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ABSTRACT 

Hydrogen-compatible gas turbines are one way to decarbonize electricity production. 

However, burning and handling hydrogen is not trivial because of its high reactivity and 

tendency to detonate. Mandatory safety parameters, such as auto-ignition delay times, 

can be estimated thanks to predictive detailed kinetic models, but with significant 

calculation times that limit coupling with fluid mechanic codes. An auto-ignition prediction 

tool was developed based on an artificial intelligence (AI) model for fast computations and 

an implementation into an explosion model. A dataset of ignition delay times was 

generated automatically using a recent detailed kinetic model from National University of 

Galway (NUIG) selected from the literature. Generated data covers a wide operating 

range and different compositions of fuels. Clustering problems in sample points were 

avoided by a quasi-random Sobol sequence, which covers uniformly the entire input 

parameter space. The different algorithms were trained, cross-validated and tested using 

a database of more than 70'000 ignitions cases of Natural Gas/Hydrogen blends 

calculated with the full kinetic model by using a common split of 70/30 for training, testing. 

The AI model shows a high degree of robustness. For both the training and testing 

datasets, the average value of the correlation coefficient was above 99.91%, the Mean 

Absolute Error (MAE) and the Mean Square Error (MSE) around 0.03 and lower than 0.04 

respectively. Tests showed the robustness of the AI model outside the ranges of pressure, 

temperature, and equivalence ratio of the data set. A deterioration is however observed 

with increasing amounts of large alkanes in the natural gas. 
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1. INTRODUCTION 

The development of hydrogen compatible gas turbines is aimed at playing a role in 

enabling the decarbonization of the power sector [1,2]. In fact, direct greenhouse gas 

(GHG) emissions generated by the gas turbine reflect the carbon content in the fuel [3]. 

This fuel switch from hydrocarbon containing fuels such as natural gas and light distillate 

oil to part of or pure hydrogen is going to displace CO2 emissions by H2O. This latter has 

a negligible global warming potential. Assuming hydrogen is produced upfront by low 

carbon process, it would enable minimizing the indirect GHG emissions as well. 

Now, burning hydrogen in the combustor and even handling hydrogen in the gas delivery 

system is not trivial [4,5] and comes with challenges associated with the high reactivity 

(ignitability) and tendency to detonate [6,7], hence it is important to understand the 

mechanisms under consideration and develop tools to estimate the “reactivity parameters” 

[8,9]. Auto-ignition delay is one characteristic of the reactivity of a fuel-air mixture under 

given conditions of composition, pressure, and temperature, and an important parameter 

for the design of safe and reliable systems. A detailed kinetic model may be able to 

simulate these combustion parameters in simple reactors, but it is too expensive for 

coupled calculations with mass and heat transfer under gas turbine conditions [10]. On 

the contrary, simplified kinetics may well represent the characteristics of the flame front 

but not the self-ignition at moderate temperatures [11,12]. To get past these two pitfalls, 

this paper describes a method based on chemical kinetics as well as artificial intelligence 

(AI) models which enables its fine prediction as a function of pressure, temperature, 

equivalence ratio as well as hydrogen-natural gas blends composition. AI-based methods 

have shown their potential to reproduce the complex kinetics and couplings in combustion 

[13], whether for systems such as coal combustion [14], engine optimization [15] or large-

scale forest fire simulation [16]. Several authors published different methodology based 

on ML algorithm to estimate directly auto-ignition delay times of hydrocarbon/air mixtures. 

The Table 1 presents some studies using ML algorithm to predict ignition delay times. 

Considering the importance of the field of natural gas and hydrogen combustion, the 

objective of this study is to present a new mathematical approach based on machine 

learning to estimate the ignition delay for a wide range of conditions, in terms of pressure, 



  

temperature and equivalence ratio, and for a large number of natural gas/hydrogen 

mixtures under typical gas turbine operating conditions. 

 

Table 1: Some studies on the estimation of IDT using ML algorithms 

  Domain of validity  

Type of ML Algorithm 
Fuel 

mixtures 
P [bar] T [K]  [-] Authors 

Adaptive Nonlinear Least-
Squares Algorithm 

C1-C3 / H2 1 - 200 900 - 2500 0.9 – 2.5 
Kuppa et al., (2018) 
[17] 

Genetic Algorithm + 

Artificial Neural Network 

(GA-ANN) 

nC4 / H2 20 - 25 722 - 987 0.5 – 1.5 Cui et al., (2020) [18] 

Convolutional Neutral 

Network (CNN) 

DME-

CH4 
5 - 50 600 - 1500 0.5 Han et al., (2021) [19] 

Back Propagation Neural 

Network (BPAN) 

C7 / iC8 / 

Toluene 
1 - 60 700 - 1000 1.0 Cui et al. 2022 [20] 

Polynomial chaos 

expansion (PCE) 
C1 – C7 20 - 40 700 - 900 1.0 

Yousefian et al., 

(2022) [21] 

 

 

2. MATERIALS AND METHODS 

Regardless of the type of machine or deep learning project, the main steps to follow to 

ensure a high level of quality of an AI model are presented in Figure 1. The first step is 

the construction of the dataset. Depending on the problem under consideration, the 

recorded data could come for instance from experimental measurements, from monitored 

data from a process or from data generated thanks to a comprehensive physical or 

chemical model. It is of the utmost importance to collect reliable data. The quality of the 

data provided to the AI model will determine the accuracy of the final model. The second 

step consists in the analysis and the preparation of the data to be modelled: for instance, 

filling in missing values or normalizing the data. 

The third step consists in the choice of a model. Whether it is supervised or 

unsupervised, based on regression or classification, different algorithms can be used 

[22,23]. In our case, K-Nearest Neighbors (KNN), Support Vector Regressor (SVR), 

Decision Trees (DT), Random Forest (RF), XGBoost Regressor (XGBR) and Artificial 

Neural Network (ANN) algorithms have been tested [24,25]. Each AI model has different 

hyperparameters, which characterize the model. Thus, the next step is to tune these 

hyperparameters and see which ones works best. After training the model, it is important 

to verify its performance. Eventually, the last step is the evaluation of the model using 



  

different metric functions, typically the mean absolute error (MAE), the mean square error 

(MSE) or the correlation coefficient (R²). 

 

Figure 1: Workflow of a machine or deep learning project 

 

2.1 Generation of the dataset 

To obtain reliable data from the detailed kinetic simulations, different kinetic 

mechanisms were tested on experimental data from the literature. Five different models 

representing the combustion of hydrogen and alkane/air mixtures have been selected in 

the literature: the model of Burke et al. [26], which contains alkanes up to propane, the 

AramcoMech3.0 model [27], which contains alkanes up to n-butane, the model of Mehl et 

al. from LLNL [28], which contains alkanes up to n-heptane, the model of Bounaceur et 

al. [9], which contains alkanes up to n-pentane, and the most recent version of the model 

from University of Galway [29], which contains alkanes up to n-heptane. Several 

comparison between experiments and simulated results have been made and eventually 

the hierarchical and comprehensive combustion model developed by NUIG [29] 

(NUIGMech1.1) was selected based on a lower deviation between  simulation and a large 

set of experimental ignition delay times from the literature. The model was thereafter used 

to calculate the ignition delay time (IDT) of different hydrogen-natural gas mixtures as a 

function of pressure, temperature, and equivalence ratio using ChemkinPro software [30]. 

Donohoe et al. [31] has studied the ignition delay times for different blends of natural gas 

and hydrogen blends at elevated pressures, as presented in Figure 2. The 19 input 

parameters for IDT estimation are presented in Table 2. The compositional range was 

considered by taking the average composition of usual natural gases [9]. One specification 



  

needs to be considered: the heavier the hydrocarbon, the less it should be present in a 

natural gas. Thus, methane should be the major component of the fuel and NC7H16 the 

smallest. 

 

 
Figure 2: Characteristics of mechanisms considered and comparison experiments [31] vs simulated results 
with the NUIG model. NG used for experiments has the molar composition: 62.5% CH4 / 20% C2H6 / 10% 

C3H8 / 5% nC4H10 / 2.5% C5H12. 

 

Table 2: Input parameters. Composition for hydrogen-natural gas blends and operating conditions 

 

A numerical procedure has been developed to automatically generate the set of 

ignition delay times covering the range of input parameters in Table 2. This numerical 

procedure consists on a mixed language program (Fortran and Python) which follows 

these sequences:  

1. Random selection of a gas composition based on Table 2 

Molecules Composition ranges 
[vol%] 

Molecules Composition ranges 
[vol%] 

CH4 [0, 100] IC5H12 [0, 3] 
C2H4 [0, 2.5] NEOC5H12 [0, 3] 
C2H6 [0, 16.5] NC6H14 [0, 2.5] 
C3H6 [0, 3] NC7H16 [0, 1.5] 
C3H8 [0, 10] N2 [0, 11.5] 
C4H10 [0, 6] CO2 [0, 12] 
IC4H10 [0, 6] CO [0, 2.5] 
NC5H12 [0, 3] H2 [0, 100] 

Pressure 1 < P [atm] < 50 
Temperature 200 < T [° C] < 700 

Equivalence ratio 0.2 < φ [-] < 5 



  

2.  Random selection of a pressure, temperature and equivalence ratio based on 

Table 2 

3. Estimation of the ignition delay time using the ChemkinPro software [15]. The 

chemical and thermodynamic model are taken from NUIG [14] 

4. Recording of simulation data: composition, pressure, temperature, equivalence 

ratio, ignition delay time 

5. Loop to point 1 

Following this procedure, almost two months were necessary to generate the complete 

database. 

The main risk of this approach is creating groups of data points that are similar to each 

other. This can be a problem because it might lead us to miss important distinctions 

among the data points. For instance, it is important to cover uniformly the whole domain 

of temperature, from 200 to 700°C, to ensure a robust model. A simple random generation 

of data points might lead us to create a lot of data around an average value of 450°C and 

less around the limits of the range of temperature, that what we name a clustering 

problem. 

In order to avoid any clustering problem in the different successive sample points a 

Sobol procedure [32] has been applied. The quasi-random Sobol sequence ensures that 

the entire possible space of input parameters is covered uniformly. Figure 3 displays an 

example of samples obtained from a uniform pseudo-random distribution and a Sobol 

sequence for a 2-parameter sample where the sample size N = 1000. The Sobol sequence 

provides a more uniform coverage compared to the random sample. Clustering and gaps 

are visible for the random sample even within two dimensions. For small sample sizes, 

they can become quite extreme in a 19-dimensional space like the one studied here. The 

Sobol technique of mapping allows, with the same number of points, to have a more 

efficient scanning of the space to generate the dataset. 

 



  

 
Figure 3: Comparison of distributions for different sampling strategies for a 2-parameters sample with n = 

1000. uniform pseudo-random sample (left), sobol’s quasi-random sequence sample (right) 

For constant operating conditions, i.e. constant pressure, temperature and 

equivalence ratio, it is known that the reactivity decreases, and the IDT increases, in the 

order H2/air mixtures, natural gas/H2/air, natural gas/air mixtures, CH4/air mixtures [31]. 

Another technique has then been used to avoid any clustering problem by classifying all 

simulated points into four different categories according to the input variables. The created 

categories are based on the nature of the predominant species in the compositions of the 

different mixtures considered (Table 3). 

 

Table 3: Organization of the dataset 

Category  Definition Number of points 

1-NG  All features and 𝑋𝐻2=0 22 925 
2-H2  Only H2 14 601 
3-CH4  Only CH4 15 975 
4-NG+H2  All features and 𝑋𝐻2≠0 22 473 

Full  All the dataset 75 974 
 

The complete data set consists of a table with 75’974 rows and 20 columns. Each row 

corresponds to a single calculation. In each line, the first 16 columns give the composition 

of the gas followed by 3 columns for temperature, pressure and equivalence ratio, 

respectively. The last column gives the corresponding value of the ignition delay time. 

Figure 4 present the distribution of the IDT for all categories. As a uniform mapping of 

the values is recommended to perform a better prediction, log(IDT) was used instead of 

IDT. In the same way, we introduced 1000/T instead of T, log(P) instead of P and log() 

instead of . Eventually, the whole dataset is composed by more than 75 000 points 



  

involving in 19 features (16 fuel components, 1000/T, log(P), log()) and 1 target 

(log(IDT)). 

 

 
Figure 4: Distribution of the IDT. top: IDT in linear scale. bottom: log(IDT) in logarithm scale 

 

2.2 Machine learning algorithms 

Machine learning (ML) methods can be divided into two broad categories, supervised 

and unsupervised learning. Supervised learning requires labeled data for the training 

stage, i.e. data that contains both input features and desired outputs. Instead, 

unsupervised learning infers natural pattern within unlabeled data. All algorithms applied 

in this study fall into the first category, suitable for regression tasks. Some ML algorithms 

need a normalization. For such cases, we used a StandardScaler method [22,25] based 

on this formula (1): 

(1) 

with D the data set of a column of a dataset, u the mean of the whole column and s the 

standard deviation, 𝑧∗ is the normalized data. Different algorithms have be used to develop 

the AI model and are briefly described below (more information in [25]). 



  

 

KNeighbors Regressor (KNN) 

The k-nearest neighbor model is one of the simplest and is often used to quickly obtain 

results that allow to evaluate if the generation of the dataset has been done correctly: i.e. 

the database has enough points, no clustering problem, etc. Despite its simplicity and its 

fast computation time, this algorithm offers quite often good results [10]. The symbol k 

represents the number of neighbors used to do the prediction. This is a distance-based 

approach, considering that a point should “look like” its neighbors. KNN does not require 

any normalization. 

Support Vector Regressor (SVR) 

Support Vector Regression is a machine learning algorithm that seeks to identify the 

optimal hyperplane (or plane), which separates two sets of points in a multi-dimensional 

space, where each point is defined by a set of attributes. SVR does require normalization. 

Decision Tree Regressor (DTR) 

Decision Tree Regressor splits a large dataset into smaller ones to build a decision tree 

with the features and finally reach the target of a model. It is one of the most frequently 

used Machine Learning algorithms for solving regression as well as classification 

problems. DTR does not require any normalization. 

Random Forest Regressor (RFR) 

Random Forest is an ensemble technique capable of performing regression tasks using 

multiple decision trees and a technique commonly referred to as "bagging" [25]. The basic 

idea is to combine multiple decision trees to determine the final result rather than relying 

on individual decision trees. Random Forest has multiple decision trees as its basic 

learning models, making it a very accurate model compared to a single decision tree used 

in DTR. With this method, the tuning of hyperparameters could be a very long task 

compared to DTR. RFR does not require any normalization. 

XGBoost Regressor (XGBR) 

XGBoost Regressor (https://xgboost.readthedocs.io/) is a library, developed by 

community members, of methods based on gradient boosting and self-hyperparameter 

tuning. XGBoost provides a parallel tree boosting that solve many data science problems 

in a fast and accurate way. XGBR does require normalization. 



  

Artificial Neural Network (ANN) 

The Multi-Layer Perceptron is based on a construction of a neural network capable of 

generating outputs with a set of inputs. Links are created between neurons to symbolize 

relationships and influences between the features and the targets. The principle of 

backpropagation is used. It means that the link between the neurons and their weights in 

the final contribution is updated until reaching a stopping criterion. MLPRegressor does 

require a normalization. As a reminder, for each case where normalization was required, 

the StandarsdScaler method was used. 

 

 

2.3 Performance Indicators 

The predictive ability of an ML model is commonly evaluated in regression problems 

thanks to three parameters used to compare predicted ignition delay times and expected 

ignition delay in the testing set. The first parameter is the correlation coefficient (R²) 

described in Eq (2). A value of R² close to 1 indicates a strong accuracy of the model. The 

second and third parameter are the Mean Absolute Error (MAE) and the Mean Square 

Error (MSE) (eq (3) and (4)), which must be as close as possible to zero to indicate a good 

prediction of the model. 

𝑅2 = 1 −
∑(𝑦𝑖−�̂�𝑖)2

∑(𝑦𝑖−�̅�𝑖)2  𝑤𝑖𝑡ℎ �̅�𝑖 =
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1     (2) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1      (3) 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1     (4) 

where N is the total amount of data in the dataset, yi is the i’th expected value in the 

dataset and ŷi is the corresponding predicted value. 

 

Another common performance indicator is the parity plots, which consist in the 

representation of target values predicted by the AI model as a function of target values 

coming from the dataset. This representation is very useful because it gives a quick visual 

representation of the discrepancy of the data. Last, as the IDT of a mixture depends on 

the temperature, the pressure and the equivalence ratio, we have compared for specified 

mixture at a fixed pressure and equivalence ratio the variation of IDT versus temperature 



  

estimated using the original NUIG chemical model compared to values coming from the 

AI model. 

 

3. RESULTS AND DISCUSSION 

The following work was realized using the language Python 3.8.13. and the ML library 

Sklearn 1.0.2 [25]. Each ML models are characterized by different hyperparameters. To 

guarantee the best performance of a model, it is highly recommended to tune its 

hyperparameters. The library Sklearn provides a large number of models with 

hyperparameters set to their default value, and depending on the type of ML algorithm, 

different kind of hyperparameter could to be tuned. For the KNN model, the number of 

neighbors k is one of the possible hyperparameters to optimize. For the ANN model, the 

number of layers, number of neurons per layer and the activation function are 

hyperparameter, which can to be tuned. Since the AI algorithms are black boxes, it is not 

easy to immediately know the effect of a parameter on the final prediction. For this reason, 

the only way to have access to the optimized parameters for a model is to test for every 

discrete combination of the value of the parameter, which can be a very time-consuming 

task. Different Python libraries for serial and parallel optimization over awkward search 

spaces, which may include real-valued, discrete, and conditional dimensions have been 

developed during the last decade to tuned “automatically” a large set of hyperparameters. 

Hypertopt [33] and BayesSearchCV [34] are libraries for hyperparameter tuning based on 

Bayesian optimization. Optuna [35] is another automatic hyperparameter optimization 

software, especially designed for machine learning. All three are complex to implement 

and, to the best of our knowledge, are difficult to couple with an ANN model. To overcome 

this problem, it is more interesting to grid the parameters by testing many parameters at 

the same time with a lot of values. It is possible to automate this by using the library python 

Sklearn GridSearchCV. In addition to testing all the different value of the hyperparameter, 

this function proceeds with a cross validation to avoid an overfitting of the AI model. For 

all AI models tested, we used a dataset split factor of 70% for the training set (which 

corresponds to 53’182 points) and 30% for the test set (which correspond to 22’792 points) 

and a cross validation of five folds as represented by Figure 5. In this figure, each fold 

contains around 10’636 points. 



  

 

 
Figure 5: Cross validation representation with 5 folds 

All the algorithms presented above have been tested with the dataset to determine the 

best model which represent correctly values of predicted ignition delay time compare with 

those estimated through the detailed kinetic model and ChemkinPro. To make a decision, 

the metrics are not the only parameters: the capacity of reproducing the physical behavior 

for selected configuration have been also tested. Table 4 show the values of the different 

metrics obtained for all the AI model after several runs. Although the correlation coefficient 

of all models (except the KNN model) is close to 1, it seems that parity plots show a poor 

representation of data by the models, with the exception of the ANN model. Then, we have 

decided to focus on the ANN model and develop numerical strategy to improve the 

accuracy of the ANN model. 

 

Table 4: Metrics of all the models 

 R² train R² test MSE train MSE Test 

KNN 0.6141 0.8286 0.5588 1.0249 
SVR  0.9943 0.9901 0.1005 0.1334 
DT  0.9994 0.9812 0.0832 0.1837 
RF  0.9991 0.9941 0.1026 0.0667 
XGBoost  0.9976 0.9952 0.0645 0.0660 
ANN  0.9982 0.9979 0.0570 0.9979 

 

3.1 Optimization of the model 

The function GridsearchCV with a cross validation of 5 folds was used to determine the 

best architecture for the ANN model by testing several hidden layers (from 1 to 10) and 

several number of neurons per layer (from 25 to 27). The number of iteration (max_iter), 



  

the activation function (activation), the solver (solver) and the learning rate (learning_rate) 

have also to be tuned. The number of folds in a cross-validation test can also be optimized. 

A value of five folds is commonly used in the literature. Some tests with a cross-validation 

of 10 folds have been performed without affecting the accuracy of the model. Due to 

confidentiality reasons, this information could not be disclosed in detail. The 

representation of a tested ANN model is representing in Figure 6 with the list of 

hyperparameters tuned given in Table 5. 

 

Table 5: List of tuned hyperparameters for ANN model 

Hyperparameter 

hidden_layer_sizes 
max_iter 

Activation function 
solver 

Learning_rate 

 

 
Figure 6: Representation of an ANN model tested in this study 

 

Table 6 summarizes the performance indicators of the ML model. Note that the 

correlation coefficient R² of both trained and test sets are close to each other and to 1. It 

means that the model is providing a good prediction and very limited over-fitting. The MSE 

and MAE are very low, which is of course expected and desirable. 

 



  

Table 6: Performance Indicator 

Dataset R² MSE MAE 

Train 0.9994 0.0339 0.0234 
Test 0.9993 0.0361 0.0241 

 

The overall performance of the ANN model to predict the IDT is displayed in the parity 

plot in Figure 7. On the whole domain, the predicted ignition delay times matches very 

well with the reference ignition delay with a deviation lower than 2%. The performance of 

the ANN model is also validated for the prediction of the Negative Temperature Coefficient 

(NTC) behavior for natural gases containing a higher amount of alkanes larger than 

ethane. Figure 8 shows the results of the validation for different natural gas/H2 blends and 

inlet pressures over the range of inlet temperature at different equivalence ratios. The 

simulated dataset from the detailed kinetic model is well reflected by the AI model results. 

In fact, the data displayed in Figure 8 has a maximum of 2% inaccuracy. Among the cases 

selected for display are pure CH4 and H2 (respectively on lower left and lower right) as the 

first pillars for validation. Next, the results of the AI model were compared to natural gas 

and hydrogen blended in natural gas in order to represent typical gas turbine fuel use.     

By following the ASTM E 659-78, mixtures, which do not ignite within 5 min, are 

considered to be below the minimum ignition temperature. The simulation considers a 

volume of 200 cm3 with a heat loss of 19 W/m². The red line in Figure 8 represents this 

zone with values above 300 s, which correspond to a value of log (300) ≈2.48. Thus, if the 

ANN model predicts a IDT value greater than 300 s, the reacting mixture is in the non-

ignition region and the result should not be considered.  

 



  

 
Figure 7: Parity plot for the ANN model 

 

 

 

 
Figure 8: comparison of IDT estimated through the NUIG kinetic model (red points) and IDT predicted by 
the ANN model (blue line) 

 



  

3.2 Test of robustness on the ANN model 

Various robustness tests were performed to assess the sensitivity of the IDT result 

when predictions are made outside the validity domain, i.e. out of the ranges of 

parameters displayed in Table 2. Figure 9 shows some different robustness tests with a 

composition outside the range, a pressure above the maximum authorized and an 

equivalence ratio below the limit. In general, the prediction from the ANN model is still 

applicable when pressure or equivalence ratio are outside the defined domain. This is not 

the case with the composition. Alkanes involving more than 3 carbon atoms have a strong 

Negative Temperature Coefficient (NTC) behavior as a function of the temperature, which 

has not been taken into account in the AI model. The model focuses indeed on natural 

gas which contains only traces of alkanes heavier than ethane. It is therefore expected 

that the AI model does not work outside the validation domain. Adding more data in the 

same range of composition or using deep learning algorithms would not change the 

observed deviation unless using a reinforcement model approaches, what is out of scope 

of this study. 

 



  

 
Figure 9: Robustness tests outside the domain. (up) over the range composition (middle) over the pressure 
(down) over the equivalence ratio. Red points: estimated through the kinetic model. Blue line: estimated 
with the ANN model 

 

4. CONCLUSION 

An AI model based on a Multi-Layer Perceptron Regressor also named Artificial Neural 

Network has been developed in order to predict the IDT of different natural 

gas/hydrogen/air blends at different pressures, temperatures and equivalence ratios. 

The final AI model shows a high degree of robustness in reproducing the results of the 

detailed model as shown by different metric functions. For both the train and test dataset, 

the average value of the correlation coefficient, 99.91%, was found above: the Mean 

Absolute Error (MAE) around 0.03 and the Root Mean Square Error (RMSE) lower than 



  

0.04. On the whole domain, the predicted ignition delay times match very well with the 

ignition delay calculated with the detailed kinetic mechanism with a deviation lower than 

2%. Several tests have been made to check the robustness of the model by comparing 

predicted and simulated values outside the ranges of conditions used to train the AI model. 

The different results show that even with an estimated value outside the pressure, 

temperature or equivalence ratio range gave correct results. This is not the case when 

considering a process gas with a quantity of larger alkanes, such as n-hexane or n-

heptane, above the authorized limit. 

It is interesting to note that one reason of this project was motivated in particular by the 

idea of reducing the time of computing the IDTs. From 5 min with the NUIGmech1.1 model 

to at worst 1 s for the ANN model, the estimation of an IDT set is now easier and doable 

for a large number of configurations. In fact, it eventually opens the way to coupling with 

broader multi-physical tools, e.g. CFD codes, enabling prediction of flammable mixture 

and likelihood of ignitability in transient applications of safety scenarios.  

The next steps will include testing other methods such as deep learning to improve the 

simulation at the boundary conditions of the concentration domain and for higher alkane 

contents. The model will also be extended to simulate other safety criteria such as 

minimum ignition temperatures, and include other fuels such as ammonia. 
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