
HAL Id: hal-04406492
https://hal.science/hal-04406492v1

Submitted on 5 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

High-performance hard-input LDPC decoding on
multi-core devices for optical space links

Bertrand Le Gal, Christophe Jego, Vincent Pignoly

To cite this version:
Bertrand Le Gal, Christophe Jego, Vincent Pignoly. High-performance hard-input LDPC decoding
on multi-core devices for optical space links. Journal of Systems Architecture, 2023, 137, pp.102832.
�10.1016/j.sysarc.2023.102832�. �hal-04406492�

https://hal.science/hal-04406492v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

High-Performance Hard-Input LDPC Decoding on Multi-core
Devices for Optical Space Links

Bertrand LE GAL · Christophe JEGO · Vincent PIGNOLY

Received: July 2022 / Accepted: xxxx 2022

Abstract LDPC codes are a family of error-correcting
codes that are present in most space communication
standards. Thanks to their large processing power and
their parallelization capabilities, prevailing multicore
devices facilitate real-time implementations of digital
communication systems, which were previously imple-
mented into dedicated hardware devices. Previous works
were done over the last decade on the implementa-
tion of Gbps decoders on programmable devices. How-
ever, these works focus on the soft input LDPC de-
coding algorithms. But, hard-input LDPC decoders are
also required to design and prototype for instance next
optical-based satellite communication systems. These
systems should provide high throughput (≥ 10 Gbps)
and low latency (≤ 1 ms) internet links. In this article,
the first software-based implementation of a hard-input
multi-Gbps LDPC decoder is detailed. Thanks to dif-
ferent parallelization strategies and deeply optimized
SIMD codes, throughput up to 7.5 Gbps is achieved
when 10 Gallager-E iterations are executed onto an IN-
TEL Xeon device making possible the design of software
base station systems providing throughputs of tens of
Gbps for optical system evaluation or base station de-
sign.

Keywords LDPC · Gallager-E · multicore · SIMD ·
optical space links

Bertrand LE GAL · Christophe JEGO and Vincent PIG-
NOLY
IMS laboratory, Bordeaux-INP
CNRS UMR 5218, Univ. of Bordeaux
351 cours de la libération, 33405 Talence, France
E-mail: bertrand.legal@ims-bordeaux.fr@example.com

1 Introduction

Low-Density Parity-Check (LDPC) codes are a pop-
ular class of Error Correction Codes (ECC) used in
digital communication systems to make reliable trans-
missions. Due to their excellent error correction perfor-
mance, LDPC codes were selected for terrestrial wire-
less standards (e.g., Wi-Fi and 5G) but also for spatial
ones (CCSDS, DVB-S2, and DVB-S2x). FPGA or ASIC
technologies were for a long time the single way to pro-
vide real-time LDPC decoding when hundreds of Mbps
or Gbps are necessary [1,2]. These dedicated hardware
implementations provide high-throughput and low-energy
features at the costs of low flexibility and low reusabil-
ity. On the opposite, flexible CPU or GPU-based imple-
mentations were previously discarded due to the high
computational complexity of the LDPC decoding algo-
rithms.

Since a decade, the computational power offered
by multicore or many-core programmable devices as-
sociated with easy-to-use programming models opened
new opportunities. Indeed, coping with low flexibility
and long development cycles, researchers and industri-
als tried to use these programmable devices to imple-
ment ECC decoders which are the receiver design bot-
tlenecks [3–7]. Programmable architectures associated
with optimized software descriptions made possible the
implementation of high-throughput receiver systems.
They can be helpful as real-life wireless communication
systems and/or prototype for next-generation ones.

Software Defined Radio (SDR) [8] or cloud-RAN
[9,10] systems were targeted by previous works. In these
works, the RF front-end and demodulation stage pro-
vide soft input to the LDPC decoding process. Con-
sequently, like in the field of ASIC/FPGA LDPC de-
coders, previous works focused on the soft-input Min-

© 2023 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1383762123000115
Manuscript_9dc479a89a4acc3a123eec42f25a99c3

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1383762123000115

2 Bertrand LE GAL et al.

Sum (MS) algorithm. Unfortunately, to reach high through-
put of several Gbps in optical space communications,
ECC decoders are limited to processing hard input val-
ues due to current optical technology limitations.

Hard input decoding presents lower error correc-
tion performance than soft input ones. Moreover, it
involves the implementation of other LDPC decoding
algorithms such as Gallager-B, Gallager-E or their vari-
ations (e.g. bit-flipping algorithms [11], Probabilistic
Gallager-B [12]). Efficient FPGA implementations of
Probabilistic Gallager-B (PGaB) and Gallager-E are
detailed in [12] and [13], respectively. From a software
point of view, the PGaB decoding algorithm needs ran-
dom number generation and involves computation haz-
ards at runtime making it clearly incompatible with
processor features and thus inappropriate for Gbps per-
formance. On the opposite, the Gallager-E decoding al-
gorithm has a formulation close to the MS one used in
hardware and software-related works [1,4,5,14–24]. Its
computation parallelism is almost regular but its high
memory footprint and the logical bit-level computations
are not adapted to software processor targets. However,
we focused on it and propose efficient SIMD (Single In-
struction Multiple Data) and SPMD (Single Program
Multiple Data) implementations of the Gallager-E al-
gorithm. Indeed, as demonstrated in [17,19], multicore
devices are more efficient than GPU devices to execute
horizontal layered formulation of LDPC decoding algo-
rithms in terms of throughput and latency. Moreover,
a comparison with an optimized FPGA-based decoder
illustrates the weakness and strengths of each kind of
implementation.

The remainder of the paper is organized as follows.
Section 2 introduces LDPC codes and the horizontal-
layered Gallager-E decoding algorithm. Then, the par-
allelization strategy and algorithm optimizations are
provided in Section 3. Section 4 summarizes the exper-
imental results obtained for the proposed decoder im-
plementations. Finally, the conclusion and future works
are reported.

2 LDPC decoding algorithm

2.1 LDPC codes

An LDPC code is a linear block code defined by a bi-
nary sparse N × M parity-check matrix called H. A
H matrix, is composed of N columns representing the
received information from the system named variable
nodes (VN) whereas the M = N −K rows are associ-
ated to parity-check information also called check nodes
(CN) with K the number of information bits in the re-
ceived frame. An example of an H matrix is presented

V0 V1 V2 V3 V4 V5 V6 V7

C0 C1 C2 C3 C4

Fig. 1 Tanner graph representation of an LDPC code

in Equation 1. The code rate of an LDPC code is de-
fined by R = K

N .

H =

V0 V1 V2 V3 V4 V5 V6 V7

C0 1 1 1 1 0 0 0 0
C1 0 0 0 1 1 1 0 0
C2 0 1 0 0 1 0 1 1
C3 1 0 0 1 0 0 1 0
C4 1 0 1 1 0 0 1 0

 (1)

A Tanner graph is a bipartite graph useful to il-
lustrate an LDPC code. The Tanner graph of the H
matrix provided in Equation 1 is given in Figure 1. The
N columns and M rows of H represent VN and CN,
respectively. For each non-null element in H, an edge
exists between VN and CN elements. The number of
nodes in the jth row and the ith column of H are VN
and CN degrees and are denoted dc(j) and dv(i), re-
spectively.

In their general form, H matrices are unstructured
and irregular. It means that non-zero values are ran-
domly distributed and thus dc and dv are not constant.
Designing an efficient LDPC decoder for unstructured
LDPC codes is a challenging task [18, 25–27]. To facil-
itate hardware and software decoder implementations,
Quasi-Cyclic LDPC codes (QC-LDPC) were proposed
[28, 29]. Their regular structures ensure parallel calcu-
lations and avoid memory access conflicts. QC-LDPC
codes were adopted in spacial communication standards
such as CCSDS [30] and DVB-S2x [31].

QC-LDPC codes are composed of (N/Z) × (M/Z)

sub-matrices whose sizes are Z × Z with Z as the ex-
pansion factor as shown in Figure 2. These Z ×Z sub-
matrices are shifted identity matrices or null matrices.
This structure defines sets of independent data (CNs
and VNs) elements. So for QC-LDPC codes, the Z ex-
pansion factor represents the minimum achievable com-
putation parallelism level during the decoding process.
It ensures that at least Z CNs can be parallelly com-
puted data dependency [1] independently of the com-
putation scheduling [33].

High-Performance Hard-Input LDPC Decoding on Multi-core Devices for Optical Space Links 3

2.2 Gallager-E decoding algorithm

The LDPC decoding process is usually performed thanks
to a message passing (MP) approach where VNs and
CNs exchange m messages in an iterative way with m

the number of one values in the H matrix. When the
decoding process benefits from soft inputs, the sum-
product algorithm (SPA) [34–36] or its Min-Sum (MS)
based approximations [37–39] are applied to compute
the exchanged message values.

Currently, the optical technology used for proto-
typing digital communication systems is not capable
of supplying soft information (received bits and their
associated probabilities) [39] to the decoding process
under a 10 Gbps throughput constraint. Consequently,
the receiver frontend provides hard information (infor-
mation bits only). The hard input constraint due to
optical technology, greatly reducing the information di-
versity in the decoding process, involves another algo-
rithmic choice. Gallager-B algorithm was initially pro-
posed in [40] to process hard input values. However, its
decoding performance is relatively poor due to binary
values used to represent exchanged messages. This algo-
rithm was recently improved in terms of error correction
performance by inserting decoding noise (e.g. Proba-
bilistic Gallager-B [12]) or gradient descent-based algo-
rithms [41, 42]. These algorithms (PGaB, GDBF, and
PGDBF) were introduced for hardware decoders ma-
nipulating short frames. However, in the optical com-
munication context, they are useless due to spatial-
related constraints: (a) the codewords should be long (>
16k bits), and (b) to reach high-throughput performan-
ces randomness and computation irregularity should be
avoided. Consequently, they were discarded. The origi-
nal Gallager-B decoding algorithm can be extended by
considering erasures in message passing. This extended
algorithm, called Gallager-E algorithm in [43], manages

Fig. 2 Example of Quasi-Cyclic LDPC code from [32] stan-
dard with N = 1296, K = 648, and Z = 54 meaning that
N/K = 24 and M/K = 12.

Algorithm 1 Horizontal-layered Gallager-E
1: ▷ Input (received word) :
2: y = (y1, y1, ..., yN) ∈ {0, 1}N

3: init
4: t = 0,
5: Yi = 2yi − 1, ∀i ∈ [1, .., N]
6: Vi = 0, ∀i ∈ [1, .., N]
7: repeat
8: ▷ L1 - loop 1: Horizontal layered scheduling
9: for all j ∈ [1, ..,M] do
10: C

(t)
j = 1, Sum0 = 0

11: ▷ L2 - Loop 2
12: for all i ∈ N(j) do
13: ▷ L2S1 - VN→CN message

(
v2c

(t)
ij

)
processing

14: Mij =

{
Vi, t = 0

Vi − c2v
(t−1)
ji , otherwise

15: v2c
(t)
ij = sign(Mij + ω(t) ∗ Yi)

16: ▷ L2S2 - Check node C
(t)
j processing

17: C
(t)
j =

{
C

(t)
j , Mij ⩾ 0

−C
(t)
j , otherwise

18: ifMij = 0 then Sum0 = Sum0 + 1 end if
19: end for
20: ▷ L3 - Loop 3
21:
22: for all i ∈ N(j) do
23: ▷ L3S1 - CN→VN message c2v

(t+1)
ji processing

24: c2v
(t)
ji =

0, Sum0 ⩾ 2

0, Sum0 = 1 and M
(t)
ij ̸= 0

C
(t)
j , Sum0 = 1 and M

(t)
ij = 0

C
(t)
j × M

(t)
ij , otherwise

25: ▷ L3S2 - VN accumulator Vi updating
26: Vi = Mij + c2v

(t+1)
ji

27: end for
28: end for
29: t = t + 1
30: until t ≤ tmax

31: ∀i ∈ [1, .., N], xi =

yi, Yi + Vi = 0

0, Yi + Vi > 0

1, Yi + Vi < 0

32: ▷ Output (decoded word)
33: x = (x1, x1, ..., xN) ∈ {0, 1}N

ternary values {−1, 0,+1} for exchanged messages in-
stead of binary {−1,+1} ones in the Gallager-B algo-
rithm. This third value which represents doubt during
the decoding process drastically improves error correc-
tion performance as shown in Figure 3. The bit error
rate (BER) performances for the three LDPC codes
(C1, C2, and C3) detailed in the Experimental section
(Table 1) were obtained when a Monte-Carlo simulation
is applied on a BSC channel and with an OOK modula-
tion. As expected, the curves show that the Gallager-E
algorithm outperforms the Gallager-B one in the over-
all use cases when 10 decoding iterations are executed
such as in most related works on LDPC decoder imple-
mentation [6].

An evaluation of the impact of this low amount of
decoding iterations required to obtain high-throughput
implementation on error correction performance was
also done. Figure 3 also provides the performance level
reached by the Gallager-E decoding algorithm when 300

flooding-based decoding iterations are executed. It can

4 Bertrand LE GAL et al.

be pointed out that this variation in the number of iter-
ations has a slight impact on the decoding of the C1 and
C2 LDPC codes but has a higher impact on the code
C3 for which convergence is slowed down. These per-
formance losses are however essential to have a compu-
tation complexity reduction of 30× and without which
no implementation at several Gbps is possible as re-
ported for instance for Min-Sum decoder implementa-
tion [3, 6, 19,26,44–47].

Gallager-E algorithm is summarized in Algorithm
1. Contrary to its presentation in [43] which is for-
mulated using flooding scheduling [33], its recent hori-
zontal layered-based scheduling formulation [13] is pre-
ferred here. Indeed, this scheduling improves the error
correction performance of the Gallager-E decoding pro-
cess even if only half of the decoding iterations are exe-
cuted. Halving the number of decoding iterations heav-
ily reduces the global computation complexity of the
decoding process.

The algorithmic skeleton provided in Algorithm 1
is close to the ones used for Min-Sum decoding works
[1, 4, 39]. However, some differences exist in terms of
computational and memory complexities. For instance,
contrary to the Min-Sum algorithm that executes 8-
bit arithmetic operations (addition, subtraction, min-
imum, and comparison) commonly supported by pro-
grammable processor cores, the Gallager-E algorithm
mainly uses on its side 1-bit or 2-bit logic operations.
Moreover, in the Gallager-E algorithm, channel mem-
ory is expressed with only 1-bit that cannot be devoted
to this task. Consequently, a new memory of depth N

with log2(max(dc)) is added. These differences involve
dedicated optimizations to achieve high-efficiency im-
plementation on multicore devices as explained in the
following sections.

The decoding algorithm is divided into three main
stages:

1. The first stage (Lines 4 to 6) consists of the ini-
tialization of the internal values. Received Yi bit
values come from the channel. To ease algorithm
understanding the {0, 1} are projected on {−1,+1}
range whereas for implementation purposes they are
coded with {0, 1} values. Initial values in accumu-
lator nodes V should be null as explained in [21].
The variable named t represents the current decod-
ing iteration. tmax value is the maximum number of
decoding iterations specified for the decoding pro-
cess.

2. Then during the second step (Lines 7 to 30), the
decoding process executes tmax times the same lay-
ered decoding process (Line 7). Each CN of the H
matrix (loop L2) is then checked according to the
messages received from its VN neighbors. More pre-

cisely, the M (t)
ij values used to produce v2c messages

that come into the check node are evaluated on the
fly using channel values (Y), vote accumulators (V)
and previously generated messages (c2v). The v2c

message values are in the range {−1, 0,+1}. These
values are then reused (loop L2S1) to compute the
parity of the CN (Cj) and to count the number of in-
coming zero values (Sum0). These values are then
involved a second time (loop L3) to generate the
c2v

(t+1)
ji message. The message from CNj to VNi

is equal to the product of incoming messages ex-
cept for v2c

(t)
ij . If one or more c2v input messages

are equal to zero then the output message is equal
to the null value too. In this step, contrary to the
MS decoding algorithm, the c2v

(t+1)
ji value cannot

be deduced from v2c
(t)
ij . Indeed, the vote operation

cannot be inverted. For this reason, the Yi values
should be kept in memory during the overall CN
computations. Finally, the accumulators associated
with VN elements are directly updated (line 26).

3. The final step (Lines 31 to 33) decides the value of
the decoded bits according to the accumulator val-
ues and the Y input ones. If the decoding algorithm
has not reliably decided on a bit (Yi +Vi = 0), then
the received value from the channel (Yi) is selected.

This decoding algorithm suitable for hard inputs
gives an interesting correction power when the ω(t) penalty
factor, whose value depends on the decoding iteration,
is correctly set. Traditionally, ω value is fixed as follows:
ω = 2 when t ∈ [0, tmax/2[whereas to ω = 1 other-
wise [43]. The undeniable advantage of this algorithm
is its reduced computational and memory complexities.

3 Parallelization strategies

Over the last decade, with the advent of software-defined
radio and the growing computational capacity of multi-
core and manycore platforms, researchers and engineers
have been trying to implement the basic building blocks
of these communication systems on novel platforms to
provide flexibility and efficiency.

However, this is still challenging work because many
architectural constraints limit the efficient paralleliza-
tion of computations or memory accesses. These con-
straints are not in accordance with the application re-
quirements. In this section, we detail the parallelization
strategies and the optimizations performed to improve
data access efficiency. This section details multicore im-
plementations of the Gallager-E decoding algorithm be-
cause it seems to be the most relevant architecture to
execute (1) horizontal layered-based formulation of the
decoding algorithm [4] and (2) execute in parallel 8-bit

High-Performance Hard-Input LDPC Decoding on Multi-core Devices for Optical Space Links 5

0.006

0.008

0.01

0.02

0.03

0.04

0.06

0.08

0.1

0.2

0.3
100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

R
=

0
.8

R
=

0
.5

Channel Crossover Probability α

F
ra

m
e

E
rr

or
R

at
e

C1 - GalE - 300 its

C1 - GalE - 10 its

C1 - GalB - 10 its

C2 - GalE - 300 its

C2 - GalE - 10 its

C2 - GalB - 10 its

C3 - GalE - 300 its

C3 - GalE - 10 its

C3 - GalB - 10 its

Fig. 3 Comparison of error correction performance of Gallager-B and Gallager-E algorithms.

logical and arithmetic computations. Many works on
Min-Sum algorithms such as [6,23,24,44] show the via-
bility and the efficiency of GPU-based implementation.
Our previous experiences combined with the intrinsic
properties of the decoding algorithm and the need to
control the data processing latency discouraged us from
undertaking a GPU implementation.

3.1 Multicore systems

INTEL x86 and ARM processors currently provide three
distinct main parallelization features to speed up pro-
gram executions [48]:

1. At the higher level, multicore devices include many
physical processor cores that can process tasks in
parallel. Currently, the number of cores can reach
up to dozens for server-grade circuits. Programming
paradigms such as MIMD (multiple instructions, mul-
tiple data) or SPMD (single program, multiple data)
can be applied to benefit from this paradigm [49–
51].

2. At the same time, each physical processor core in-
cludes SIMD (Single Instruction Multiple Data) units
[52–54] that execute parallel computations. SIMD
units are 128b up to 512b wide, authorizing from
16×8b up to 64×8b computations per instruction.
Branch divergence between computation flows is also
possible thanks to bitwise masking operations mak-
ing single instruction, multiple threads (SIMT) pro-
gramming model achievable. However, branch diver-
gence is not a good practice to reach high-performance
levels.

3. Finally, at the lower level, x86 and ARM proces-
sor architectures are superscalar [55] and thus im-

plement Instruction-Level Parallelism (ILP). Super-
scalar instruction execution that is handled trans-
parently by the CPU itself authorizes multiple in-
structions to be executed within a single clock cy-
cle according to the pipelined resource availabilities
and the data dependencies (for instance, up to 6 ∼ 8

µops per clock cycle for INTEL processors).

To reach high implementation efficiency, all these
features should be addressed together. The different
parallelization strategies and the optimizations applied
at these three levels for Gallager-E LDPC decoding are
reported in the following subsections.

3.2 SIMD parallelization

Parallelization of the message-passing algorithm was
widely studied in the context of traditional Min-Sum
decoder implementations [6]. For multicore implemen-
tations, two efficient coarse-grain SIMD parallelization
strategies were proposed [4,5]. These generic approaches
proposed for Min-Sum decoding can also be applied to
the Gallager-E algorithm. They provide different ad-
vantages and drawbacks.

Inter-frame parallelization strategy [4] takes advan-
tage of SIMD units to decode multiple frames in paral-
lel. The decoding process executes the same computa-
tions on data from different frames as shown in Figure
4. Inter-frame strategy eases the software description
and provides regular computation parallelism at run-
time. Indeed, when the number of frames processed in
parallel (F × 8b) equals the SIMD width, the SIMD
efficiency is constant at 100%. Moreover, the frame val-
ues are interleaved before and after the decoding [20].

6 Bertrand LE GAL et al.

Fig. 4 Inter-frame parallelization behavior

The memory accesses become regular and straightfor-
ward making decoder implementation efficient. How-
ever, the inter-frame strategy drawback effect comes
from its memory footprint (∆inter in Equation 2). In-
deed, this footprint becomes quickly larger than L1, L2
and L3 memory caches as F is in {16, 32, 64} range. Its
high memory bandwidth requirement limits the perfor-
mances and the scalability of the decoder implementa-
tions when N ≥ 210. It also produces high processing
latency.

∆inter = F × (2×N +m) +m (2)

On the opposite, the intra-frame strategy proposed
in [5] takes advantage of SIMD units to parallelize in-
ternal computations from a single frame. It takes ad-
vantage of the QC-LDPC code structure to compute Z

independent CNs in parallel as illustrated in Figure 5.
The main advantage of this strategy is the limitation of
the memory footprint (∆intra in Equation 3) at runtime
as a single frame is handled. The drawback effect comes
from the sophistication of the software description of
the decoder and the memory access slow down. Indeed,
H structure management is done at runtime, generating
noncontiguous memory accesses to load and store SIMD
registers. Moreover, depending on the LDPC code, a
SIMD usage rate of 100% is rarely obtained. Indeed,
it depends on the Z expansion factor that should be a
multiple of the SIMD width. Nevertheless, from a sys-
tem point of view, the intra-frame implementation de-
livers low-latency feature and scale quite linearly in an
SPMD context.

∆intra = 2×N +m+
m

Z
(3)

Both SIMD parallelization strategies were used suc-
cessfully for Min-Sum decoder implementations [4–6]
and can be adapted and applied to speed up the ex-
ecution of loop L1 defined in Algorithm 1. Both ap-
proaches are evaluated because they provide different
features, different optimization opportunities and thus
different trade-off solutions as highlighted in section 4.

3.3 ILP improvement

An efficient implementation of loops L2 and L3 in Algo-
rithm 1 is crucial. Indeed, they are executed M times
per decoding iteration. Consequently, a specific map-
ping of the algorithmic operations on available SIMD
instructions is required. Gallager-E decoding algorithm
mainly manipulates bit or ternary values and has many
conditional statements. So Gallager-E decoding is more
challenging to be efficiently implemented on processor
cores by comparison to the Min-Sum algorithm [4]. At
the same time, the algorithmic description should pro-
vide higher instruction level parallelism (ILP) while re-
ducing as possible the length of the instruction criti-
cal path. To achieve these objectives many algorithmic
transformations were applied to the original formula-
tion. They are successively described below.

First, to reduce the complexity of the Mij computa-
tion (loop L2S1, line 14) that depends on the iteration
counter, initialization of the c2v messages to zero was
done. It discards the t = 0 comparison and thus the
conditional moves or jumps at runtime. Consequently,
Algorithm 1, line 14 becomes:

Mij = Vi − c2v
(t−1)
ji (4)

A second optimization was done for the v2c message
computation (Line 15) whereas ω is in the set {1, 2}.
Indeed, it is necessary because no 8-bit multiplication
instruction nor 8-bit shifting instruction is available in
INTEL AVX/SSE SIMD ISA. A solution is to perform
conversions to/from 16-bit data format to execute a 16-
bit multiplication operation. But, it produces impacting
time penalties. Consequently, the behavioral multipli-
cation operation was implemented thanks to an 8-bit
addition of the Yi value with the result of a logical and
instruction between the Yi value and a binary mask
value {0x00, 0xFF}. The binary mask value depends
on the current decoding iteration. The transformation
results for line 15 from Algorithm 1 are provided in
Equation 5. It is the currently most efficient way to im-

Fig. 5 Intra-frame parallelization behavior

High-Performance Hard-Input LDPC Decoding on Multi-core Devices for Optical Space Links 7

plement ω ∈ {1, 2} multiplication on INTEL or ARM
cores.

v2c = sign(M + Y + (Y& bitmaskω)) (5)

Finally, the zero counting operation was modified
such as the conditional part using this value (Lines 18
and 24). A normal way to manage this behavior is to
compare values with zero and then increment by one
the counter value. However, SIMD comparison instruc-
tion produces mask values {0x00, 0xFF} with a 0x01
masking instruction before the addition one. Conse-
quently, instead of adding one values, -1 (0xFF) values
are added. The counter values become 0xFF, 0xFE, etc.
depending on the number of zero elements. This trans-
formation is possible because in the L3S1 loop, the
first part of the conditional structure can be reformu-
lated as (Sum0 − (Mij = 0)) ̸= 0. This tricky opti-
mization removes logical instructions and comparisons
from the execution critical path. Moreover, it facilitates
the implementation of the c2v conditional computation
making it possible to describe it as a value selection in
the range {0, 1}, and then a conditional sign inversion
to regenerate the outgoing message in the range { -1,
0, 1 }.

After these transformations, the number of instruc-
tions in the processing kernels (loops L2 and L3) is
quite small whereas the number of L2/L3 loop iter-
ations is limited to range [7, 20] (due to benchmarked
LDPC codes). Specialized kernel codes are generated at
compile time to remove useless control instructions and
improve ILP at runtime. To this end, the features of
the C++11 language (i.e., template specialization) are
applied as in [56]. For each CN degree value, a dedi-
cated and optimized kernel is generated. Consequently,
the number of instructions is then minimized for each
L2 loop execution. At runtime, an array of function
pointers is preferred to select the right binary code to
execute without miss prediction penalties.

3.4 Memory compression on the fly

The memory bandwidth can become the performance
bottleneck of inter-frame decoder implementations [4,5]
on multicore and many-core devices when LDPC codes
longer than N ≥ 210 are processed [4, 5]. Indeed, the
decoder memory footprint becomes quickly higher than
L1/L2 memory cache capacities. In the inter-frame con-
figuration, the number of processed frames depends on
the SIMD width. To benefit optimally from SIMD unit
capabilities, F should be fixed to {16, 32, 64} for {128

256 512} bit-wide SIMD units, respectively. These num-
bers of frames processed in parallel involve high mem-
ory footprints (Equation 2).

However, contrary to Min-Sum-based decoder im-
plementations [4–6] that need 8-bit values internally for
all datasets (Yi, Vi and c2v), the Gallager-E decoding al-
gorithm manipulates low word-length information. In-
deed, the Gallager-E decoding algorithm consumes and
produces a large set of binary or ternary values. Typi-
cally, all these values are stored on bytes because they
are involved later in 8-bit arithmetic operations. How-
ever, as the memory bandwidth is a bottleneck for real
use cases, a memory compression technique can be rel-
evant.

Compression divides the memory footprint by 4 for
exchanged messages (c2v) that contain ternary values
(i.e. ternary values are stored on 2 bits). It also enables
dividing by 8 the footprint for channel values (Yi) that
are binary ones. Thus, the memory footprint of inter-
frame decoders becomes:

Ψinter-compressed = F ×
(
9N

8
+

m

4

)
+m (6)

whereas for intra-frame decoders the memory footprint
can be formulated as follows:

Ψintra-compressed =
9N

8
+

Z ×m+ 4×m

4× Z
(7)

Memory footprint reduction involves the execution
of additional SIMD instructions at runtime to compress
and decompress data during load and store operations.
Note that data compression is lossless and thus does
not impact error correction performance.

AVX-512 instruction set1 with masked operation
makes easy function implementations as demonstrated
in Listing 1. The Yi compression function extracts sign
bits of the 64×8-bit values and stores them on 64 bits
in memory (8 bytes). The Yi decompress function per-
forms the opposite operation to recreate the 64× 8 bit
content. It loads the 64 bits from memory, which masks
and selects −1 or +1 values contained in neg_one or
pos_one registers. The message compression function
is a bit more tricky. The 64×8 bit values are compared
with +1 and −1. Both comparison results are stored
on 64 bits in memory. The opposite function selects +1

or −1 value according to the comparison results stored
in memory. If both results are false then the 0 value is
selected.

1 Note that SSE4 and AVX2 function descriptions have ap-
proximately the same computational complexity even if they
use other SIMD instructions.

8 Bertrand LE GAL et al.

1 const __m512i zero = _mm512_setzero_si512 ();
2 const __m512i pos_one = _mm512_set1_epi8 (0x01);
3 const __m512i neg_one = _mm512_set1_epi8 (0xFF);
4

5 void compress_and_store_yi(__mmask64* ptr , const __m512i x) {
6 ptr [0] = _mm512_movepi8_mask(x);
7 }
8

9 __m512i load_and_uncompress_yi(const __mmask64 x) {
10 return _mm512_mask_blend_epi8(x, pos_one , neg_one);
11 }
12

13 void compress_and_store_msg(__mmask64* ptr , const __m512i x) {
14 ptr [0] = _mm512_cmpeq_epi8_mask(x, pos_one);
15 ptr [1] = _mm512_cmpeq_epi8_mask(x, neg_one);
16 }
17

18 __m512i load_and_uncompress_msg(const __mmask64* ptr) {
19 __m512i w1 = _mm512_mask_blend_epi8(ptr[0], zero , pos_one);
20 __m512i w2 = _mm512_mask_blend_epi8(ptr[1], zero , neg_one);
21 return _mm512_or_si512(w1, w2);
22 }

Listing 1 SIMD functions for (de)compression of binary and ternary values

As shown in Listing 1, compression and decompres-
sion functions could be executed on x86 architecture
with a low latency penalty whereas a single memory
cache miss produces a latency penalty of at least hun-
dreds of clock cycles. Benefits achieved using lossless
memory compression at runtime are estimated in terms
of memory footprint and decoding throughputs on real
LDPC codes in the Experimental section.

3.5 SPMD parallelization

Different parallelization techniques could be applied to
take advantage of the P cores for message-passing al-
gorithm implementation. It is possible to use them to
speed up the executions of loop 1 (L1) defined in Algo-
rithm 1. However, this approach is currently inefficient
as demonstrated in [4] because:

– Loop elements are not independent when a horizon-
tal layered-based decoding algorithm is applied. It
can involve memory access conflicts at runtime, re-
quiring precise synchronization barriers between the
different threads.

– The time spends on forking and joining tasks is not
negligible compared to L1 kernel execution time.

The best way to increase the performance level is
to allocate P independent LDPC decoders to execute
P distinct frames. It avoids L1/L2 memory sharing at
runtime between the cores. Moreover, it increases L3
cache usage linearly with the P factor. It also increases

the pressure on the memory bandwidth when the over-
all dataset does not fill in the L3 cache. This acknowl-
edgment mainly concerns the inter-frame-based imple-
mentations where P×F frames are processed in paral-
lel with F ∈ {16, 32, 64} involving large memory foot-
prints.

To enable an asynchronous behavior of the decoders,
the LDPC decoders are encapsulated in C++11 threads.
Threads are executed asynchronously according to in-
put data availability.

4 Experimentation results

4.1 Experimentation setup

The software-based LDPC decoder implementations were
described in C++ 11 language. The targeted device
was an INTEL Xeon Gold processor. Consequently, the
AVX512 instruction subset was selected. INTEL intrin-
sics which are C-style functions were applied to ben-
efit from INTEL SIMD features. To optimize the in-
struction scheduling and generate the executable file,
the software decoder descriptions were compiled with
the CLANG++/LLVM 10.0 toolchain. The compila-
tion flags provided to the toolchain are: -march=native
-mtune=native -Ofast -funroll-loops.

The host platform was a multicore system composed
of a dual-socket INTEL Xeon Gold 6148 CPU. Each
Xeon processor contains 20 physical processor cores.
The overall processor cores share a 28160K L3 mem-
ory cache and 256 GB of RAM. A working frequency

High-Performance Hard-Input LDPC Decoding on Multi-core Devices for Optical Space Links 9

Table 1 Properties of the selected QC-LDPC codes

Code C1 C2 C3

Source [32] custom custom
(N , K) (1296, 648) (32768, 16384) (20480, 16384)

Rate 1/2 1/2 4/5
Z 54 256 256
dc {8} {7, 8, 9} {19, 20}
m 5184 131072 81664

up of to 3, 70 GHz is achievable on this platform thanks
to the turboboost feature when a single processor core
is activated. The average working frequency is 2,40 GHz
and 2,20 GHz when 50% and 100% of the cores are acti-
vated, respectively. This frequency reduction is due to
power dissipation constraints. Note that these values
were confirmed using the i7z tool during experiments.

The behavior and the decoding performance of the
proposed optimized implementation were evaluated us-
ing three different QC-LDPC codes. The main char-
acteristics of the selected codes (N , K, m) are sum-
marized in Table 1. The first code comes from related
works on hard input LDPC decoding [32]. The two
others are custom LDPC codes described specifically
for spatial optical communications [13] with our Airbus
S&D partner. The BER performance of these codes is
provided in Figure 3 (section 2.A). These results are
consistent with the published literature and the simula-
tions performed with the AFF3CT toolbox [57]. More-
over, the achieved BER performance levels are compli-
ant with the optical space links.

4.2 Absolute performances

For benchmarking purposes, a complete digital commu-
nication system simulation is executed during a period
of at least 120 seconds per experiment to avoid for in-
stance working frequency scaling impact on averaged
throughput or latency values. The throughput (Γ) and
the latency (∆) measures are reported in Table 2. Per-
formances are provided for the following decoder imple-
mentations:

– Inter-frame setup (d1) - Each physical processor
core decodes F = 64 frames in parallel to fully uti-
lize the 512b SIMD units. All the values (channel,
accumulators and messages) are stored on 8-bits.

– Inter-frame with memory compression setup
- (d2). Each physical processor core processes F =

64 frames in parallel. The channel values are com-
pressed and stored using 1 bit whereas exchanged
message values are compressed on 2 bits. The accu-
mulator values are stored using 8-bits.

– Intra-frame setup (d3) - A single LDPC frame is
processed (F = 1). All the values (channel, accumu-
lators and messages) are stored on 8-bits.

Experimental results provided in Table 2 show that
for a single-core configuration, throughputs from 77 Mbps
up to 294 Mbps were achieved for the d1 implementa-
tion. The highest throughput was obtained when the C1

code is decoded. Indeed, in this case, the inter-frame de-
coder has a small memory footprint (491 KB) that fills
in L2/L3 caches. However, for long codes (C2 and C3),
the throughputs are reduced up to 4× due to the mem-
ory footprint that grows up to 12416 KB as reported in
Table 3. The acknowledgment concerning the memory
bandwidth limitation even in single-core configuration
is confirmed by d2 implementation results. Indeed, the
d2 implementation gives higher throughputs for C2 and
C3 LDPC codes due to memory compression that re-
duces memory bandwidth requirement and thus cache
misses. In these cases, the memory footprint of the de-
coder decreases to 6272 KB. However, the additional
arithmetic and logical computations used to compress
the information at runtime in d2 make it less efficient for
C1 code where cache miss penalty reduction does not
compensate for the compression penalty. Finally, the d3
decoder implementation provides the highest decoding
throughputs for C2 and C3 LDPC codes (from ≈ 1.2×
up to ≈ 2.4× higher than d2). This high-performance
level is due to its reduced memory footprint whose max-
imum value is 194 KB (Table 3). In parallel, the pro-
cessing latencies of the d3 implementation are about
99% shorter than the d1 and d2 ones. However, d3 im-
plementation is not the best solution for the C1 LDPC
code in terms of throughput. It comes from two points:
first, the usage rate of the SIMD units for d3 imple-
mentation is lower than 100% at runtime for the C1

LDPC code. Indeed, the Z factor coming from the QC-
LDPC H matrix equals 54 whereas Q = 64 (SIMD ef-
ficiency ≈ 84%). Secondly, d3 implementation involves
more complex memory accesses whose cost is not com-
pensated by a better L1/L2 cache efficiency. However,
from a latency point of view, it remains the best solu-
tion.

Experiments were also conducted with multiple pro-
cessor cores activated to check the scalability of the
decoder implementations. Numerical values when 20

and 40 cores are activated are provided in Table 2.
Figure 6 provides the complete benchmarking results
(1 ≤ P ≤ 40). One can note that the d1 implemen-
tation is better in terms of throughput for C1 LDPC
code in all P setups with speedup factors of 15× and
25× for 20 and 40 cores, respectively. However, d1 de-
coder performances fall for C2 and C3 LDPC codes
where the speedup factors are limited to 7× to 10×.

10 Bertrand LE GAL et al.

Table 2 Performances of Gallager-E LDPC decoders on INTEL Xeon Gold 6148 CPU

Γ in Mbps ∆ in µs P in Watts e in nJ/bit

Code #cores Γd1
Γd2

Γd3
∆d1

∆d2
∆d3

Pd1
Pd2

Pd3
ed1

ed2
ed3

C1 1 294 272 220 281 304 6 180 180 180 613 662 819
C2 1 108 136 180 12034 9523 113 167 167 172 1547 1228 956
C3 1 77 106 247 27010 19671 132 171 170 169 2221 1228 685

C1 20 4487 4041 3207 369 410 8 300 299 290 67 74 91
C2 20 813 2412 2546 53106 10865 162 419 411 297 516 171 117
C3 20 876 2030 3177 48785 21192 218 412 416 298 471 205 94

C1 40 7532 6833 5460 440 485 10 351 342 331 47 51 61
C2 40 784 3447 4298 66739 15213 191 437 472 340 558 137 80
C3 40 712 2286 5446 118795 37893 248 434 473 341 610 207 63

10 20 30 40
0

2,000

4,000

6,000

8,000

processor cores (C1 code)

D
ec

od
er

th
ro

ug
hp

ut
(M

bp
s)

d1

d2

d3

10 20 30 40
0

2,000

4,000

6,000

processor cores (C2 code)

d1

d2

d3

10 20 30 40
0

2,000

4,000

6,000

processor cores (C3 code)

d1

d2

d3

Fig. 6 Throughput performances of AVX512 decoder implementations depending on the number of activated processor cores
and the processed LDPC codes. Colored lines with crosses represent values obtained when the turboboost feature is activated.

Indeed, even if the number of cores is increased from
20 to 40, a performance floor due to the memory band-
width appears. This performance floor is visible in Fig-
ure 6. Memory bottleneck assertion is validated by the
results obtained for the d2 decoder implementation. In-
deed, the d2 decoder implementation executes memory
compression over-classed d1 solution for the long codes
(C2 and C3) codes. For d2 decoder implementation, the
measured speedups are 17× and 24× when 20 cores
and 40 cores are activated, respectively. The through-
put grows with the number of activated cores. However,
the performance improvement is not linear due to work-
ing frequency scaling. In 20 and 40 core setups, the d3
decoder implementation offers the best performances
and achieved up to 5446 Mbps for C3 LDPC code. The

Table 3 Memory footprint of the decoding process depend-
ing on the implementation type

AVX-512 (1 core) AVX-512 (40 cores)

Ψd1
Ψd2

Ψd3
Ψd1

Ψd2
Ψd3

C1 491 kB 248 kB 8 kB 19 MB 10 MB 320 kB
C2 12416 kB 6272 kB 192 kB 485 MB 245 MB 8 MB
C3 7744 kB 3916 kB 120 kB 302 MB 153 MB 5 MB

speedup factors obtained in comparison with single-core
experiments are 22 ≈ 24×. At the same time, the work-
ing frequency reduction from 3.7 GHz down to 2.4 GHz
increases the processing latency by [1.5× ≈ 2×].

In parallel to the throughput and latency evalua-
tions, power and energy per bit comparisons were also
done. Measurements are provided in Table 2. The re-
ported power consumption values include the consump-
tion of the CPU and RAM packages. These values were
obtained at runtime with the turbostat tool. This tool
captures the power consumption from sensors. The mea-
sured power consumption depends on the number of ac-
tivated cores and the memory bandwidth. The power
consumption results are equivalent in the single-core
configuration because the RAM bandwidths are equiv-
alent. The most efficient energy-efficient solution for C2

and C3 codes is the d3 implementation due to its higher
throughput performance. Multiple cores activation in-
creases the energy efficiency gap. Indeed, for C2 and
C3 codes, the d1 and d2 implementations have a higher
power consumption (≈ 40%) than the d3 implementa-
tion due to their high usage rates of the RAM. The
RAM consumes up to 180 W. The energy per decoded

High-Performance Hard-Input LDPC Decoding on Multi-core Devices for Optical Space Links 11

bit metric reinforces this performance gap about the
inefficiency of the inter-frame parallelization scheme.

4.3 Performance evaluation on other devices

In the previous section, we mainly focused on perfor-
mance in terms of throughput in accordance with our
application context i.e. optical space links. This is the
reason why we selected an INTEL Xeon Gold multicore
device. In this section we discuss in detail the investiga-
tion carried out on the energy performance of multicore
based implementations.

Several heterogeneous multicore architectures were
evaluated: two ARM targets and another INTEL mul-
ticore target. The ARM cores evaluated came from an
Apple computer (MacBook Pro 2021) and an NVIDIA
Orin platform (2022). A MacBook Pro (2019) com-
puter with an INTEL Core-i9 processor was also bench-
marked. The software descriptions of the Gallager-E
decoders were optimized for these different architec-
tures. Software layers were updated to efficiently sup-
port NEON SIMD ISA for ARM processors. The same
efforts were performed to dedicate the AVX512 codes to
the AVX2 and SSE4 processors for INTEL processors.

The experimental results as well as the specifica-
tions of the different platforms are summarized in Ta-
ble 4. Similar experimental settings and measurement
methods were employed for all platforms. To facilitate
analysis of the results for all architectures, the mea-
sured throughputs have been normalized to the INTEL
Core-9 architecture running the SIMD unit in 128-bit
mode.

Throughput evolution in single-core configuration
shows that switching from 128-bit to 256-bit mode on
the INTEL Core-i9 architecture provides an average
speedup of 1.55× while 2× the amount of data is pro-
cessed in parallel. Comparing this performance in terms
of throughput with the INTEL Xeon values show that
the INTEL Core-i9 processor provides better results in
SSE4 and AVX2 mode due to its higher working fre-
quency. However, the INTEL Xeon processor recovers
the advantage in AVX512 mode even if the theoretical
gains between the parallelization modes are not rea-
ched. The NVIDIA Orin platform composed of ARM
A78 processor cores enables it to achieve lower perfor-
mance (approximately 2 times less) than INTEL Core-
i9. It is mainly due to the difference in working fre-
quency. The ARM M1 architecture achieves high-performance
levels despite its SIMD 128-bit units. Indeed, the per-
formance in terms of throughput reaches those of IN-
TEL Core-i9 or INTEL Xeon processors in AVX2 mode
(256 bits) thanks to an equivalent operating frequency
and 2× larger L1 cache size. From an energy point of

view, the ARM M1 core delivers gains of 2× up to 32×
compared to other INTEL devices and a 2× saving com-
pared to the NVIDIA Orin platform.

When the platforms are in multicore mode, the per-
formance in terms of throughput is clearly in favor of
the INTEL Xeon architecture (AVX512) which has 40
physical cores. The latter has a level of performance
about 8 times higher than the Core-i9 architecture with
its 6 cores. These two platforms have an equivalent en-
ergy consumption per decoded bit. The platform com-
posed of ARM A78 is less efficient in terms of through-
put despite its 12 physical cores. However, from an en-
ergy point of view, it outperforms the INTEL multi-
cores by a factor of 2. This observation is consistent
because it has 10 times fewer physical cores than the IN-
TEL Xeon, but the size of the SIMD is 4 times smaller.
From an energy-per-decoded-bit perspective, the ARM
M1 core is also at least 2 times more efficient than IN-
TEL solutions.

For our research, the main constraints were through-
put and latency performances. Under these conditions,
INTEL multicore systems currently offer the best per-
formance levels. However, for the design of energy-constrained
digital communication systems with lower throughput
requirements, the current generations of ARM proces-
sors may be a relevant solution.

4.4 Comparison with FPGA implementations

Finally, the proposed Gallager-E LDPC decoder imple-
mentations on multicore devices were compared with
FPGA-based ones [13] to estimate the feature differ-
ences. Indeed, works presented in [13] details hardware-
optimized Gallager-E architectures for a Zynq Ultra-
scale+ FPGA (xczu9eg-3ffvb1156e). This semi-parallel
architecture is based on the work described in [18]. An
overview of the hardware Gallager-E decoder architec-
ture is given in Figure 7.

Multi-core execution modifies the previous acknowl-
edgment. The throughput difference is in this setup in
the range of 5× to 11×. Indeed, the number of decod-
ing cores that can be instantiated in the FPGA device
is lower than the number of cores in the Xeon proces-
sor. But at the same time, the Xeon working frequency
is approximately halved. Consequently, the power con-
sumption per decoded bit drops sharply for the Xeon
solution. Indeed, the power consumption is only double
when 40 cores are activated compared to 1 core config-
uration and the throughput gain is thus over 20×. As
a consequence, the differences in terms of power con-
sumption between the FPGA implementation and the
multicore implementation vary finally from 52× to 82×.

12 Bertrand LE GAL et al.

Table 4 Throughput and energy comparisons for various INTEL and ARM platforms

ARM M1 ARM-A78 INTEL Core-i9 INTEL Xeon Gold

SIMD 128b 128b 128b 256b 128b 256b 512b

Frequency (GHz) 3,20 2,20 4,60 4,60 3,50 3,50 3,50
Power (W) 5,5 4 27 30 180 180 180
L1 cache 128 KB 64 KB 32 KB 32 KB 32 KB 32 KB 32 KB
L2 cache 128 KB 3 MB 256 KB 256 KB 1 MB 1 MB 1 MB
L3 cache 12 MB 6 MB 12 MB 12 MB 55 MB 55 MB 55 MB

cores 1 1 1 1 1 1 1
Power (W) 5,5 4 27 30 180 180 180
Γd3

/core (C1) 1, 28× 0, 47× 110 Mbps 1, 62× 0, 88× 1, 47× 1, 90×
Γd3

/core (C2) 1, 49× 0, 54× 100 Mbps 1, 40× 0, 86× 1, 20× 1, 80×
Γd3

/core (C3) 1, 31× 0, 43× 127 Mbps 1, 57× 0, 84× 1, 47× 1, 94×

ed3
in nJ/bit (C1) 39 77 245 169 1856 1111 861

ed3
in nJ/bit (C2) 37 74 270 214 2093 1500 1000

ed3
in nJ/bit (C3) 33 73 213 150 1682 963 729

cores 4 12 6 6 40 40 40
Power (W) 18 20 50 50 340 340 340
Γd3

/platform (C1) 1, 67× 2, 13× 293 Mbps 2, 56× 7, 49× 13, 47× 18, 63×
Γd3

/platform (C2) 1, 20× 1, 40× 460 Mbps 1, 30× 4, 37× 6, 24× 9, 34×
Γd3

/platform (C3) 1, 26× 1, 42× 462 Mbps 1, 60× 4, 93× 8, 67× 11, 79×

ed3
in nJ/bit (C1) 37 32 171 67 155 86 62

ed3
in nJ/bit (C2) 32 31 109 83 169 118 79

ed3
in nJ/bit (C3) 31 30 108 68 149 85 62

Table 5 Comparisons of software Gallager-E decoders with FPGA hardware implementations [13].

LDPC Xeon implementation (d3 with AVX512 ISA) FPGA implementation [13]

code # cores Γ (Mbps) ∆ (µs) E (nJ/bit) #cores Γ (Mbps) ∆ (µs) E (nJ/bit)

C1 1 220 6 819 1 620 2.1 1.94
C2 1 180 113 956 1 3060 10.7 1.15
C3 1 247 132 685 1 3020 6.8 1.13

C1 40 5460 10 61 65 40300 2.1 0.9
C2 40 4298 191 80 15 45900 10.7 0.97
C3 40 5446 248 63 15 45300 6.8 0.89

The architecture based on the Application-Specific
Instruction set Processor (ASIP) paradigm is built around
a microprogrammable controller for flexibility reasons.
The architecture structure is optimized for the imple-
mentation of QC-LDPC matrices. The number of pro-
cessing units (Figure 7) scales adequately with the Z

expansion factor of the parity check matrices to opti-
mize the hardware resource usage and maximize the
throughput. In the same way, the memories are split
into Z memory banks to provide the required band-
width. Each processing unit can process L2 and L3
loops in parallel on an independent dataset contrary
to multicore architecture that processes L2 and L3 se-
quentially. More information concerning the LDPC de-
coder implementation could be found in [13].

From a hardware point of view, the number of hard-
ware decoders allocated in the FPGA device varies ac-
cording to the LDPC code as reported in Table 5. This

value was fixed to occupy the FPGA at 75% of its ca-
pacity to avoid place & route issues. The working fre-
quencies post-PaR of the overall hardware experiments
reach 500 MHz. Results in terms of throughput, latency
and energy are given in Table 5.

First, the throughput and latency measurements demon-
strate that the FPGA solutions provide 2× to 16×
higher decoding throughputs when a single processing
core is considered on both platforms. This performance
gap despite the favorable working frequency of the Xeon
processor is due to the inefficiency of the x86 ISA. In-
deed, a large set of basic computations requires several
clock cycles on the Xeon processor whereas in a hard-
ware implementation they can be trivially executed in
one clock cycle. The observations related to the decod-
ing latencies between the two approaches are similar
to the observations made for the throughput. The dif-
ference in terms of energy consumption per bit is more

High-Performance Hard-Input LDPC Decoding on Multi-core Devices for Optical Space Links 13

important. Factors are in the range of 315× up to 830×.
This is due to the high-power consumption of the Xeon
processor when one core is active.

This work highlights the differences in terms of per-
formance between dedicated architectures on FPGA de-
vices and more flexible software solutions. As expected,
dedicated hardware solutions are more energy-efficient.
However, the gap with optimized software-based im-
plementations that are faster to develop constantly de-
creases.

5 Conclusion

In this paper, three different parallelized software LDPC
decoder implementations are first detailed. These soft-
ware implementations process the Gallager-E decoding
algorithm which is efficient for hard input decoding of
LDPC codes contrary to related works that manage soft
input values. The parallelization scheme applied, and
arithmetic optimizations studied to implement this al-
gorithm on an INTEL Xeon multicore target are de-
tailed. Throughput up to 7,5 Gbps is reported when 10
decoding iterations are executed. Moreover, a compari-
son in terms of throughput, latency and power measure-
ment is done with other multicore devices and also with
FPGA-based implementations. Software versus hard-
ware implementation highlights the efficiency of the
proposed software decoder implementations that offer
high flexibility and runtime adaptability features. The
results obtained show that it is possible to build a real-
time prototype based on multi-cores for the develop-
ment of these future optical communication systems. In
addition, the performance levels achieved demonstrate
the feasibility of a 10 Gbps software-only receiver for
base stations by using multiple Xeon cores and/or re-
ducing the number of decoding iterations. However, the

Global
memory

banks

Processing
unit with
their own

 memories

RAM
(LLR)

RAM
(LLR)

RAM
(LLR)

RAM
(LLR)

PU
(logic)

RAM
(msg)

PU
(logic)

RAM
(msg)

PU
(logic)

RAM
(msg)

PU
(logic)

RAM
(msg)

P.U.
instr.

memory

virtual.
layer

Sequencer System interface

∏ / ∏

Z Processing units (SIMD-like parallelism)

-1

Fig. 7 The Gallager-E hardware decoder architecture de-
tailed in [13]

measured power consumption shows that this software-
based approach is not viable for satellite use where en-
ergy and thermal constraints are high.

References

1. C. Marchand and E. Boutillon, “Ldpc decoder architec-
ture for dvb-s2 and dvb-s2x standards,” in Proceedings
of the IEEE Workshop on Signal Processing Systems
(SiPS), Hangzhou, China, October 2015.

2. V. Pignoly and al., “High data rate and flexible hardware
QC-LDPC decoder for satellite optical communications,”
in Proceedings of ISTC, Dec 2018, pp. 1–5.

3. G. Falcao, J. Andrade, V. Silva, and L. Sousa, “GPU-
based DVB-S2 LDPC decoder with high throughput and
fast error floor detection,” Electronics Letters, vol. 47,
no. 9, pp. 542–543, 2011.

4. B. Le Gal and C. Jego, “High-throughput multi-core
LDPC decoders based on x86 processor,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 27, no. 5,
pp. 1373–1386, May 2016.

5. B. Le Gal and C. Jego, “Low-latency software LDPC de-
coders for x86 multi-core devices,” in Proceedings of SiPS,
2017.

6. J. Andrade, G. Falcao, V. Silva, and L. Sousa, “A survey
on programmable LDPC decoders,” IEEE Access, vol. 4,
pp. 6704–6718, 2016.

7. M. K. Roberts and P. Anguraj, “A comparative re-
view of recent advances in decoding algorithms for low-
density parity-check (LDPC) codes and their applica-
tions,” Archives of Comput. Methods in Engineering,
2020.

8. E. Grayver, Implementing Software Defined Radio.
Springer, 2013.

9. D. Wubben and al., “Benefits and impact of cloud com-
puting on 5G signal processing: Flexible centralization
through cloud-RAN,” IEEE Signal Processing Magazine,
vol. 31, no. 6, pp. 35–44, Nov 2014.

10. A. Checko and al., “Cloud RAN for mobile networks -
a technology overview,” IEEE Communications Surveys
Tutorials, vol. 17, no. 1, pp. 405–426, Firstquarter 2015.

11. K. Le, F. Ghaffari, L. Kessal, D. Declercq, E. Boutillon,
and C. Winstead, “A probabilistic parallel bit-flipping de-
coder for low-density parity-check codes,” IEEE Trans.
on Circuits and Systems I: Regular Papers, vol. 66, no. 1,
pp. 403–416, July 2018.

12. B. Unal, F. Ghaffari, A. Akoglu, D. Declercq, and
B. Vasić, “Analysis and implementation of resource ef-
ficient probabilistic gallager B LDPC decoder,” in Pro-
ceedings of NEWCAS, June 2017, pp. 333–336.

13. V. Pignoly, B. Le Gal, C. Jégo, and B. Gadat, “Horizon-
tal layered gallager decoding of low-density parity-check
codes for wireless up-link optical space communication,”
in Proceedings of the ICECS, Glasgow, Scotland, Novem-
ber 23-25 2020.

14. G. Falcao et al., “Massively LDPC decoding on multicore
architectures,” IEEE Trans. on Parallel and Distributed
Systems, vol. 22(2), 2011.

15. P. Murugappa, R. Al-Khayat, A. Baghdadi, and M. Jeze-
quel, “A flexible high throughput multi-ASIP architecture
for LDPC and turbo decoding,” in Proceedings of the De-
sign, Automation Test in Europe Conference Exhibition,
ser. (DATE), march 2011, pp. 1 –6.

14 Bertrand LE GAL et al.

16. G. Falcao, V. Silva, J. Marinho, and L. Sousa, “LDPC
decoders for the wimax (ieee 802.16e) based on multicore
architectures,” in WIMAX New Developments. Upena D
Dalal and Y P Kosta (Ed.), 2009.

17. B. Le Gal, C. Jego, and J. Crenne, “A high throughput
efficient approach for decoding LDPC codes onto GPU
devices,” IEEE Embedded Systems Letters, vol. 6, no. 2,
pp. 29–32, 2014.

18. B. Le Gal, C. Jego, and C. Leroux, “A flexible NISC-based
LDPC decoder,” IEEE Transactions on Signal Process-
ing, vol. 62, no. 10, pp. 2469–2479, May 2014.

19. B. Le Gal and C. Jego, “GPU-like on-chip system for
decoding LDPC codes,” ACM Transactions on Embedded
Computing Systems, vol. 13, no. 4, pp. 1–19, 2014.

20. B. Le Gal and C. Jego, “High-throughput LDPC decoder
on low-power embedded processors,” IEEE Communica-
tions Letters, vol. 19, no. 11, pp. 1861–1864, November
2015.

21. V. Pignoly, B. Le Gal, C. Jégo, and B. Gadat, “Horizon-
tal layered gallager decoding of low-density parity-check
codes for wireless up-link optical space communication,”
in Proceedings of the IEEE International Conference on
Electronics, Circuits, and Systems (ICECS), 2020.

22. B. Gokalgandhi and I. Seskar, “Distributed processing
for encoding and decoding of binary LDPC codes using
MPI,” in Proceedings of the IEEE Conference on Com-
puter Communications Workshops (INFOCOM), Paris,
France, May 2019, pp. 596–601.

23. J. Ling and P. Cautereels, “Fast LDPC GPU decoder for
Cloud RAN,” IEEE Embedded Systems Letters, vol. 13,
no. 4, pp. 170–173, January 2021.

24. C. Tarver, M. Tonnemacher, H. Chen, J. Zhang, and
J. R. Cavallaro, “GPU-based, LDPC decoding for 5G and
beyond,” IEEE Open Journal of Circuits and Systems,
vol. 2, pp. 278–290, January 2021.

25. G. Masera, F. Quaglio, and F. Vacca, “Implementation
of a flexible LDPC decoder,” IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, vol. 54, no. 6, pp.
542–546, June 2007.

26. S. M. E. Hosseini, K. S. Chan, and W. L. Goh, “A re-
configurable fpga implementation of an ldpc decoder for
unstructured codes,” in International Conference on Sig-
nals, Circuits and Systems, 2008.

27. C. Beuschel and H.-J. Pfleiderer, “Fully programmable
decoder architecture for structured and unstructured
LDPC codes,” in 1st International Conference on Wire-
less Communication, Vehicular Technology, Information
Theory and Aerospace & Electronic Systems Technology,
Aalborg, 17-20 May 2009, pp. 747–751.

28. M. Fossorier, “Quasicyclic low-density parity-check codes
from circulant permutation matrices,” IEEE Transac-
tions on Information Theory, vol. 50, no. 8, pp. 1788–
1793, July 2004.

29. R. Tanner, D. Sridhara, A. Sridharan, T. Fuja, and
D. Costello, “Ldpc block and convolutional codes based
on circulant matrices,” IEEE Transactions on Informa-
tion Theory, vol. 50, no. 12, pp. 2966–2984, December
2004.

30. Consultative Committee for Space Data Systems
(CCSDS), CCSDS 131.0-B-3 - TM Synchronization and
Channel Coding (Blue Book), September 2017.

31. Digital Video Broadcasting (DVB) - Part II: S2-
Extensions (DVB-S2X), DVB Document A83-2, March
2014.

32. F. Ghaffari and al., “Efficient FPGA implementation of
probabilistic gallager B LDPC decoder,” in Proceedings
of ICECS, Dec 2017, pp. 178–181.

33. D. E. Hocevar, “A reduced complexity decoder architec-
ture via layered decoding of LDPC codes,” in Proceed-
ings of the IEEE Workshop on Signal Processing Systems
(SiPS), October 2004, pp. 107–112.

34. M. P. C. Fossorier, M. Mihaljevic, and H. Imai., “Reduced
complexity iterative decoding of low-density parity check
codes based on belief propagation,” IEEE Transactions
on communications, vol. 47, no. 5, pp. 673–680, 1999.

35. F. Guilloud, E. Boutillon, and J.-L. Danger, “λ-min de-
coding algorithm of regular and irregular LDPC codes,”
in Proceedings of the 3rd International Symposium on
Turbo Codes and Related Topics, Brest, France, Septem-
ber 2003.

36. C. Jones, E. Valles, M. Smith, and J. Villasenor,
“Approximate-min* constraint node updating for LDPC
code decoding,” in Proceedings of the IEEE Military
Communication Conference (MILCOM), October 2003,
pp. 157–162.

37. J. Chen and M. Fossorier, “Density evolution of two im-
proved BP-based algorithms for LDPC decoding,” IEEE
Communication Letters, vol. 6, no. 5, pp. 208–210, May
2002.

38. J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier,
and X.-Y. Hu, “Reduced-complexity decoding of LDPC
codes,” IEEE Transactions on Communications, vol. 53,
no. 8, pp. 1288–1299, August 2005.

39. C. Marchand, L. Conde-Canencia, and E. Boutillon, “Ar-
chitecture and finite precision optimization for layered
LDPC decoders,” Journal of Signal Processing Systems,
vol. 65, 2011.

40. R. Gallager, Low density parity-check codes. IRE Trans.
Inform. Theory, 1962.

41. T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi,
S. Usami, and I. Takumi, “Gradient descent bit flipping
algorithms for decoding LDPC codes,” IEEE Trans. on
Communications, vol. 58, no. 6, pp. 1610–1614, June
2010.

42. F. Ghaffari and B. Vasic, “Probabilistic gradient descent
bit-flipping decoders for flash memory channels,” in Pro-
ceedings of ISCAS, May 2018, pp. 1–5.

43. T. J. Richardson and R. L. Urbanke, “The capacity of
low-density parity-check codes under message-passing de-
coding,” IEEE Trans. Information Theory, vol. 47, 2001.

44. G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High
throughput low latency LDPC decoding on GPU for SDR
systems,” in Proceedings of the IEEE GlobalSIP Confer-
ence, 2013, pp. 1258–1261.

45. C. Beuschel and H.-J. Pfleiderer, “FPGA implementation
of a flexible decoder for long LPDC codes,” in Interna-
tional Conference on Field Programmable Logic and Ap-
plications, ser. (FPL’08), 8-10 September 2008, pp. 185–
190.

46. J. Cardoso, S. Mhaske, H. Kee, T. Ly, A. Aziz, and
P. Spasojevic, “Fpga-based channel coding architectures
for 5g wireless using high-level synthesis,” International
Journal of Reconfigurable Computing, Hindawi, April
2017.

47. A. Katyushnyj, A. Krylov, A. Rashich, C. Zhang, and
K. Peng, “Fpga implementation of ldpc decoder for 5g nr
with parallel layered architecture and adaptive normal-
ization,” in Proceedings of the IEEE International Con-
ference on Electrical Engineering and Photonics (EEx-
Polytech), St. Petersburg, Russia, October 2020, pp. 34–
37.

48. D. Padua, Ed., Encyclopedia of Parallel Computing.
Springer, 2011.

High-Performance Hard-Input LDPC Decoding on Multi-core Devices for Optical Space Links 15

49. H. Hum and G. Gao, “Supporting a dynamic SPMD in a
multi-threaded architecture,” in Proceedings of the Digest
of Papers, Compcon Spring, San Francisco, CA, USA,
February 1993.

50. R. M. D. R. E. Luque, “How spmd applications could be
efficiently executed on multicore environments?” in Pro-
ceedings of the IEEE International Conference on Clus-
ter Computing and Workshops, New Orleans, LA, USA,
August 2009.

51. T.-H. Weng, S.-W. Huang, W. W. Ro, and K.-C. Li,
“Implementing FFT using SPMD style of OpenMP,” in
Proceedings of the 6th International Conference on Net-
worked Computing and Advanced Information Manage-
ment, Seoul, Korea, August 2010.

52. H. Tanaka, Y. Ota, N. Matsumoto, T. Hieda,
Y. Takeuchi, and M. Imai, “A new compilation technique
for simd code generation across basic block boundaries,”
in Proceedings of 15th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC), Taipei, Taiwan, Jan-
uary 2010.

53. P. Estérie, M. Gaunard, J. Falcou, J.-T. Lapresté,
and B. Rozoy, “Boost.SIMD: Generic programming for
portable SIMDization,” in Proceedings of the 21st Inter-
national Conference on Parallel Architectures and Com-
pilation Techniques (PACT), Minneapolis, MN, USA,
September 2012.

54. A. Barredo, J. M. Cebrian, M. Moretó, M. Casas, and
M. Valero, “Improving predication efficiency through
compaction/restoration of SIMD instructions,” in Pro-
ceedings of IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), San Diego,
CA, USA, February 2020.

55. W. m. Hwu, Superscalar Processors, Encyclopedia of
Parallel Computing. Boston, MA: Springer US, 2011,
pp. 1962–1966.

56. P. Giard, G. Sarkis, C. Leroux, C. Thibeault, and W. J.
Gross, “Low-latency software polar decoders,” Journal of
Signal Processing Systems, Springer, July 2016.

57. A. Cassagne, O. Hartmann, M. Léonardon, K. He, C. Ler-
oux, R. Tajan, O. Aumage, D. Barthou, T. Tonnellier,
V. Pignoly, B. Le Gal, and C. Jégo, “Aff3ct: A fast
forward error correction toolbox!” Elsevier SoftwareX,
vol. 10, 2019.

