected at a distance present a more accurate, advanced and reliable 
method (Bergé-Nguyen and Crétaux, 2015; Maini and Agrawal, 2010).
To contribute to the environmental assessment of this geographically unique region by the 
advanced methods, we provide a general machine-based solution of satellite image processing. 
The objective is the evaluation of land cover dynamics using six Landsat 8-9 images of the 
surroundings of Mopti and Djenne, central Mali. Each image was taken on November from 2013 
to 2022. The evaluation of the land cover types and vegetation patterns using remote sensing data 
processed by the programming methods enables to get better insights into landscape dynamics 
resulted from the complex land-atmosphere interactions.

Our approach is based on using libraries of R programming language for analysis of spatial and 
temporal structures of the satellite images on 2013, 2015, 2018, 2020, 2021 and 2022. Using 
algorithms of R, we processed the remote sensing data to yield estimates of landscape dynamics 
and visualise changes in major land cover types of the Inner Niger Delta that are temporally 
coherent. Further, we analysed fluctuations of spatial extent in fluvial wetlands caused by the

281



hydrological processes of seasonal flooding. Finally, by allowing packages of R  to support 
image processing, an approach to mapping several vegetation indices and visualising changes 
in distribution of different land cover classes over time is realised. We tested R approaches 
on three computed vegetation indices which included the Normalised Difference Vegetation 
Index (NDVI), the Soil Adjusted Vegetation Index (SAVI) and the Enhanced Vegetation Index 2 
(EVI2).

1.3. Study Area

Mali, a landlocked sub-Saharan West African country (Figure 1), is one of the hottest countries 
in the world with an average temperature varying between 24°C in January and 35°C in May 
(for Development Practitioners and Makers, 2022).

Figure 1. Topographic map of Mali. Mapping software: Generic Mapping Tools (GMT) 
scripting toolset. The area of the Inner Niger Delta is indicated by green rotated square. 

Data source: GEBCO/SRTM. Cartography source: authors.

282



Subject to recent climate change, it is characterised by a significant variability in rainfalls, 
droughts and occasional floods. Rising temperatures, interannual to decadal variability in rainfalls 
and decreased precipitation lead to the desertification and deteriorated plant communities in 
the ecosystems of Mali. In turn, the decline of vegetation that earlier retained water in the soil 
aggravates soil dryness and depletion contributing to the desertification. For arid climate of Mali, 
such a vicious circle of interrelated processes has disastrous consequences on the vegetation 
growth and as a consequence, on food production and security (Davies, 1996). Since recent 
decades, the climate setting in West Africa changed with the most notable trends in decrease of 
precipitation and rainfall, rise of temperature and warming trends, increase in drought frequency 
and dryland expansion (Leal Filho et al., 2022; Oguntunde et al., 2017, 2006; Sidibe et al., 2019). 
Many papers are published on climate change issues and reported consequences for biodiversity 
and socio-economic systems (Huang et al., 2016; Le Houérou, 1996; Yu et al., 2017).

These processes triggered the desertification, escalated the salinity of soil and effects on 
ecosystems, e.g., loss of biodiversity (Heubes et al., 2013), changed geographic distribution of 
species (Coulibaly et al., 2023) and declined vegetation health and tree growth (Sanogo et al., 
2022). Further effects include the decline in agricultural yields that are highly dependent on 
regional meteorological conditions and rainfall variability (Zare et al., 2017). For instance, the 
decrease in precipitation negatively affects rainfed crop yields in sub-Saharan Africa (Bambio 
et al., 2022; Raes et al., 2021) with reported cases on rice (Adjah et al., 2022; Akpoti et al., 
2022), millet (Bado et al., 2022), maize (Srivastava et al., 2016) and sorghum (Adam et al., 
2020).

In this study, we focus on monitoring the dynamics of the flooded flat plain savannah areas in 
the Inner Niger Delta located in central Mali (13°30’ N–15°30’N). Situated in the midst of the 
Malian Sahel, this seasonal floodplain comprised multiple meandering channels of Niger River, 
the third largest river in Africa. The Inner Niger Delta is one of the larger wetlands in Africa 
with 200 km of spatial extent and area of 36, 000km2 (Kuper et al., 2003). The vegetational 
pattern of Inner Niger Delta is interspersed by the seasonally flooded savannah, plateaus with 
the desiccated sands and wooded areas in the north-Sudanian zone. The geomorphology of the 
floodplain in Inner Niger Delta presents almost flat relief with variations from 272 to 262 m 
(Gallais, 2003).

The alluvial depositions result in a series of micro deltas where the hydrography of Niger divides 
forming a local basin and then regroups in the downstream in a confluence section of the river 
(Dickens et al., 2018). The geologic setting of the Inner Niger Delta includes a wide Precambrian 
basement occupied by primary sandstones where the interior delta is formed. A quaternary 
deposits, accumulated by the winds from the Sahara, added the effect of a dune dam to the 
generally flat relief. The Niger River meanders in the conditions of the flat low-relief plains and 
divides into several branches of small channels, whose alluvial ridges enclose more depressed 
areas (Gourou, 1969).

High poverty of Malian population increases socio-economic vulnerability and low adaptive 
capacity towards natural hazards in changing hydro-climatic conditions. Specifically, the 
environmental vulnerability of Mali to climate change – one of the world’s poorest countries –
includes factors such as hydroelectricity production and dam operations (Haque et al., 2019), 
navigation over Niger, seasonality of the irrigated and rainfed agriculture during dry and rainy 
periods and flooding in the Inner Niger Delta (Ghile et al., 2014). As a result, climate extremes 
contribute to low sustainability of food resources depending on fishing and agricultural farming 
that are highly sensitive to seasonality and weather constraints (Liersch et al., 2019; Morand et al.,
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2012). Changes in selected crop production patterns have been reported recently. For instance, 
Laris et al. (2015) reported the decline in cotton yields in Mali due to rapid intensification of 
agriculture or soil fertility loss, while rise in maize yields as less sensible towards soil conditions 
and less demanding crop in farming system.

The Malian climate has three distinct seasons: a dry season from March to June, a rainy season 
from June to September and a cold windy season from October to February. Such fluctuations 
of the sahelian climate correspond to the regular seasonal flooding of the Inner Niger Delta 
which results in a unique hydrologic phenomenon – seasonal floods (Brunet-Moret et al., 
1986). The Inner Niger Delta becomes inundated during several months a year with floodplains 
and remaining a few islets of dry land (Courel and Chamard, 1994). Previous studies report 
(Diakite, 1986) the area of 20, 000km2 regularly covered by the flood. For the remaining six 
months, the floodplain dries out again to a fertile plain with essentially grass vegetation, e.g., 
bourgou (Planhol, 1971). The repetitive regular pattern of climatic-hydrological shifts affects 
the distribution and geochemistry of soils and vegetal associations (Tabeaud, 1980). Water-rich 
alluvial soils, together with arid climate and high temperatures create perfect conditions for 
plantations (e.g., rice harvest) as a precious resource for Malian fishermen, pastoralists and 
farmers (Retaillé, 1984). However, harvest is at risk of lost during flash heavy rains or floods.

At the same time, the variability of inflow into the Inner Niger Delta, the period of the floods and 
the extent of the regularly flooded surface area have direct consequences on livelihoods, and food 
production (Liersch et al., 2013). Repetitive droughts on the one hand and dynamics of repetitive 
floods on the other hand strongly affect the ecology and biodiversity of Inner Niger Delta with 
direct consequences on vegetation system (Mariko, 2003). Besides, shifts in precipitation and 
temperature patterns in Inner Niger Delta result in depletion of the irrigated soils and salinisation 
as a consequence. Apart from the distribution of saline soils (solonchaks), this region is under 
pressure from the intensive irrigation system which uses poorly mineralised surface water. The 
decrease in precipitation, increase in annual temperature and high evapotranspiration amplify the 
climate-related effects and result in the deposition of the dissolved salts on the surface (Valenza 
et al., 2000).

In turn, small-scale farming systems create additional environmental challenges by overgrazing 
and uncontrolled livestock contributing from their part to land cover changes. Besides livelihood 
and food-related issues, stagnant water during floods contributes to health risks of the diseases of 
population through rapid distribution of parasites and insects, such as malaria (Cools et al., 2013; 
Klinkenberg et al., 2002). All these issues require to take measures on environmental monitoring 
of floodplain wetlands in Inner Niger Delta. Previous studies pointed the need for cartographic 
visualisation of the unique territories of the African continent which should be supported by maps 
for quantitative investigations (Cabot, 1968), e.g., in phytogeographical studies (Robequain, 
1948). Insofar as we can map hydrological processes and their relationship with vegetation 
growth, we can get deeper insights into the complex links of climate-environmental interactions 
in Africa.

2. MATERIALS AND METHODS
The general flowchart summarising general steps of data processing is presented in Figure 2. 
The workflow in R  environment for image processing included running the scripts of the R 
library terra and auxiliary packages with embedded algorithms. The processed images were then 
visualised to maps and compared for several time spans: 2013, 2015, 2018, 2020, 2021 and 2022. 
The usage of the R framework for remote sensing data processing is implemented by means of 
the sequence of programming commands demonstrated in Appendix and in the repository (here,
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the examples are given for the images on selected years and repeated likewise for all the rest of 
the data). Code for the R-based framework for classification of the Landsat satellite multispectral 
images and computing vegetation indices, statistical plotting by Python using correspondent 
libraries and supporting cartographic visualisation by GMT are available in the GitLab repository 
of the authors: https://github.com/paulinelemenkova/Image Processing Mali IND Scripts.

Data: Landsat 8-9 images

The time series analysis is based on the Landsat 8-9 satellite images collected from the USGS 
survey (Department of the Interior U.S. Geological Survey, 2022) on the surroundings of Mopti 
and Djenne, Mali. The metadata of the scenes are summarised in Table 1. The images were 
captured from the EarthExplorer repository (Figure 3). We used a series of the six Landsat 8-9 
images to map the areas of flooded vegetation within the area of Inner Niger Delta during the 
years 2013, 2015, 2018, 2020, 2021 and 2022.

Figure 2. Flowchart summarising general steps of data processing. Diagram source: 
authors (R library ’DiagrammeR’).

The images were collected always on November for the following reason. Due to the seasonality
of floods and repetitive cycle of inundation, a strong contrast in moisture and green vegetation
reaches its peak in autumn period of intense rains, that is, from late October to mid January
which enables to compare the contrasting flooded areas against the dry lands. While the period of
rainfalls ends in the Inner Niger Delta by late October and soils and grassy vegetation become dry
in the regions untouched by floods, the southern segment of the Inner Niger Delta demonstrates
the highest levels of flooded areas. Such contrast in the northern, central and southern segments
of the Inner Niger Delta favours visualisation of the flooded/not flooded areas and estimation of
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the intensity of floods in this particular year. The second target requirement was set up for all the 
imagery regarding the least possible cloudiness which is below 5% for all the scenes.

Table 1. Metadata of the satellite images used in this study: Landsat 8-9 USGS 1.

Date Spacecraft /
ID

Path/
Row Entity Product ID Scene ID Cloud/

Coverage

2013/11/10 Landsat 8 197/50 LC08 L2SP 197050 20131110 20200912 02 T1 LC81970502013314LGN01 0.12
2015/11/16 Landsat 8 197/50 LC08 L2SP 197050 20151116 20200908 02 T1 LC81970502015320LGN01 1.12
2018/11/24 Landsat 8 197/50 LC08 L2SP 197050 20181124 20200830 02 T1 LC81970502018328LGN00 0.00
2020/11/29 Landsat 8 197/50 LC08 L2SP 197050 20201129 20210316 02 T1 LC81970502020334LGN00 0.00
2021/11/16 Landsat 8 197/50 LC08 L2SP 197050 20211116 20211125 02 T1 LC81970502021320LGN00 0.00
2022/11/11 Landsat 9 197/50 LC09 L2SP 197050 20221111 20221113 02 T1 LC91970502022315LGN00 0.00

1 The Sensor ID is common for all the scenes: Landsat OLI/TIRS (Operational Land Imager and Thermal 
Infrared Sensor), Collection 2 Level-2. Image courtesy of the U.S. Geological Survey (USGS). Product DOI: 
10.5066/P9OGBGM6.

Therefore, we have collected the images on November for each evaluated year with the minimal
cloud coverage in technical characteristics of Landsat. The characteristics of the scenes are
summarised in Table 1. The map in Figure 1 has been prepared using the Generic Mapping Tools 
(Wessel et al., 2019) by applied existing cartographic workflow reported earlier (Lemenkova and
Debeir, 2022b,d).

Figure 3. The location of the Landsat 8-9 satellite image in Mali, Mopti region of the Inner 
Niger Delta. The images were downloaded from the EarthExplorer repository, USGS. 

Background image: ESRI World imagery.

The cartographic technical characteristics common for each Landsat band include the coordinate
reference system World Geodetic System (WGS) 84, the Universal Transverse Mercator (UTM)
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zone 30N (EPSG:32630) and the spatial resolution of most of the bands at 30 meters. Specifically,
the OLI multispectral bands have pixel size 30 m. These include Bands 1 to 7: Band 1 (Coastal
aerosol), Band 2 (Blue), Band 3 (Green), Band 4 (Red), Band 5 - Near Infrared (NIR), Band
6 (SWIR 1), Band 7 (SWIR 2) and Band 9 (Cirrus). The panchromatic Band 8 and Thermal
Infrared (TIRS) 1 and 2 bands were not used in this study. Here, we used the multispectral bands
which allow the precision of the maps to 30 m per pixel. The six Landsat 8-9 OLI images used
in this study are visualised in RGB colours in Figure 4.

(a) 2013 (b) 2015 (c) 2018

(d) 2020 (e) 2021 (f) 2022

Figure 4. Landsat 8-9 images of Inner Niger Delta in natural colour RGB values showing 
floodplain for six years (always November): (a) 2013, (b) 2015, (c) 2018, (d) 2020, (e) 

2021, (f) 2022.

The principal characteristics of the Landsat 8-9 images consist in multi-spectral bands which 
enable to detect difference in reflectance characteristics of various land cover types by image 
analysis. This is explained by different ratio in energy reflected and incident by these surfaces 
and recorded in wavelengths. Therefore, various land cover types (water, land, diverse vegetation 
types, asphalt-covered roads or buildings) have different spectral reflectance (Chapman and 
Gasparovic, 2022; Richards and Jia, 2006). Spectral reflectance is measured as a function of 
wavelength in the Landsat 8-9 bands. Such spectral characteristics enable to separate these pixels 
into classes on the images.

Methodological process

The concept of the entire process of image processing is shown in Figure 5. It summarises 
the main steps of the two separated processes – the calculation of the three vegetation indices 
(NDVI, SAVI and EVI) and the classification score using k-means clustering approach based on
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Landsat 8-9 images, followed by accuracy assessment. The flowchart was plotted using R library
DiagrammeR. The dataset included the 6 Landsat images taken on various years. The selected
bands were imported in R environment and processed using libraries. Two different separated
steps were applied in this work – computing the vegetation indices (VI) and classification of land
cover types in the Inner Niger Delta, Mali.

Figure 5. Concept flowchart of the remote sensing data processing and analysis. Flowchart 
is prepared using R library ’DiagrammeR’. Source: authors.

For computing the VI, three different indices were calculated – NDVI, SAVI and EVI using 
equations for band combinations for each case. The selection of indicators is based on the 
diapason of the vegetation indices which ranges from -1 to 1 for NDVI, SAVI and EVI. 
After running the script in R, the results were obtained including maps and histograms of data 
distribution. Next, we performed clustering of the images based on the k-means algorithm. The 
results of clustering and computed VI were visualised on the maps. To confirm the advantages of 
the methods and evaluate the performance of the classification models, we assessed the accuracy 
by Kendall confusion matrix.
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Cartographic scripting in GMT

In this section, we briefly describe our GMT scripting method used to plot the topographic 
map of Mali. The spatial analysis aims to correctly identify the land properties and geographic 
setting. First, we define the image spatial subset using the grdcut module with target study 
area of Mali by argument ’-R-13/5/9.5/25.5’. The map was visualised in Equidistant conic 
projection, a conformal equal-area projection, defined in module pscoast by the argument 
-JD-4/18/9.5/25.5/6.5i, where -4° and 18° stand for longitude (W) and latitude (N) of the 
projection centre, the 9.5°/25.5° are the two standard parallels depicting the southern and 
northern borders of the map of Mali in Figure 1, and the 6.5i defines the physical dimensions of 
the map as 6.5 inches.

Also, we consider plotting the isolines using the grdcontour module visualised with interval 250 
m. The psclip module was applied for optional translucency of the background image of the 
neighbouring countries. Generating texts and annotations was done using pstext module. Once 
the geographic image was plotted, the psbasemap module was adjusted to visualise cartographic 
grid. We used the GEBCO/SRTM grid raster file for main image, and ETOPO1 for plotting the 
generalised contours. The textual annotations and country borders were adopted from the Digital 
Chart of the World (DCW) data. The final mapping procedure is given in Listings presented in 
GitHub.

Image processing by R

The image processing was performed using R programming language (R Core Team, 2022) 
and selected libraries for graphical visualisation (Murrell, 2005). The key to successful 
image processing aimed at vegetation analysis and land cover types identification is correctly 
establishing band (or channels) correspondence. For images with present flooded areas and 
dominant savannah vegetation that have diverse composition and plant structure due to the 
effects of the climatic gradient, correspondence extraction is difficult since repeating structures 
creates mosaics of vegetation associations many of which are repetitive. Woody and herbaceous 
vegetation often intersperses by partitioning the landscapes into smaller patches.

To accurately classify savannah, grasslands and agricultural lands, we applied the automated 
method of k-means clustering and used well-established vegetation indices that indicate the 
presence of green healthy vegetation on the scenes. To this end, we computed several vegetation 
indices – NDVI, SAVI and EVI2 – for the region of Inner Niger Delta with methods and formulae 
described below for each index. The histograms showing frequency of values in pixels are 
computed for each vegetation index to indicate data distribution.

Computing Normalised Difference Vegetation Index (NDVI)

The Normalised Difference Vegetation Index (NDVI) was computed using a general formula of 
band combination for NDVI = (NIR - Red) / (NIR + Red) (Tarpley et al., 1984). In R syntax, the 
NDVI was defined using the code presented in GitHub. The SpatRaster was created from Bands 
4 and 5 as a spatially referenced surface in RStudio (Figure 6). A raster object was made from 
the combination of Bands 4 and 5 and divided into the three-dimensional cells (rows, columns,
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and layers). The calculation and mapping of NDVI were followed by plotting the histograms that
show the data distribution for each of the NDVI diapason of values. Here, each pixel from Band
5 (NIR) and Band 4 (Red) quantifies the vegetation biomass and plant vigour with a general
range from -1 (min) to +1 (max). We used the R terra library and applied the code (a case for
2015, repeated likewise for images on 2013, 2018, 2020, 2021 and 2022).

Figure 6. Processing Landsat satellite image in RStudio for extracting NDVI.

Computing Soil Adjusted Vegetation Index (SAVI)

The calculation of the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988) corrects the NDVI 
for the effects of soil brightness in desert regions, bare soil and other places where vegetative 
cover is low. The general formula used for calculation SAVI is as follows SAVI = ((Band 5 
– Band 4) / (Band 5 + Band 4 + 0.5)) * (1.5) (Huete, 1988; Huete et al., 1994). Note that 
the numeration of these bands corresponds to 4 and 3 because the numeration in R syntax of 
RasterObject starts from 0 (zero). Therefore, in formula below, the NIR and Red bands are 
assigned numbers of 4 and 3 in the lapp function, as shown below. Using R syntax where NIR 
= Band 5 and red channel corresponds to Band 4, the computing of SAVI is performed using 
programming script.

The process of computing SAVI vegetation index is performed in R library terra using the code 
R (here: example for 2021, repeated likewise for all other images). The differences between soil 
colour and brightness around the regions near the Saharan desert, such as Mali, and affect the 
NDVI values. As a result, the lower boundary condition of identified plants may affect and bias 
land cover mapping in the Sahel region. To this end, we visualised the set of SAVI indices for 
the sequence of years from 2013 to 2022 and compared them to the previously computed NDVI 
visually and numerically.

Computing Enhanced Vegetation Index (EVI)

Computing the Enhanced Vegetation Index (EVI) was based on using the equation of Landsat 
4 and 5 bands: EVI2 = 2.4 * (Band 5 - Band 4) / (Band 5 + Band 4 + 1) (Huete et al., 2002).
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In R language, this formula was defined and converted using i ts syntax for calculation and 
visualisation of the Enhanced Vegetation Index (EVI) as presented in Listing in the GitHub of 
the author.

The time series of EVI are used to recognise the agriculture lands and planting areas (e.g., 
detecting rice planting and harvest for millet, maize and sorghum) in contrast to the savannah, 
flooded areas and bare lands. Besides, variations of EVI over years obtained from the satellite 
images are useful for assessment of land degradation and desertification in semi-arid and arid 
regions of Sahel and southern Sahara of Mali.

Unsupervised Classification

The matrix of image cells is defined as a sequence of cells containing pixels that represent land 
cover types with 30-m resolution for Landsat 8-9 images. In k-means clustering technique, the 
consecutive massive of the pixels on the raster image with similar values is changed by the 
move to another land cover types which interrupts the mosaic of landscapes (e.g., water-land 
borders), and followed by the next landscape patch. The landscape mosaic is identified through 
iterative assignment of pixels to target land cover classes on the whole image in a repetitive way 
by the k-means algorithm of clustering. Thus, land cover types on the image are defined using 
search for the minimal distance between each pixel on the scene and the centroid of the k-means 
clusters, which are defined automatically by R. The assignment of the pixel to a given land cover 
class is based on the algorithm which evaluates the sequence of the cells in the image matrix 
based on the principle of the closest distance between the pixel and the cluster’s centre.

The k-means method was selected since it enables to allocate pixels into classes automatically, 
and thus to present a reliable correspondence between the groups of land cover classes and 
assigned pixels. Each iteration is recalculating the mean values of the class and re-assigning 
pixels to the new means until optimal values are reached using the embedded algorithms by 
R. For this purpose, the contrast of values in each land cover classes against the neighbouring 
classes has been tested using empirical trials of k-means algorithm which evaluates the distance 
of pixels to the centroids based on minimal distance principle. Finding correspondence between 
the value of pixels and land cover categories is a key operation in remote sensing data processing. 
Given several pixels identical up to spectral brightness, the task is to identify a set of similar 
pixels and group them into relevant classes well distinct from the others. This task is readily 
generalised by R library ’RSToolbox’ using embedded algorithms of image processing and 
analysis of pixels on the raster scene. The k-means clustering technique is based on grouping the 
pixels on the raster image into clusters according to their spectral reflectance (Ose et al., 2016; 
Richards, 2022). The code of clustering algorithm is summarised in Listing in the GitHub.

Thus, the classification task is formulated as a pixel-based unsupervised clustering using k-means 
(Sreevalsan-Nair, 2020). The technical approach is performed by libraries terra’, ’raster’ and 
’RSToolbox’ to efficiently discriminate land cover features and their changes over time. The 
target centroid of pixels was selected automatically with allocated neighbouring pixels assigned 
to groups based on the similarity of values. In such a way, the inter-annual variability of 
vegetation associations was detected in the inundated areas of the Inner Niger Delta of Mali. 
The code used for clustering is presented in the Appendix for a case of 2013 and applied with 
minor modifications for all the other images on years 2015, 2018, 2020, 2021 and 2022.

In the map of land cover types, we depicted 20 major dominating vegetation associations arranged 
from the most affected flooded areas to the relatively dry areas and untouched bare soils including
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the following 28 land cover types adopted from the existing studies and interpreted on the Landsat 
imagery Marie (2000): 1) Woodland; 2) Floodplain with aquatic grassland; 3) Savannah; 4) 
Thicket; 5) Wild rice; 6) Grassland; 7) Irrigated rice fields; 8) Savannah in shallow floodplain; 
9) Bare soil (loams and clays); 10) Bare soil (sands); 11) Vegetation mosaics, main channel 
banks; 12) Lacustrine woodland; 13) Shallow lacustrine woodland; 14) Shrubby savannah 
in uplands; 15) Anthropic woody savannah; 16) Thicket in uplands; 17) Woody savannah in 
uplands; 18) Shrubby savannah in uplands; 19) Island palm grove; 20) Margins palm grove.

Statistical Analysis

The correlation analysis was performed using plots of the non-parametric Kendall correlation 
method (Kendall, 1938) which is similar to the Pearson correlation method (Pearson, 1895). 
Both methods measure the association between the two measured quantities, that is, land cover 
classes and the probability of the correct association of the pixels assigned to these classes. In 
Python, these algorithms were implemented by the code presented in Listing in the GitHub (here, 
we tested both approaches and selected Kendall method). The correlation between two computed 
land cover classes is high when observations have a similar values, and low when observations 
differ substantially.

The procedure of categorising image into several classification clusters in image processing 
includes data evaluation accuracy, i.e., the comparison of the results with reference data. Since 
the fieldwork was not envisaged and the reference data limited, the assessment of the results was 
performed using correlation matrix for evaluating the pixels on the assignment to the correctly 
classified classes using coefficients for different land cover variables. To this end, the correlation 
plot was done for each set of 20 classes as an iterative loop for the images.

Complex cases in classification process included similar values of the land cover classes for both 
plant and water areas which consist of connected lakes, channels, and marshes of the delta. The 
classification control was done by double correlation of the classes and correctness of the pixels 
assigned to the different but similar classes according to spectral reflectance values using Kendall 
correlation matrix. To this end, the probability cases for land cover classes were computed in 
Python. The Kendall rank coefficient is used as a statistic matrix testing a hypothesis if land 
cover variables are statistically dependent when comparing pixels associated to these land cover 
classes. It includes the assessed land cover classes identified on the images for the period of 
2013 to 2022 and enables the evaluation of pixels correctly classified in the target classes. The 
Pearson correlation approach estimates a linear correlation by assigning a value between -1 and 
1 which indicates the degree and direction of the correlation between two land cover classes.

3. RESULTS AND DISCUSSION

Variations of NDVI index over years

The results of the NDVI computation show changes in vegetation from 2013 to 2022 (Figure 7). 
The comparison of the computed values is summarised in Table 2 based on the SpatRaster from 
Bands 4 and 5 of the Landsat 8-9 satellite images and shown in histograms of Figure 8. The 
lowest NDVI values in the study area were obtained from the Landsat-9 image in 2022/11/11 
as -0.3072812, while the highest data are 0.5879165 received from the Landsat-8 image in 
2013/11/10.
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(a) 2013 (b) 2015

(c) 2018 (d) 2020

(e) 2021 (f) 2022

Figure 7. NDVI based on Landsat 8-9 images of Inner Niger Delta: (a) 2013, (b) 
2015,(c) 2018, (d) 2020, (e) 2021, (f) 2022. Mapping: RStudio. Source: authors.

Figure 8 shows the frequency of the NDVI values by pixels on the image. Although theoretically, 
the NDVI ranges from -1.0 to +1.0, in this particular area of Mali, the actual range varies from 
-0.3 to 0.5 for the month of November for all years.
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(a) 2013 (b) 2015 (c) 2018

(d) 2020 (e) 2021 (f) 2022

Figure 8. Histograms of the NDVI of the Landsat 8-9 images on Inner Niger Delta: 
(a) 2013, (b) 2015, (c) 2018, (d) 2020, (e) 2021, (f) 2022. Plots: RStudio. 

Source: authors.

Here, the areas of bare soil land (loams and clays) and sand have very low NDVI values (less 
than 0.1), while vegetation types have positive values. Woody canopy, island and marginal 
palm groves have values over 0.45 to 0.50; grassland – 0.2 to 0.3, rice fields from 0.20 to 0.30, 
floodplain wetlands with aquatic grassland – 0.40 to 0.45; savannah – 0.30 to 0.35; thickets in 
uplands – 0.35 to 0.40; vegetation mosaics including shrub and lacustrine woodland – 0.1 to 0.2.

Comparison of variations of SAVI index over years

Changes in vegetation associations showing mosaics of areas covered by savannah against 
floodplain with aquatic plants and other areas were estimated by using a time series of Landsat 
8-9 satellite images acquired on different dates between 11.2013 and 11.2022 (Figure 9). The 
highest SAVI values were 0.4281315 on 2013/11/10, while in 2021/11/16, the highest SAVI was 
only 0.2790245, that is, the lower level of vegetation health (Table 2). The lowest SAVI values 
among all these years were obtained from image on 2013/11/10 which shows the most significant 
range of variation in values (Figure 10), which differs from the NDVI values in relevant years (see 
Table 2) that shows the lowest NDVI values on 2022/11/11 (NDVI=-0.3072812) but corresponds 
to the highest values obtained for 2013/11/10 (NDVI=0.5879165).
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(a) 2013 (b) 2015

(c) 2018 (d) 2020

(e) 2021 (f) 2022

Figure 9. Soil Adjusted Vegetation Index (SAVI) based on the Landsat 8-9 images of Inner 
Niger Delta for November: (a) 2013, (b) 2015, (c) 2018, (d) 2020, (e) 2021, (f) 2022. 

Mapping visualisation: RStudio. Source: authors.

Figure 10 shows the frequency of the SAVI values by pixels on the image representing their 
associations with land cover types. The higher the SAVI values are, the denser and more healthy 
is the vegetation coverage. The actual range of values of the Inner Niger Delta, Mali, for the 
taken images varies from -0.15 to +0.35, although the general theoretical range of values may 
change between -1.0 and +1.0, similar to the NDVI. Since SAVI is adjusted for soil brightness 
for areas with low vegetative coverage, it is particularly suitable for the African Sahel region with 
desert and sandy areas in arid and semi-arid climate. Woodland and palm groves have values 
over 0.30 to 0.35; grassland – 0.2 to 0.3 which is similar to NDVI, vegetation mosaics including 
shrub and lacustrine woodland – 0.10 to 0.15, areas covered by irrigated and wild rice from

295



0.15 to 0.20, thickets – 0.20 to 0.25 and savannah – 0.25 to 0.30, the lush wetland vegetation in
flooded areas with aquatic plants ranges between 0.25 and 0.35, i.e., have the highest values of
SAVI.

(a) 2013 (b) 2015 (c) 2018

(d) 2020 (e) 2021 (f) 2022

Figure 10. Histograms of SAVI based on the Landsat 8-9 images of Inner Niger Delta: 
(a) 2013, (b) 2015, (c) 2018, (d) 2020, (e) 2021, (f) 2022. Plots: RStudio. Source: authors.

Comparison of variations of EVI over years

The radiometric and biophysical advantages of EVI (Figure 11) for mapping vegetation canopy 
in Malian environment is that compared to NDVI which better saturates in high biomass regions 
such as tropical forests, EVI remains sensitive to canopy variations that is suitable to savannah of 
Sahel arid and semi-arid regions. Specifically, EVI shows a correspondence between the canopy 
reflectances of plants as detected on the pixels and its values obtained from the Landsat 8-9 
sensor specifically for semi-arid grasslands, thicket and shrubby savannah in uplands, savannah 
in shallow floodplains of the Inner Niger Delta, and spots of woody savannah.

The values of EVI (Table 2) were compared to the other two different well-known vegetation 
indices (NDVI and EVI) and were calculated and used from each satellite image as a time-series 
format of six scenes. EVI values calculated from Landsat 8-9 satellite images are higher than 
earlier satellites of the Landsat mission because of their lower resolution, e.g., compared to 
Landsat-MSS or TM, the extent of minimal and maximal values has a greater span of values. 
Clearly visible two peaks on the histograms (Figure 12) correspond to the flooded inundated 
water-covered areas with negative values (EVI from 0 to -0.35 in a general extent). The lower 
data are typical for floodplains and aquatic plants which contrast against the bright vegetation 
areas that correspond to the grasslands, savannah and thickets (EVI values from 0.30 to 0.68). 
Finally, the middle values that are typical for the agricultural areas (rice) have mediocre values 
(EVI values from 0.20 to 0.30).

The values of EVI range from -1 to +1. However, for the specific area of the Inner Niger Delta, 
Mali, on the Landsat 8-9 images taken on November, it varies from -0.25 to +0.40. For healthy
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wetland vegetation in, it varies between 0.05 and 0.40 which well represents the second peak
in the histograms, while the first peak (-0.20 to +0.05) corresponds to flooded areas of delta
and wetlands. Since EVI is corrected for aerosol scattering present in the atmosphere and is
adjusted for soil and canopy background, it well detects canopy background and identifies noise.
Moreover, EVI is sensitive to land cover types with dense vegetation.

(a) 2013 (b) 2015

(c) 2018 (d) 2020

(e) 2021 (f) 2022

Figure 11. Enhanced Vegetation Index (EVI) based on the Landsat 8-9 images of Inner 
Niger Delta for November: (a) 2013, (b) 2015, (c) 2018, (d) 2020, (e) 2021, (f) 2022. 

Mapping visualisation: RStudio. Source: authors.
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(a) 2013 (b) 2015 (c) 2018

(d) 2020 (e) 2021 (f) 2022

Figure 12. Histograms of EVI based on the Landsat 8-9 images of Inner Niger Delta for 
November: (a) 2013, (b) 2015, (c) 2018, (d) 2020, (e) 2021, (f) 2022. Plots: RStudio. 

Source: authors.

The examination of data (Table 2) shows that EVI values were extremal in 2013/11/10 when 
they ranged between -0.3576084 and +0.6849960, which corresponds to the consequences of the 
large drought in 2012 in the Sahel region which was hit by a major climate extremes (decrease in 
precipitation and rise in temperatures) which weakened vulnerable vegetation communities in the 
consequent years, as reflected in the values of the vegetation indices in 2013. In the consequent 
years, these effects gradually diminished along with the stabilisation in the ecosystem.

Table 2. Results of the NDVI, SAVI and EVI computations of the Landsat 8-9 images.

Time NDVI Extreme Values SAVI Extreme Values EVI Extreme Values
minimal maximal minimal maximal minimal maximal

10 November 2013 -0.2311377 0.5879165 -0.2235105 0.4281315 -0.3576084 0.6849960
16 November 2015 -0.2619293 0.5245128 -0.1681281 0.2896889 -0.2689985 0.4634939
24 November 2018 -0.2603942 0.5258653 -0.1830571 0.2938004 -0.2928849 0.4700728
29 November 2020 -0.2496693 0.4980780 -0.1384092 0.2833834 -0.2214491 0.4534074
16 November 2021 -0.2522458 0.5417392 -0.1564469 0.2790245 -0.2503089 0.4464335
11 November 2022 -0.3072812 0.5237642 -0.1810541 0.2929085 -0.2896799 0.4686475

Comparison of the dynamics in land cover types

The image classifications aimed at defining land cover types within the Inner Niger Delta of each 
Landsat 8-9 scene were interpreted for each of the six evaluated years within the 2013–2022 
time gap. Land cover types are classified based on the k-means clustering using Landsat 8-9 
images of Inner Niger Delta for November and visualised in Figures 13 and 14.
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(a) 2013: RGB (Landsat bands 4-3-2) (b) 2013: Clustering

(c) 2015: RGB (Landsat bands 4-3-2) (d) 2015: Clustering

(e) 2018: RGB (Landsat bands 4-3-2) (f) 2018: Clustering

Figure 13. Clustering based on the Landsat 8-9 images (bands 4-3-2): (a) 2013 RGB in 
true colour composites (TCC), (b) 2013 clusters, (c) 2015 RGB in TCC, (d) 2015 clusters,

(e) 2018 RGB in TCC, (f) 2018 clusters. Mapping: RStudio. Source: authors.
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(a) 2020: RGB (Landsat bands 4-3-2) (b) 2020: Clustering

(c) 2021: RGB (Landsat bands 4-3-2) (d) 2021: Clustering

(e) 2022: RGB (Landsat bands 4-3-2) (f) 2022: Clustering

Figure 14. Clustering based on the Landsat 8-9 images of Inner Niger Delta: (a) 2020 RGB 
in TCC (4-3-2), (b) 2020 classification, (c) 2021 RGB in TCC, (d) 2021 classification, (e) 

2022 RGB in TCC, (f) 2022 classification. Mapping: RStudio. Source: authors.
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The notation for land cover classes are as follows: 1) woodland, 2) floodplain with aquatic
grassland, 3) savannah, 4) thicket, 5) wild rice, 6) grassland, 7) irrigated rice fields, 8) savannah
in shallow floodplain, 9) bare soil (loams and clays), 10) bare soil (sands), 11) vegetation mosaics,
main channel banks, 12) lacustrine woodland, 13) shallow lacustrine woodland, 14) shrubby
savannah in uplands, 15) anthropic woody savannah, 16) thicket in uplands, 17) woody savannah
in uplands, 18) shrubby savannah in uplands, 19) island palm grove, 20) margins palm grove.

Coloured land cover classes show areas of agricultural and natural zones of vegetation as well
regions with water and bare lands. The area of delta floods and vast flat area for the one to three
year gaps are visualised in the processed images to show the low-lying floodplain with expanses
of wetland grasses and reeds classified against other land cover types. The land cover classes are
identified based on the frequency of the values of spectral reflectance of pixels on the images
encountered once on each Landsat scene with regard to the identified land cover types. The
difference in the northern and southern parts of the delta consists in varying land cover types. For
instance, while northern part has sand ridges that are formed during the flood period, southern
portion of the delta is a vast alluvial plain.

For each data set, the image scene was divided automatically into 20 classes with similar
properties of spectral reflectance. The random data partition is repeated for 5 cycles with 100
samples in each go, and the results of k-means clustering over the 20 classes are reported and
presented in the images. The classified land cover classes are sampled and labelled, as shown
in the resulting images in Figure 13 for years 2013, 2015 and 2018 and Figure 14 for years
2020, 2021 and 2022, respectively. At each iteration of the k-means clustering, the RSToolbox
query one instance label pair of pixels and compares the values of target pixel with that of the
centroid pixel representing the given group of the land cover classes from the input Landsat
Bands 4, 3 and 2. After all instance-labelled pairs of pixels are queries (target-centroid), a
classification model is trained and computed for labelled pixels as data from bands. The obtained
statistics is summarised in the Appendices. These values were applied to estimate the effects of
hydrological-climate fluctuations on the observed expansion of vegetation associations at target
areas covered by the images.

For each time window, the scenes were classified automatically using R libraries terra, raster and
RSToolbox with machine-based allocations of pixels to the land cover classes defined according
to the classification. The data are evaluated per land cover classes using Kendall correlation
matrix to examine changes in classification from 2013 to 2022 (Figure 15). The summary of
land cover changes is given in a table with obtained statistics on pixels.

Using correlation plot by Python libraries (Figure 15), the associations of 20 major land cover
types were compared and identified for each scene as a comparison between 2013 and 2022 to
find out the correlations between values in previous and later years in spectral reflectance of the
pixels on the images and the distribution of the vegetation associations in Inner Niger Delta with
the most important land cover classes: agricultural areas – irrigated rice fields (class 7), natural
vegetation areas – grassland (class 6), savannah of various types – shrubby, anthropic woody and
uplands savannah in shallow floodplain (class 8), thicket in uplands, bare soil – loams and clays
(class 9), bare soil – sands (class 10) and specific plants typical for floodplain of the Inner Niger
Delta with characteristic aquatic plants (shallow lacustrine woodland) (class 13), island palm
groves (class 19) and margins palm grove in the inundated areas and channel banks (class 20)
(Figure 15).
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Figure 15. Correlation plot showing probability cases for land cover classes in the Inner 
Niger Delta between 2013 and 2022 based on the results of the clustering of the Landsat 8-9 

images using Kendall correlation method. Mapping: Python. Source: authors.

4. CONCLUSIONS

The landscape patterns in the Inner Niger Delta are identified using the repeatability pattern of 
spectral reflectance of the pixels which are grouped into classes using k-means algorithms of R. 
It assigns pixels to the groups of land cover classes according to the closest distance between the 
pixels’ value and the centroid of the given class. In agricultural areas such as irrigated rice fields, 
the extent and duration of the flooded surface area of the delta, affect the production. Therefore, 
water discharges during the rainy season which lasts from March to October lead to losses of 
potential agricultural areas within the Inner Niger Delta. Such areas are vulnerable to occasional 
flooding and irregular precipitation pattern.

In contrast, natural vegetation areas such as savannah (woody or shrubby), grasslands or thicket 
are more sustainable to variations in precipitation. Defining geometric polygons of the natural 
vegetation or crop fields in the boundaries for target plants (irrigated rice fields in the Inner Niger 
Delta), as well as other crop types and canopies in the delta area enables visual interpretation 
of the crops fields using satellite i mages. Hence, performing a time-series analysis through a 
repetitive coverage of the study area using Landsat scenes and obtaining data for all land cover 
classes according to the resolution of the images enable to detect agricultural areas vulnerable to 
floods and identify them as areas at r isks. Furthermore, acquiring vegetation indices data for 
species canopies, crops and plant communities enables to identify plant conditions.
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In this paper, we have proposed two novel variants of image analysis for vegetation mapping that
target (1) computing the vegetation indices and (2) classification of land cover classes. We used
the first of these to show how the information on quantified vegetation biomass and plant vigour
can be derived from remote sensing data. We then showed how we can use algorithms of k-means
clustering for image classification to support land cover change analysis in environmental studies.
The aim of the performed image processing and algorithms of classification and computing the
VI is to transform the original raster pixels constituting the satellite image into a land cover
object classes and areas with higher or lower values of the VI that indicate the state of the plants.
To this end, the tested six Landsat images have been processed and the values of the VIs are
extracted from the original raster image with a 30-m resolution using formulae of the indices
computed using R. The classification was done by library(terra) of R using clustering algorithm
and resulted in classes representing various land cover types.

The integrated use of the three types of scripting techniques – GMT, R and Python –
as effective tools for processing Earth observation data was demonstrated in this study
with a case of Inner Niger Delta, Mali. The advanced use of R language for satellite
image processing provides new insights into complex interlace of climate-hydrological
processes and vegetation responses based on automatic classification of the Landsat 8-9
images for analysis of the greenness and health of vegetation in central Mali. The full
programming codes used in this study for the Python and R languages and GMT scripts
are publicly provided in the open GitHub repository of the authors using the following link:
https://github.com/paulinelemenkova/Image Processing Mali IND Scripts.

In the subsections of the Methodology, we described the scripts and technical approaches in
details, with comments on the most important snippets on the codes provided in the Appendix.
In this way, our study contributed both to the technical development of the advanced methods in
remote sensing and handling geospatial data and to the practical purposes of the environmental
monitoring of West Africa. Sustainable management of natural resources and improving
knowledge on ecosystem functioning in the Inner Niger Delta can largely benefit from the
advanced machine-based methods of satellite image processing. Mapping flooded areas on the
basis of the satellite images supports strategies for land management and rice planting, as well as
assessment of vegetation health in vulnerable ecosystems of Inner Niger Delta, Mali.

The physio-geographic phenomenon of seasonal floods in Inner Niger Delta makes it a unique
ecosystem of the environment of Mali. Variations in the hydrologic cycle and vegetation
associations in such a special area were effectively visualised using a time series of the satellite
images processed by R libraries for machine-based image analysis and algorithms of computer
vision, as well as auxiliary programming scripts by Python and GMT. Thus, we provide a
visualisation of NDVI, SAVI and EVI vegetation indices and automated classification of land
cover types by k-means clustering for years 2013, 2015, 2018, 2020, 2021 and 2022. A series
of the Landsat 8-9 images were taken always on November due to the environmental specifics
explained above: in this period, the highest contrast between the inundated lands and flooded
areas can be depicted on the image scenes.

From the methodological point of view, image classification and calculation of vegetation
indices should be consider separately since they are two separate different methods and can
be used independently from each other in future similar studies. The computation of the VIs
can be performed independently from image classification. Nevertheless, this study integrated
both methods to evaluate vegetation in Mali using two complimentary approaches. Thus, the
presented work demonstrated automatic classification of land cover types including crops and

303

https://github.com/paulinelemenkova/Image_Processing_Mali_IND_Scripts


natural vegetation on the Landsat 8-9 images according to different features using k-means
clustering technique for mapping target vegetation classes in the Inner Niger Delta. The analysis
of the image bands NIR and Red enabled to compute three vegetation indices - NDVI, SAVI
and EVI2. The experiments show that the images obtained from the sensor of the Landsat
8-9 satellites are useful for evaluation of the dynamics of land cover types, with a case of
environmental monitoring of Inner Niger Delta, Mali. Applying the scripting techniques of R, the
classification algorithms enabled to perform image partition by k-means approach. Furthermore,
statistical analysis was performed using libraries of Python with evaluation of the classified
classes of the identified land cover types presented on the maps.

The proposed R-based image processing is a data-independent method which significantly
outperforms the GIS in terms of speed and automation, which is essential for time series analysis.
Thus, instead of manual operations with image classification in traditional software, R libraries
use scripts for the machine-based data handling and discrimination of land cover classes and
vegetation indices using computer vision algorithms. We provide a theoretical justification
that R programming approach implements an unbiased estimate of land cover classes and the
computations of several vegetation indices such as NDVI, SAVI and EVI, and it has a faster
performance for processing several images as time series for evaluation of interannual dynamics
of flooded areas during seasonal inundation.

We applied a robust image classification algorithm of R for classification of land cover types in
Inner Niger Delta with regard to the floods affecting vegetation in seasonally inundated wet land
areas of the floodplain. Pattern recognition algorithms of R libraries were adopted to processing
satellite images aimed at estimating the difference in land cover types through analysis of time
series of the sequential Landsat 8-9 imagery for the period 2013-2022 over the Inner Niger
Delta, highlighting the inter-annual differences in vegetation associations of the floodplain.
R libraries also perform best in automated depicting of the values of three major vegetation
indices (NDVI, SAVI and EVI) for interpreting grassy vegetation health and extent of growth
using data-independent algorithms of R-based image processing. Thus, we demonstrated a
console-based techniques of remote sensing data analysis for applications of programming in
geographical studies.

Such advanced technical methods is a reliable tool that can be used in environmental analysis
for estimation of the inter-annual variability of flood patterns that persist in central Mali. The
analysis of land cover types and vegetation indices is closely related to the hydrological cycle, as
discussed above. Therefore, the triggers of the climatic processes and rainfall seasonality may be
added as additional variables in future studies to evaluate their effects on soil geochemistry and
fluctuations in salinity during floods and arid periods, respectively. Cartographic visualisation
and mapping of land cover types as the results of experiments show that the Inner Niger Delta
experience changes over the assessed years which proves the existing trends in the environmental
dynamics.

Whereas scripting presents a purely technical tool adopted from the data science domain, the
machine-based algorithms of computer vision and pattern recognition supported by R language
can help gain more insights and a better understanding of the environmental processes through
accurate and automated computation of vegetation indices and evaluation of land cover types
via time series analysis. Thus, the discrimination of pixels on Landsat scenes obtained from the
satellite imagery contributes to the more practical tasks of the environmental monitoring and
assessment of the sub-Saharan African landscapes. Technically, the use of R libraries works
straightforward and flexible in implementation with regard to data formats and specifications
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such as Landsat scenes. Therefore, the presented methods of R with supportive tools of GMT
and Python can be also implemented in other environmental applications of geospatial analysis
using diverse imagery types such as Sentinel-2A or the like.

Further, the image processing performed in R can be integrated in as a part of the wider studies
applying a variety of software as a basis module in more complicated algorithms of geospatial
data analysis and mapping. Finally, the potential applications of R include times series analysis
of larger dataset of the images aimed at determination of the link between spatial patterns of land
cover types and vegetation with climate data such as repeatability of rainfall and fluctuation of
interannual temperature. Massive data analysis can benefit from the automated approaches of R
programming for evaluation of climatic trends over several decades and larger spatial extent of
target area.

We presented the advanced image classification framework based on the R programming language
which has the following functionality useful for environmental computations: managing and
processing satellite images (colour composites tiff); analysing image records in order to extract
metadata information by R libraries rgdal and raster; classification of the satellite images and
computing vegetation indices using raster original bands and converting them into maps of land
cover types; exporting changes in land cover classes using several images on various years during
recent decade (2013-2022) covering target study area of Inner Niger Delta, Mali, central Africa.
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Ghile, Y. B., Taner, M. Ü., Brown, C., Grijsen, J. G. and Talbi, A. (2014). Bottom-up climate risk
assessment of infrastructure investment in the Niger River Basin, Climatic Change 122: 97–110.

Gourou, P. (1969). Le delta intérieur du Niger, Homme 9(1): 74–77.

Grunsky, E. C. (2002). R: a data analysis and statistical programming environment – an emerging
tool for the geosciences, Computers & Geosciences 28(10): 1219–1222. Shareware and freeware
in the Geosciences II. A special issue in honour of John Butler.

Haarpaintner, J. and Hindberg, H. (2019). Multi-Temporal and Multi-Frequency SAR Analysis
for Forest Land Cover Mapping of the Mai-Ndombe District (Democratic Republic of Congo),
Remote Sensing 11(24).

Haque, M. M., Seidou, O., Mohammadian, A. and BA, K. (2021). Effect of rating curve
hysteresis on flood extent simulation with a 2D hydrodynamic model: A case study of the Inner
Niger Delta, Mali, West Africa, Journal of African Earth Sciences 178: 104187.

Haque, M. M., Seidou, O., Mohammadian, A., Djibo, A. G., Liersch, S., Fournet, S., Karam,
S., Perera, E. D. P. and Kleynhans, M. (2019). Improving the Accuracy of Hydrodynamic
Simulations in Data Scarce Environments Using Bayesian Model Averaging: A Case Study of
the Inner Niger Delta, Mali, West Africa, Water 11(9).

Haque, M. M., Seidou, O., Mohammadian, A. and Gado Djibo, A. (2020). Development of a
time-varying MODIS/ 2D hydrodynamic model relationship between water levels and flooded
areas in the Inner Niger Delta, Mali, West Africa, Journal of Hydrology: Regional Studies
30: 100703.

Heubes, J., Schmidt, M., Stuch, B., Garcı́a Márquez, J. R., Wittig, R., Zizka, G., Thiombiano,
A., Sinsin, B., Schaldach, R. and Hahn, K. (2013). The projected impact of climate and land
use change on plant diversity: An example from West Africa, Journal of Arid Environments
96: 48–54.

Hiernaux, P., Turner, M., Eggen, M., Marie, J. and Haywood, M. (2021). Resilience of wetland
vegetation to recurrent drought in the Inland Niger Delta of Mali from 1982 to 2014, Wetlands
Ecology and Management 29: 945–967.

Hou, J., Liu, W., E, X. and Cui, H. (2016). Towards parameter-independent data clustering and
image segmentation, Pattern Recognition 60: 25–36.

Huang, J., Yu, H., Guan, X., Wang, G. and Guo, R. (2016). Accelerated dryland expansion under
climate change, Nature Climate Change 6: 166–171.

Huete, A. (1988). A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment
25(3): 295–309.

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X. and Ferreira, L. (2002). Overview of the
radiometric and biophysical performance of the modis vegetation indices, Remote Sensing of
Environment 83(1): 195–213.

Huete, A., Liu, H., de Lira, G., Batchily, K. and Escadafal, R. (1994). A soil color index to adjust
for soil and litter noise in vegetation index imagery of arid regions, Proceedings of IGARSS ’94 -
1994 IEEE International Geoscience and Remote Sensing Symposium, Vol. 2, pp. 1042–1043.

Karkauskaite, P., Tagesson, T. and Fensholt, R. (2017). Evaluation of the plant phenology index

308



(ppi), ndvi and evi for start-of-season trend analysis of the northern hemisphere boreal zone,
Remote Sensing 9(5).

Kendall, M. G. (1938). A New Measure of Rank Correlation, Biometrika 30(1-2): 81–93.

Klinkenberg, E., Huibers, F., Takken, W. and Toure, Y. T. (2002). Water Management as a Tool
for Malaria Mosquito Control? – The Case of the Office du Niger, Mali, Irrigation and Drainage
Systems 16: 201–212.
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and adaptation of African rural populations to hydro-climate change: experience from fishing
communities in the Inner Niger Delta (Mali), Climatic Change 115: 463–483.

Mosca, N., Di Gregorio, A., Henry, M., Jalal, R. and Blonda, P. (2020). Object-Based
Similarity Assessment Using Land Cover Meta-Language (LCML): Concept, Challenges, and
Implementation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 13: 3790–3805.

Murrell, P. (2005). R Graphics, 1 edn, Chapman and Hall/CRC, New York, U.S.

Ogilvie, A., Belaud, G., Delenne, C., Bailly, J.-S., Bader, J.-C., Oleksiak, A., Ferry, L. and
Martin, D. (2015). Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS
optical data, Journal of Hydrology 523: 368–383.

Oguntunde, P. G., Abiodun, B. J. and Lischeid, G. (2017). Impacts of climate change on
hydro-meteorological drought over the Volta Basin, West Africa, Global and Planetary Change
155: 121–132.

Oguntunde, P. G., Friesen, J., van de Giesen, N. and Savenije, H. H. (2006). Hydroclimatology
of the Volta River Basin in West Africa: Trends and variability from 1901 to 2002, Physics and
Chemistry of the Earth, Parts A/B/C 31(18): 1180–1188. Time Series Analysis in Hydrology.

Ose, K., Corpetti, T. and Demagistri, L. (2016). 2 - Multispectral Satellite Image Processing, in
N. Baghdadi and M. Zribi (eds), Optical Remote Sensing of Land Surface, Elsevier, pp. 57–124.

Paola Patricia, A.-C., Ana Isabel, O.-C. and la Hoz-Franco Emiro, D. (2020). Discovering
similarities in Landsat satellite images using the K-means method, Procedia Computer Science
170: 129–136. The 11th International Conference on Ambient Systems, Networks and
Technologies (ANT) / The 3rd International Conference on Emerging Data and Industry 4.0
(EDI40) / Affiliated Workshops.

Payra, S., Sharma, A. and Verma, S. (2023). Chapter 14 - Application of remote sensing to
study forest fires, in A. Kumar Singh and S. Tiwari (eds), Atmospheric Remote Sensing, Earth
Observation, Elsevier, pp. 239–260.

Pearson, K. (1895). Notes on regression and inheritance in the case of two parents, Proceedings
of the Royal Society of London 58: 240–242.

Planhol, X. d. (1971). Gallais Jean. - Le delta intérieur du Niger, étude de géographie régionale,
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