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We consider a random process on recursive trees, with three types of
events. Vertices give birth at a constant rate (growth), each edge may be re-
moved independently (fragmentation of the tree) and clusters (or trees) are
frozen with a rate proportional to their sizes (isolation of connected compo-
nent). A phase transition occurs when the isolation is able to stop the growth-
fragmentation process and cause extinction. When the process survives, the
number of clusters increases exponentially and we prove that the normalised
empirical measure of clusters a.s. converges to a limit law on recursive trees.
We exploit the branching structure associated to the size of clusters, which
is inherited from the splitting property of random recursive trees. This work
is motivated by the control of epidemics and contact tracing where clusters
correspond to trees of infected individuals that can be identified and isolated.
We complement this work by providing results on the Malthusian exponent
to describe the effect of control policies on epidemics.

1. Introduction. The evolution of random trees is motivated by various fields: algo-
rithms, queuing systems, population modelling, etc. The random deletion of edges of a tree
has been studied in particular by [11, 31]. Initially, Meir and Moon [31] were interested in
the number of steps needed to isolate a distinguished vertex in a random recursive tree, when
every deleted edge is chosen uniformly. Bertoin [12] and Marzouk [30] have then studied
processes where sets of vertices can be burnt. More precisely, a connected component of the
graph is removed (i.e., isolated) at each step. This component is determined by a uniform
choice among the vertices. Such dynamics combine the fragmentation of the tree (when an
edge is deleted) and the isolation of connected components of the tree (when a vertex pro-
vokes a fire).

In this work, we are interested in the long-time behaviour of similar dynamics when the
random recursive tree grows, following a binary branching process. Our original motivation
is to study the effects of control policies of an epidemic. The growth of the infected popula-
tion is modelled by a Yule process in this work, that is, a binary Markov branching process.
The discrete structure of the Yule process is a random recursive tree. The connected new ver-
tices are the new infected individuals. The fragmentation occurs when one edge is removed,
interpreted as the loss of infector-infectee information: tracing of this contact becomes impos-
sible. Various reasons may explain the loss or absence of information on contacts, including
issues on memory and storage of information or the contact becomes just inaccessible. We re-
strict ourselves here to a simple model with a single parameter accounting for a rate at which
contacts (edges) get lost (removed) independently. Growth and fragmentation will generate
connected components, called clusters. Each cluster is a set of connected infected individu-
als that can be isolated all together as soon as one individual in the cluster is detected. An
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FIG. 1. An illustration of the growth-fragmentation-isolation process with 62 active vertices (in red) and 77
inactive vertices (in blue). A cluster (or a connected component, a tree) is formed by solid lines, while the dashed
lines split clusters.

isolated cluster is frozen, in the sense that no more event will happen to it. It is interpreted
as that all the individuals in the cluster are either under treatment or self-isolating. This is
the contact tracing strategy which has been for decades the central public health response to
control infectious disease outbreaks; see Figure 1 for an illustration.

Numerous research papers highlight the importance of contact-tracing for controlling epi-
demics, using either simulations or real data, and we mention [17, 19, 25] for Covid-19. For
mathematical modelling, we refer to [1, 10, 14, 28] for related studies which are motivated
by contact tracing and exploit a branching structure. Let us describe the main differences.
In [28], the author provides explosion criterion (threshold for R0, the reproduction number),
for different levels of tracing. The work [1] is more general regarding the characteristics of
epidemics but does not allow for backward tracing (i.e., tracing and isolation of ancestors
when a descendant is identified and isolated). In [10], a discrete-time model is studied and a
Malthusian behaviour is exhibited, with different methods and results. Here we exploit ran-
dom recursive trees and the growth-fragmentation structure. Our model allows to study the
effect of tracing along time, in a Markovian dynamical way. It allows to keep a simple de-
scription of the probabilistic structure at any time, to achieve fine asymptotic analysis and to
make emerge tractable key quantities for epidemics (by theory or simulations). Moreover, we
will exhibit a Malthusian coefficient which characterises the main features of the epidemics,
particularly the speed of explosion or extinction (depending on its sign). We will see how it
changes with the three parameters of the model, which allows to see the respective effect of
social distancing measures (decrease of infection rate β), detection effort (increase of isola-
tion rate θ ) and tracing effort (decrease of fragmentation rate γ ). The role of β happens to
be quite surprising for us and somewhat reinforces the interest of “isolation-tracing” strategy
compared to social distancing. Finally, in [14] a model related to ours is considered, where
the contact information can be lost when infection occurs (and not later). In this model, frag-
mentation disappears and more explicit eigenelements and criterion for explosion are given.
Combining both effects (instantaneous or continuous loss of contact) would be an interesting
direction to explore.

Our growth-fragmentation-isolation model is thus a branching process to study the effect
of identification-tracing-isolation strategy in the context of simple epidemics, with loss of
contact information along time. The second author also considered a similar model with nu-
merical simulations in [20] to study the propagation of Covid-19. The approximation of the
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outbreak by a branching process is classical in the early stages of an epidemic, when the
whole population is large and the proportion of susceptible individuals is close to one, see,
for instance, [5]. We also obtain in this work estimations on the speed of convergence of
infected profiles, which allow to control in which time window the Malthusian exponential
growth indeed captures the dynamics of the epidemics. There are more epidemiological and
control features that could be incorporated to reflect epidemics like Covid-19. In particular,
no recovery happens in our setting, and we consider only large homogeneously mixed pop-
ulations. We expect some extensions of our results on the long-time behaviour of infected
population which would take into account these features, even if the probabilistic structure of
clusters becomes more complex. We give a more detailed discussion in Section 8.3.

Random recursive trees (RRT) have a nice splitting property that allows us to characterise a
cluster by its size. More precisely, considering the collection of active (nonisolated) clusters,
the size process turns out to be a branching process with a countable set of types (i.e., type
being the size). At fixed time, conditionally on the sizes of the clusters, the collection of
clusters are independent RRTs. We then study the ergodic properties of the first moment
semigroup of this branching process and obtain a phase transition depending on the sign of the
maximal eigenvalue (Malthusian growth rate). We describe the a.s. behaviour of the process
when the active clusters survive, proving a strong law of large numbers for the empirical
measure of sizes and a Kesten–Stigum type result for the growth of the population. With the
knowledge on the size process, we can deduce the a.s. behaviour of the process of active
clusters conditioned on survival. We can also characterise the a.s. behaviour of the process of
isolated clusters when the active clusters survive, which is by itself non-Markovian.

The asymptotic analysis of the mean behaviour, the weak convergence and the estimation
of the speed of convergence uses now well developed techniques for branching processes
with possibly infinitely many types. We refer to [7, 13, 15, 23, 29, 34] and references therein
for related works on the asymptotic analysis of growth-fragmentation processes. Roughly, it
relies on the ergodic properties of the size of a typical cluster, and the fact that the common
ancestor of two clusters uniformly chosen at large times is found at small times, see, for in-
stance, Theorem 2 in [4], see also [22]. More precisely, we exploit the fact that large clusters
fragment fast, and with high probability give one small cluster and one large cluster at frag-
mentation. Together with isolation, it allows one to control the size of a typical cluster and
the eigenelements of the first moment semigroup. In particular, we prove that the harmonic
function is bounded and large clusters have no major impact on the growth of epidemics.
Indeed, large clusters are isolated before creating too many small clusters, since isolation oc-
curs at the same scale as fragmentation. Once active clusters are well described, we can treat
the isolated clusters using an additive functional.

Besides, the fact that the number of types is infinite and the loss of Markov property for
the isolated clusters raise some technical difficulties to get a.s. limits (strong convergence).
We refer to [2, 3, 18] for classical references on strong law of large numbers of some classes
of multitype branching processes. We adapt here the argument of [3] for strong convergence.
In the growth-fragmentation context, let us mention respectively [16] and [21, 23] for L1 and
strong convergence.

Let us describe the model more formally. We introduce a stochastic process on a dynamic
tree Gt = (Vt ,Et ) with two functions �t : Vt → {0,1}, ηt : Et → {0,1}.
• We identify the vertex set Vt as the set of patients (individuals infected up to time t), and

label them with the infection time v ∈ [0,∞). The function �t tells us the state of a vertex
at time t , where vertex v is active if �t(v) = 1 and v is inactive if �t(v) = 0. Only active
vertices can infect new ones.

• We identify the edge set Et as the set of (direct) infection links between patients, and the
function ηt tells us the state of an edge at time t . For an edge e, we say e is open if ηt (e) = 1
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which means the infection link can still be retrieved (i.e., it can be found who infected the
infectee), otherwise ηt (e) = 0 and it is closed (i.e., it is not possible to know who infected
the infectee). A set of vertices connected by open edges is called a cluster.

The growth-fragmentation-isolation model (GFI) process (Gt ,�t , ηt )t≥0 is a Markov jump
process, starting from an active vertex as patient zero V0 = {0}, �0(0) = 1, governed by three
positive parameters (β, θ, γ ) ∈ R

3+ = (0,∞)3 representing three types of events, with the
notation P for the probability and E for the associated expectation.

• Infection (growth): every active vertex v independently attaches a new vertex in an expo-
nential waiting time with parameter β . When a new vertex u is created and attached to v,
it is active (i.e., �t(u) = 1) and the edge {u, v} is open (i.e., ηt ({u, v}) = 1).

• Information decay (fragmentation): every open edge e independently becomes closed in
an exponential waiting time with parameter γ .

• Confirmation and contact tracing (isolation): every active vertex independently gets “con-
firmed” in an exponential waiting time with parameter θ , and once a vertex is confirmed,
the associated cluster is isolated and every vertex in this cluster becomes inactive.

See Figure 2 for an illustration of this model. If γ = θ = 0, this is the well-known Yule tree
process. As vertices are indexed by infection times, every cluster is a labelled recursive tree
(see Section 3.2 for a rigorous definition).

Because the vertices in a cluster have the same state, it is very natural to decompose the dy-
namical tree Gt into clusters of individuals connected by open edges: for an isolated cluster,

FIG. 2. An illustration of GFI process.
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we call it inactive cluster; otherwise, it is an active cluster. In this paper, we use isolated and
inactive interchangeably for clusters and also for vertices/patients/infected individuals. We
denote by (Xt ,Yt )t≥0 the associated cluster process, where Xt is the set of active clusters
and Yt is the set of inactive clusters:

Xt = {
C|C is a cluster in Gt ; ∀v ∈ C,�t(v) = 1

}
,

Yt = {
C|C is a cluster in Gt ; ∀v ∈ C,�t(v) = 0

}
.

The process (Gt ,�t , ηt )t≥0 stops evolving when Xt is empty. We denote by τ the corre-
sponding stopping time

τ := inf{t ≥ 0|Xt = ∅},(1)

and the event {τ < ∞} is called extinction, while {τ = ∞} is called survival.
In this paper, we are motivated by the following questions. For what values of the param-

eters (β, θ, γ ) does the epidemic reach extinction almost surely? If the epidemic survives
(with positive probability), what is the long-time behaviour of the population of active and
inactive clusters? We give some answers to these questions by first determining the asymp-
totic behaviour of the first moment semigroup associated to the active clusters. It depends on
the maximal eigenvalue of this semigroup, which is called Malthusian exponent. When this
exponent is negative (subcritical case) or zero (critical case), the population of active clusters
reaches extinction almost surely. It corresponds to the fact that the isolation process is strong
enough to stop the epidemic. When this exponent is positive (supercritical case), survival oc-
curs with positive probability and on this event, the growth of the population is exponential
with rate given by this Malthusian exponent. In that case, we also shed some light on the
genealogical structure of clusters and describe the asymptotic behaviour of the empirical dis-
tribution. We prove that a.s. we get a collection of recursive trees whose sizes are distributed
following the left eigenvector associated to the maximal eigenvalue of the semigroup, that
is, the Malthusian exponent. We also show similar asymptotic behaviours for the inactive
clusters on the survival event.

We give the main results and the outline of the paper in the next section. The rest of the
paper is dedicated to proofs and some additional results and comments.

2. Main results. We first introduce the Malthusian exponent λ which describes the
(mean) exponential growth (or decay) of the number of clusters. This growth rate coincides
for the active and inactive clusters, whose numbers at time t are respectively denoted by |Xt |
and |Yt |. As expected in branching structures, its sign gives the global extinction and survival
criterion, leading to the classification of subcritical, critical and supercritical phases.

THEOREM 2.1 (Malthusian exponent). The following limits exist and coincide and are
finite:

λ := lim
t→∞

1

t
log

(
E

[|Xt |]) = lim
t→∞

1

t
log

(
E

[|Yt |]) ∈ (−∞,∞).

If λ ≤ 0, then extinction occurs a.s., that is, P[τ < ∞] = 1. Otherwise, survival occurs with
positive probability, that is, P[τ = ∞] > 0.

The Malthusian exponent λ corresponds to the maximal eigenvalue of the first moment
semigroup of (Xt)t≥0 and is also called Perron’s root. The fact that the cluster size can be
any positive integer leads us to use techniques for ergodic behaviour in the infinite-dimension
setting, where the control of large sizes is crucial. As usual, irreducibility on the state of
sizes ensures that the value λ does not depend on the initial condition (although the model
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FIG. 3. An illustration of different phases; see Section 6.2 for more details.

starts with a single patient, that is, a cluster of size 1, the setting of initial condition with a
single random recursive tree of size n ≥ 1 will be used later, especially in the size processes).
The diagram of these different phases is illustrated in Figure 3, for fixed β > 0. Note that
θ ≥ min(β, γ ) implies a.s. extinction since in the case θ ≥ β , individuals are isolated faster
than they contaminate and in the case θ ≥ γ , isolation is faster than fragmentation.

We want to emphasise that Theorem 2.1 and the forthcoming results do not depend on the
initial condition (random or deterministic), see the discussion in Section 8.2. We also refer to
Section 8.3 for other possible generalisations with additional epidemic features.

To go further in the analysis of the model, we introduce the following size process
(Xt , Yt )t≥0, where the two empirical measures count the clusters of different sizes:

(2) Xt = ∑
C∈Xt

δ|C|, Yt = ∑
C∈Yt

δ|C|.

Here |C| is the number of vertices in the cluster C, and we call it the size of cluster. The
process (Xt)t≥0 is still a branching Markov process with respect to its natural filtration. This
comes from the splitting property of RRT, which allows to preserve RRT clusters when frag-
mentation occurs, see the forthcoming Proposition 3.1. Moreover, for any fixed time, condi-
tionally on cluster sizes, all (active and inactive) clusters are independent, see Proposition 3.2.
We can thus reduce the study of our GFI process (Gt ,�t , ηt )t≥0 to that of the size process
(Xt , Yt )t≥0; see Figure 4.

We prove the following strong law of large numbers in the supercritical case. This pro-
vides the asymptotic behaviour of 〈Xt,f 〉 = ∑

C∈Xt
f (|C|), where f has at most polynomial

growth, that is, there exists p > 0 such that supn≥1 |f (n)|/np < ∞. In particular, f = 1m

yields the number of active clusters of size m, while the identity function provides the num-
ber of active individuals.

THEOREM 2.2 (Law of large numbers for (Xt)t≥0). Assume that λ > 0. Then there exists
a probability distribution π on N+ = {1,2,3, . . .} and a random variable W ≥ 0, such that
for any function f :N+ →R of at most polynomial growth, we have 〈π, |f |〉 < ∞ and

e−λt 〈Xt,f 〉 t→∞−−−→ W 〈π,f 〉 a.s. and in L2.(3)
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FIG. 4. Illustration of the reduction of the study of GFI process (Gt ,�t , η)t≥0. The first simplification is to
decompose the graph into clusters and study the cluster process (Xt ,Yt )t≥0, where every cluster is a RRT whose
law only depends on its size. The second simplification is to study size process (Xt , Yt )t≥0, which provides the
key information for the law of (Xt ,Yt )t≥0.

Besides, {τ = ∞} = {W > 0} a.s. and on this event

〈Xt,f 〉
〈Xt,1〉

t→∞−−−→ 〈π,f 〉 a.s.(4)

Recall that λ is defined in Theorem 2.1. It gives the a.s. exponential growth of the number
of active clusters and active individuals. The probability distribution π gives the distribution
of the size of clusters for large times. This distribution is the (positive normalised) left eigen-
vector of the first moment semigroup M = (Mt)t≥0 associated to the size process (Xt)t≥0.
Equivalently, it can be characterised as the positive normalised left eigenvector of the gener-
ator L of M , that is, πL = λπ , where

Lf (n) = βn
(
f (n + 1) − f (n)

) − θnf (n) +
n−1∑
j=1

γ n

j (j + 1)

(
f (j) + f (n − j) − f (n)

)
,

for real valued functions f and n ≥ 0. Thus (π(n))n≥0 satisfies a linear system given by
the dual operator of L. We refer to Section 4.1 for rigorous statements and details on the
semigroup and generator. The fact that 〈π, |f |〉 < ∞ will also be given in Proposition 4.1.

The random variable W in the statement is the limit of the Malthusian martingale
e−λt 〈Xt,h〉, where h is the right eigenvector of the semigroup: Mth = eλth, for any t ≥ 0;
again see Proposition 4.1. Because the cluster size can be arbitrarily large, the classical finite-
dimensional Perron–Frobenius theorem does not apply and we need a more precise analysis
on the semigroup and its generator to ensure the properties of eigenvectors; see Section 4.

Note that the above results hold for functions of at most polynomial growth. This is inher-
ited from our Lyapunov functions which are polynomial; see Lemma 4.2 and Proposition 4.1.

A similar result about the inactive clusters can be derived.

COROLLARY 1 (Law of large numbers for (Yt )t≥0). For any function f : N+ → R of at
most polynomial growth, we have that

e−λt 〈Yt , f 〉 t→∞−−−→
(

θ

λ

)
W

∞∑
n=1

nπ(n)f (n) a.s. and in L2,

and
〈Yt , f 〉
〈Yt ,1〉

t→∞−−−→ 〈π̃ , f 〉 a.s. on {τ = ∞},
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where π̃ is a probability law on N+ = {1,2,3, . . .} given by

(5) π̃(n) := π(n)n∑∞
j=1 π(j)j

.

We observe that interestingly, π̃ is a size-biased version of π . It means that the isolated
clusters are of larger size than the active clusters. This phenomenon is also recorded in the
recent work of Jean Bertoin [14], Corollary 4.3. The reason for this phenomenon is that every
active cluster gets isolated at a rate proportional to its size.

Recall that every vertex v ∈ R is labelled by its infection time and every cluster is a tree.
We consider these clusters up to an equivalence relation, which consists in keeping the order
between vertices but forgetting their infection times, see Section 3.2 for a rigorous definition.
We denote by T the space of equivalence classes of trees of all sizes. We denote by Tπ the
random tree whose size is distributed as π , and conditionally on its size the tree is a RRT.
With a slight abuse of notation, for any recursive tree t, we write t ∈ T for its equivalence
class and for any function f : T 
→ R, we let f (t) = f (t). We also write |t| for the number
of vertices in the equivalence class t.

Using the splitting property, we derive the long-time behaviour of the empirical measures
on (active and inactive) clusters from the results on the size processes obtained above.

THEOREM 2.3 (Limit of the empirical measure of clusters). Consider any f : T → R

such that there exists p > 0 satisfying

sup
t∈T

|f (t)|
|t|p < ∞.

Then on the event {τ = ∞},
1

|Xt |
∑
C∈Xt

f (C)
t→∞−→ E

[
f (Tπ)

]
,

1

|Yt |
∑
C∈Yt

f (C)
t→∞−→ E

[
f (Tπ̃ )

]
a.s.

The Malthusian exponent λ is the key characteristic of the model and is fully determined
by the model parameters (β, γ, θ). For both mathematical and practical purposes, it is highly
important to understand how λ depends on (β, θ, γ ) The main results are presented below.

THEOREM 2.4. The mapping (β, θ, γ ) 
→ λ(β, θ, γ ) is continuous, and the sets of pa-
rameters resulting in respectively λ > 0, λ = 0, λ < 0 are nonempty. The Malthusian exponent
depends on the three parameters monotonically that:

1. θ 
→ λ(β, θ, γ ) is decreasing;
2. γ 
→ λ(β, θ, γ ) is increasing;
3. β 
→ λ(β, θ, γ ) is increasing if γ > θ , constant if γ = θ , and decreasing if γ < θ .

In the above statements, the continuity, the existence of phases, and also the monotonic-
ity with respect to θ and γ , are not surprising. However, the change of monotonicity of
β 
→ λ(β, θ, γ ) seems not obvious. Indeed, the increment of β makes the clusters grow faster,
thus the clusters will split (fragmentation) or be detected (isolation) faster. Faster fragmenta-
tion makes the number of clusters increase while faster detection has the opposite effect. The
complex competition between the two forces leads to the simple Statement 3 in Theorem 2.4
surprisingly. At the end, the increment of the infection rate β will not necessarily speed up
the epidemics, but does make the epidemics weaker when γ < θ . In practical terms, in this
regime, if the contact tracing policy is effective so that the population is in the subcritical
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regime, the emergence of a more contagious variant will make the epidemic decay faster,
even if θ and γ are unchanged (it means we use the same contact tracing practice as before).

The rest of the paper is organised as follows. In Section 3 we introduce notation and we
recall the key splitting property of the random recursive trees and derive the size process. The
study of the first moment semigroup of (Xt)t≥0 and the associated martingale and L2 esti-
mates is carried out in Section 4, using in particular Lyapunov functions. We can then prove
Theorem 2.1. Section 5 is devoted to the strong convergences and we prove Theorem 2.2,
Corollary 1 and Theorem 2.3. Then we prove Theorem 2.4 in Section 6 and present related
simulations in Section 7. Finally we discuss possible extensions and generalisations of the
model in Section 8.

3. Preliminaries. In this section, we introduce notation and explain why the size process
captures the essential information of the cluster process.

3.1. Ulam–Harris–Neveu labeling of clusters. We introduce the notation for the ge-
nealogical tree of clusters (active and inactive). Recall that every vertex is labelled by its
infection time. For any cluster C (active or inactive), we call the vertex with the minimum
label the root of C, and denote it by root(C). We label every cluster using the Ulam–Harris–
Neveu (UHN) notation:

U := ⋃
n≥0

{1,2}n,

where an element u ∈ U is called a label or word. For the initial cluster, we use the label
∅ as convention. Then by induction, for any cluster C labelled by a word u ∈ U : this label
is unchanged during the growth of the cluster (infection); this label becomes inactive when
the cluster is isolated; this label is replaced by two labels u1 and u2 when fragmentation
occurs. By convention, u1 is the label of the subcluster containing root(C) and is called the
first child, while u2 is for the other subcluster that we call the second child. (See Figure 6 for
an illustration.)

Every cluster except the initial one has a unique parent. There exists a partial order � on
U defined by the genealogy, that is, for two words u and uv with v �= ∅, the former is an
ancestor of the latter, while the latter is a descendant of the former, and we denote u � uv.
For two words u, v ∈ U , we denote by u ∧ v the most recent common ancestor of u and v.

We denote by Ut the collection of labels of active clusters at time t , while U†
t gathers the

labels of inactive clusters at this time. For u ∈ U , we use U(u) to represent the genealogical
tree rooted at u

U(u) := {w ∈ U |u � w or w = u}.
We also use Ut (u) (resp. U†

t (u)) to denote the set of labels of clusters in U(u) which are
active (resp. inactive) at time t . One should notice that Ut (u) can be either the set of labels
of active descendants of u at time t , or u itself if it is still alive at that moment, or empty
if it encounters isolation first at a time no later than t , so we consider Ut (u) as the “set of
labels of active clusters at t issued from the cluster of the label u”. Finally, if u ∈ Ut (resp.
u ∈ U†

t ), we denote by X u
t (resp. Y u

t ) for its associated cluster, and Xu
t (resp. Yu

t ) its size,
that is, Xu

t = |X u
t | (resp. Yu

t = |Y u
t |); we write Xu

t = 0 for u /∈ Ut . We also use Xt(n) (resp.
Yt (n)) for the number of active clusters (resp. inactive clusters) of size n at time t . With these
notation, we have Xt = ∑

u∈Ut
δXu

t
and for any function f from N+ to R:

〈Xt,f 〉 = ∑
C∈Xt

f
(|C|) = ∑

u∈Ut

f
(
Xu

t

) =
∞∑

n=1

Xt(n)f (n).
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FIG. 5. All the recursive trees (as representatives of equivalence classes) in T4.

3.2. Random recursive trees. The genealogy in a cluster is given by a recursive tree and
here we define some notation related to the latter. Given V = {a1, . . . , an} ⊂R with increas-
ing order a1 < a2 < · · · < an, a recursive tree t on V is a rooted tree with V as the set of
vertices, such that for any ai,2 ≤ i ≤ n, the path from a1 to ai is increasing. Thus, a descen-
dant has a larger label than that of the parent. The minimal element a1 is called the root of t.
The collection of all the recursive trees on V has cardinality (|V | − 1)!.

We define the equivalence relation ∼ between recursive trees on different ordering sets.
Denoting by t1 a recursive tree on V1 and t2 a recursive tree on V2, then t1 ∼ t2 if and only
if there exists an order-preserving function ψ : V1 → V2, which induces a bijection between
the trees t1 and t2. We denote by Tn the set of recursive trees of size n up to the equivalence
relation ∼, and use the recursive trees defined on {1, . . . , n} to represent equivalence classes
(canonical representation); see Figure 5 for an example of T4. Finally, we define the space of
finite recursive trees up to equivalence relation ∼

T :=
∞⋃

n=1

Tn.(6)

A (uniform) random recursive tree (RRT) of size n is a random element chosen uniformly
in Tn. We denote by Tn this random equivalence class. With a slight abuse, RRT can refer
both to the equivalence class or a specific labelling (for instance, with the first integers). Since
T defined in (6) contains only countably many elements, the space T is a Polish space under

FIG. 6. An illustration of the genealogy of clusters.
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the trivial distance. We can construct more general probability measures than uniform random
recursive tree on T . For example, for any ν a probability measure on N+, we use the notation
Tν to represent a random variable on T , such that we sample first the size by ν, then sample
an equivalence class uniformly given its size, that is, for any bounded function f on T ,

E
[
f (Tν)

] =
∞∑

n=1

ν(n)E
[
f (Tn)

] =
∞∑

n=1

ν(n)

(
1

(n − 1)!
∑
t∈Tn

f (t)
)
.(7)

This gives the rigorous definition for E[f (Tπ)] and E[f (Tπ̃ )] in Theorem 2.3.
There are many ways to construct Tn. One classical construction is the recursive approach:

let T1 be the tree with the single vertex 1, and construct Tk+1 by attaching the vertex labelled
(k + 1) uniformly onto a vertex of Tk . This construction explains why our infection process
(Yule process), conditioned on its size, is a RRT. Indeed each individual contaminates a new
individual with the same rate, which amounts to attaching a new vertex to a uniformly chosen
vertex of the tree, independent of the history of construction given the current state.

The key property of RRT that we need is the splitting property. We state this property
below and its proof can be found in [31] and [11]. We will explain what role this property
plays in our model in the next section.

PROPOSITION 3.1 (Splitting property). Let n ≥ 2 and Tn the canonical random recursive
tree of size n. We choose uniformly one edge in Tn and remove it. Then Tn is split into two
subtrees T 0

n and T ∗
n , corresponding to two connected components, where T 0

n contains the
root of Tn and T ∗

n does not. Then

(8) P
[∣∣T ∗

n

∣∣ = j
] = n

n − 1

1

j (j + 1)
, j = 1,2, . . . , n − 1.

Furthermore, conditionally on |T ∗
n | = j , T 0

n and T ∗
n are two independent RRTs of size respec-

tively (n − j) and j .

3.3. Reduction to the size process. Let us explain more explicitly how the study of
(Xt ,Yt )t≥0 can be reduced to that of the size process (Xt , Yt )t≥0, with the help of the split-
ting property. We denote by M the finite point measures on N+ and endow it with the weak
topology and corresponding Borel algebra. Then (Xt , Yt )t≥0 is a M2-valued process and we
denote by (Ft )t≥0 its natural filtration. In fact, (Ft )t≥0 is also the natural filtration of (Xt)t≥0
since Yt is a deterministic function of (Xs)0≤s≤t for any t ≥ 0.

PROPOSITION 3.2. Fix arbitrary t ≥ 0. Conditionally on (Xu
t )u∈Ut and (Y u

t )
u∈U†

t
, the

clusters in Xt ∪ Yt are independent RRTs whose sizes are given by (Xu
t )u∈Ut and (Y u

t )
u∈U†

t
.

Moreover, (Xt , Yt )t≥0 is a measure-valued Markov branching process in (M2, (Ft )t≥0,P).

PROOF. The RRT-distribution of clusters and conditional independence is obvious at the
initial time when there is only one single vertex. Let us check that this property remains
valid along time and at the same time that the size process satisfies the Markov property. The
branching property of the size process is a direct consequence of the branching property of
the cluster process.

We need to consider three events and their corresponding rates. First, a cluster is isolated
with a rate depending only on its size, and then becomes inactive. Second, the growth rate of
a cluster also only depends on its size, and the new vertex is added independently of the state
of other clusters. Thus, after a growth event, the new cluster remains independent from the
other ones (conditionally on the sizes). Moreover, by the construction of RRT by adding a
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vertex uniformly at random, we know that the new cluster is also distributed as a RRT. Third,
for fragmentation, we invoke the splitting property (Proposition 3.1), which guarantees that
the two new clusters are independent RRTs conditionally on their sizes. This also ensures the
Markov property thanks to the absence of memory for each event. �

Let us sum up the dynamics of active clusters and the transition for the size process. Inde-
pendently, each active cluster of size n:

(i) becomes an inactive cluster of size n at rate θn (death of the active cluster and birth
of an inactive cluster);

(ii) becomes a RRT of size (n + 1) at rate βn (cluster size increases by 1);
(iii) splits into two RRTs of sizes (n − j, j) at rate γ n 1

j (j+1)
, for n ≥ 2,1 ≤ j ≤ n − 1

(fragmentation). Here (n − j) is the size of the first child (containing the root) and j is the
size of the second child.

Thus, each active cluster of size n lives an exponential time of parameter (β + θ + γ )n − γ .
We introduce now the infinitesimal generator A of the Markov process (Xt , Yt )t≥0 for sizes.
It is defined on a suitable subspace of measurable bounded functions on M2. Consider two
functions f,g :N+ →R+ and F : R2 →R a bounded Borel function. We set

Ff,g : (μ, ν) ∈ M2 → F
(〈μ,f 〉, 〈ν, g〉) ∈ R,

and define

AFf,g(μ, ν) =
∞∑

n=1

μ
({n})βn

(
F

(〈μ + δn+1 − δn, f 〉, 〈ν, g〉) − F
(〈μ,f 〉, 〈ν, g〉))

+
∞∑

n=1

μ
({n})θn

(
F

(〈μ − δn, f 〉, 〈ν + δn, g〉) − F
(〈μ,f 〉, 〈ν, g〉))

+
∞∑

n=1

μ
({n})γ n

n−1∑
j=1

(
1

j (j + 1)

)
× (

F
(〈μ + δj + δn−j − δn, f 〉, 〈ν, g〉) − F

(〈μ,f 〉, 〈ν, g〉)).

(9)

Although we start from one single active individual to define our model for convenience (see
Section 8.2 for a discussion on the initial condition), we remark that the size process can be
defined from any finite initial state since it is a measure-valued process on integers.

4. First moment semigroup of (Xt)t≥0 and Perron’s root. In this part, we study the
first moment semigroup associated to the process (Xt)t≥0. We will establish the existence of
Perron’s eigenelements and speed of convergence and prove Theorem 2.1.

4.1. Semigroup and generator. Thanks to Section 3.2, the study of the model is reduced
to the long-time behaviour of the measure-valued Markov branching process (Xt , Yt )t≥0. We
denote the first moment semigroup associated to (Xt)t≥0 by M = (Mt)t≥0. It is defined for
any nonnegative function f by

Mtf (n) := Eδn

[〈Xt,f 〉] ∀t ≥ 0, n ≥ 1,(10)

where Pδn stands for the size process with initial condition (X0, Y0) = (δn,0) and Eδn is its
associated expectation. In particular we consider for any n,m ∈ N+,

Mt(n,m) := Mt1m(n) = Eδn

[〈Xt,1m〉] = Eδn

[
#
{
C ∈ Xt : |C| = m

}]
,
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which is the mean number of clusters of size m at time t descending from one single RRT of
size n at time 0.

We use the notation [xp] for the polynomial function such that [xp](n) = np , n ≥ 1. When
p = 1 it is just the identity function [x ](n) = n. We introduce B the set of functions from N+
to R with at most polynomial growth

B :=
{
f :N+ → R,∃p > 0 such that sup

n≥1

∣∣f (n)
∣∣/np < ∞

}
.(11)

Let Bp be the set of functions with p > 0 fixed

Bp :=
{
f : N+ → R, sup

n≥1

∣∣f (n)
∣∣/np < ∞

}
.(12)

Notice that Bp ⊂ Bp′ ⊂ B for 0 < p ≤ p′, and B = ⋃
p>0 Bp . We then extend now the first

moment semigroup to the space B.

LEMMA 4.1.

(i) For any p ≥ 1, t ≥ 0, n ≥ 1, we have

Mt

([
xp])

(n) ≤ e(2p−1pβ−θ)tnp.

(ii) For any f ∈ B, setting f+ (resp. f−) to be the positive part (resp. negative part) of
f , the functions t ∈ [0,∞) → Mtf+ and t ∈ [0,∞) → Mtf− are well defined and finite. We
can thus set for any t ≥ 0 and n ∈ N+,

Mtf (n) = Eδn

[〈Xt,f 〉] := Mtf+(n) − Mtf−(n).

(iii) (Mt)t≥0 is a positive semigroup on B and for any f ∈ B, we have for t ≥ 0 and n ≥ 1

d

dt
Mtf (n) = Mt(Lf )(n),(13)

where the linear operator L : B → B is defined for any n ≥ 1 by

Lf (n) = βn
(
f (n + 1) − f (n)

)︸ ︷︷ ︸
“growth”

−θnf (n)︸ ︷︷ ︸
“isolation”

+
n−1∑
j=1

γ n

j (j + 1)

(
f (j) + f (n − j) − f (n)

)
︸ ︷︷ ︸

“fragmentation”

.
(14)

PROOF. Linear operator L yields the generator of the first moment semigroup of the size
process. We focus on (i) and study L([xp]) at first. Notice that for p ≥ 1 and any x, y > 0,
(x + y)p ≥ xp + yp , so the contribution of the fragmentation term in L([xp]) is negative.
Thus we have

L
([

xp])
(n) ≤ βn

(
(n + 1)p − np) − θnp+1.

We then apply convexity for n ∈ N+
(n + 1)p − np ≤ p(n + 1)p−1 ≤ p2p−1np−1.

It gives us

L
([

xp]) ≤ (
2p−1pβ − θ

[
x

])[
xp] ≤ (

2p−1pβ − θ
)[

xp]
.(15)

Here we use simply the fact that [x ](n) = n ≥ 1 for all n for the isolation term.



5246 V. BANSAYE, C. GU AND L. YUAN

The rest of the proof follows classical arguments of localisation, see for example, Theo-
rem 1 in [32], and we give here the main lines only. We assume that X0 = δn for any given
n ≥ 1. We consider the stopped process (Xm

t , Ym
t )t≥0 defined by Xm

t = Xt∧τm , Ym
t = Yt∧τm ,

where

τm := inf
{
t ≥ 0 : 〈

Xt, [x]〉 ≥ m
}
.

Notice that on the event {τm ≥ t}, we have 〈Xt, [x]〉 ≤ m and 〈Xt, [xp]〉 ≤ mp . The pro-
cess (Xm

t , Ym
t )t≥0 lives on a finite state space and has bounded transition rates. Consider

three functions f,g :N+ →R+ and F : R2 →R a bounded Borel function and recall that
Ff,g(μ, ν) = F(〈μ,f 〉, 〈ν, g〉). We get by Dynkin’s formula

Eδn

[
Ff,g

(
Xm

t ,Ym
t

)] = Eδn

[
Ff,g

(
Xm

0 , Ym
0

)] +Eδn

[∫ t∧τm

0
AFf,g(Xs,Ys)ds

]
,

where A is defined in (9). We apply this equation with F(x, y) = x ∧ mp and f = [xp] and
g = 0 to obtain

(16) Eδn

[〈
Xm

t ,
[
xp]〉] = Eδn

[〈
Xm

0 ,
[
xp]〉] +Eδn

[∫ t∧τm

0

〈
Xs,L

[
xp]〉

ds

]
.

Using the above display and (15) yields

Eδn

[〈
Xm

t ,
[
xp]〉] ≤ Eδn

[〈
Xm

0 ,
[
xp]〉] + (

2p−1pβ − θ
)
Eδn

[∫ t∧τm

0

〈
Xs,

[
xp]〉

ds

]
.

Since the process (X,Y ) is nonexplosive, τm tends a.s. to infinity as m tends to infinity.
Moreover, τm is increasing in m. Applying Fatou’s lemma on the left-hand side and monotone
convergence on the right hand side, the above inequality yields

Mt

[
xp]

(n) ≤ M0
[
xp]

(n) + (
2p−1pβ − θ

) ∫ t

0
Ms

[
xp]

(n)ds.

Grönwall’s lemma then ensures that (i) and (ii) are immediate consequences.
For (iii), thanks to the fact Bp ⊂ Bp′ ⊂ B = ⋃

p>0 Bp for any p′ ≥ p > 0, we only need to
show that for any f ∈ Bp with p ≥ 1, we have

(17) Eδn

[〈Xt,f 〉] = Eδn

[〈X0, f 〉] +Eδn

[∫ t

0
〈Xs,Lf 〉ds

]
.

Let C > 0 be such that |f (n)| ≤ Cnp , |Lf (n)| ≤ Cnp+1 for all n. Similar to (16), we have

(18) Eδn

[〈
Xm

t , f
〉] = Eδn

[〈
Xm

0 , f
〉] +Eδn

[∫ t∧τm

0
〈Xs,Lf 〉ds

]
.

We will show the limits of the left and right terms in above display. We first study the left
term which is the sum of the two terms below

(19) Eδn

[〈
Xm

t , f
〉
1{t<τm}

]
and Eδn

[〈
Xm

t , f
〉
1{t≥τm}

]
.

For the first term in (19), we have〈
Xm

t , f
〉
1{t<τm}

m→∞−−−−→ 〈Xt,f 〉 almost surely,

and ∣∣〈Xm
t , f

〉
1{t<τm}

∣∣ ≤ 〈
Xt, |f |〉 ≤ C

〈
Xt,

[
xp]〉

.

By (i), the last term in the above display has a finite mean. Using dominated convergence
theorem, we obtain

lim
m→∞Eδn

[〈
Xm

t , f
〉
1{t<τm}

] = Eδn

[〈Xt,f 〉].
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We prove now that the second term in (19) vanishes. We use a coupling argument below

Eδn

[∣∣〈Xm
t , f

〉
1{t≥τm}

∣∣] ≤ mp
Pδn[τm ≤ t] ≤ mp

Pδn

[〈
X̃t , [x]〉 ≥ m

]
,

where (X̃t )t≥0 is the size process with only growth term (i.e., β > 0, θ = γ = 0) and X̃0 = δn.
Then (〈X̃t , [x]〉)t≥0 is a Yule process with initial value n. Thus for fixed t , 〈X̃t , [x]〉 follows
the negative binomial distribution with parameters n, 1 − e−λ. Using the above display and
the Markov inequality, we get

Eδn

[∣∣〈Xm
t , f

〉
1{t≥τm}

∣∣] ≤ mpEδn[(〈X̃t , [x]〉)2p]
m2p

m→∞−−−−→ 0.

Combining the analysis of the two terms in (19), the term on the left-hand side in (18) con-
verges to Eδn[〈Xt,f 〉] as m → ∞.

Now we turn to the right-hand side of (18). Note that∣∣∣∣∫ t∧τm

0
〈Xs,Lf 〉ds

∣∣∣∣ ≤
∫ t

0

〈
Xs, |Lf |〉 ds ≤ C

∫ t

0

〈
Xs,

[
xp+1]〉

ds ∀m ∈N+.

Due to (i), the last term has finite mean. Moreover
∫ t∧τm

0 〈Xs,Lf 〉ds −→ ∫ t
0 〈Xs,Lf 〉ds,

almost surely as m → ∞. Applying dominated convergence theorem yields

Eδn

[∫ t∧τm

0
〈Xs,Lf 〉ds

]
m→∞−−−−→ Eδn

[∫ t

0
〈Xs,Lf 〉ds

]
.

Letting m → ∞ in (18) gives (17) and ends the proof. �

4.2. Perron’s root and eigenvectors. In this part, we study the asymptotic behaviour of
the first moment semigroup (Mt)t≥0 of (Xt)t≥0. Under general assumptions extending the
Perron–Frobenius theory in the finite-dimension setting, the ergodic behaviour of the positive
semigroup is given by the unique triplet of eigenelements corresponding to the maximal
eigenvalue. We refer in particular to [7, 33] and references therein for general statements
and applications to growth-fragmentation. In this work, we apply a general statement of [7]
on the ergodic behaviour of positive semigroups. It allows us to exploit practical sufficient
conditions which are satisfied by our process: irreducibility properties of the dynamic of
the cluster sizes (22), and the fast splitting or isolation of large clusters which provides a
Lyapunov function for a typical cluster (21). The fact that splitting is very asymmetric (such
that one child cluster is close to the parent in size) and the fact that a typical active cluster
at a given time has avoided isolation make the proof of the required lower bound delicate. It
involves a subtle compensation of fragmentation and isolation terms. Moreover, we will show
the exponential speed of convergence of the semigroup. This will be useful in particular for
the proof of the a.s. convergences in the next section.

In what follows, notation “f ≤ g” means the point-wise comparison for functions (includ-
ing constants). In this case, we say f is upper bounded by g or g is lower bounded by f . We
also use f ∼ g to denote the fact that limn→∞ f (n)

g(n)
= 1. We prove at first Lemma 4.2, the

key technical ingredient for Proposition 4.1, the latter is the main result of this subsection.
The following space of sublinear functions is useful to control the harmonic function of the
semigroup:

S :=
{
f :N+ → [1,∞), such that

(a)f is increasing and lim
n→∞f (n) = ∞

(b)f is sublinear
f (n + 1)

n + 1
≤ f (n)

n
, and Cf :=

∞∑
j=1

f (j)

j (j + 1)
< ∞

}
.

(20)



5248 V. BANSAYE, C. GU AND L. YUAN

LEMMA 4.2. There exists a positive function ψ defined on N+, such that

0 < inf
N+

ψ < sup
N+

ψ ≤ 1

and for every V ∈ S ∪ {[xp] : p ≥ 1}:
(i) There exist real constants a < b and ζ > 0 such that

LV ≤ aV + ζψ, bψ ≤ Lψ ≤ ξψ.(21)

(ii) For R large enough, the set K = {x ∈ N+ : ψ(x) ≥ V (x)/R} is a nonempty finite set
and for any x, y ∈ K and t0 > 0,

Mt0(x, y) > 0.(22)

PROOF. To find the Lyapunov-type functions in (i), the main difficulty is to find the lower
bound of Lψ in (21). As we can see in (14), the isolation term −θnf (n) cannot be bounded
from below uniformly in n by f times a constant. The strategy is to use the growth term and
fragmentation term to compensate the isolation term.

Step 1: Construction of ψ—setup. We set

ψ(n) := A − (A − B)qn−1,(23)

with A,B ∈ (0,∞) and q ∈ (0,1) to be chosen later. Then ψ is bounded between A and B

and limn→∞ ψ(n) = A. We decompose Lψ as follows

Lψ(n) = βn
(
ψ(n + 1) − ψ(n)

)︸ ︷︷ ︸
I

− (θ + γ )nψ(n)︸ ︷︷ ︸
II

+γψ(n)

+ γ n

n−1∑
j=1

1

j (j + 1)

(
ψ(j) + ψ(n − j)

)
︸ ︷︷ ︸

III

.
(24)

First

(25) |I| = ∣∣β(A − B)n
(
qn−1 − qn)∣∣ ≤ C1ψ(n),

for some C1 > 0, since ψ ≥ min{A,B} > 0. Second, we observe that

lim
n→∞

∑n−1
j=1(

1
j (j+1)

ψ(j))

ψ(n)
=

∑∞
j=1

1
j (j+1)

(A − (A − B)qj−1)

A

= 1 −
(

1 − B

A

)
q−1(

1 + (
q−1 − 1

)
ln(1 − q)

) =: CA,B
q .

Here we used
∑∞

j=1
1

j (j+1)
= 1 and

∑∞
j=1

qj−1

j (j+1)
= q−1(1 + (q−1 − 1) ln(1 − q)). Moreover,

lim
n→∞

∑n−1
j=1

1
j (j+1)

ψ(n − j)

ψ(n)
= limn→∞

∑n−1
j=1

1
j (j+1)

(A − (A − B)qn−j−1)

A
= 1,

since
∑n−1

j=1
1

j (j+1)
qn−j−1 goes to 0 as n → ∞. Combining the above two displays, we obtain

III ∼ (
1 + CA,B

q

)
γ nψ(n) as n → ∞.

Step 2: Construction of ψ—choice of parameters. We add and subtract the term
(1 + CA,B

q )γ nψ(n) and reformulate (24) as

Lψ(n) = γψ(n) + (
CA,B

q γ − θ
)
nψ(n)︸ ︷︷ ︸

II′

+R1(n, q) + R2(n, q) + βn
(
ψ(n + 1) − ψ(n)

)︸ ︷︷ ︸
III′

,
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where the term III′ is the remainder term and

R1(n, q) := γ n

(
n−1∑
j=1

(
1

j (j + 1)
ψ(j)

)
− CA,B

q ψ(n)

)
,

R2(n, q) := γ n

(
n−1∑
j=1

(
1

j (j + 1)
ψ(n − j)

)
− ψ(n)

)
.

(26)

We choose q , A, B such that the term II′ is 0 (i.e., CA,B
q = θ/γ ) and 0 < A,B ≤ 1 (then

0 < infN+ ψ < supN+ ψ ≤ 1). More precisely, we distinguish three cases:

• If γ = θ , we can choose A = B = 1.
• If γ > θ , we can choose q close to 1 such that q−1(1 + (q−1 − 1) ln(1 − q)) ∈ (1 − θ

γ
,1)

and then choose 0 < B < A ≤ 1 such that CA,B
q = θ/γ .

• If γ < θ , it suffices to fix some q ∈ (0,1) and then choose 0 < A < B ≤ 1 such that
CA,B

q = θ/γ .

Besides, the convergences in Step 1 ensure that there exists C2 ∈ (0,∞) such that

sup
n∈N+

{∣∣∣∣R1(n, q)

ψ(n)

∣∣∣∣ + ∣∣∣∣R2(n, q)

ψ(n)

∣∣∣∣} ≤ C2.(27)

Together with (25), we obtain that

(γ − C1 − C2)ψ ≤ Lψ ≤ (γ + C1 + C2)ψ.

This guarantees that the last two inequalities of (21) hold with the following choice of pa-
rameters:

b := γ − C1 − C2, ξ := γ + C1 + C2.

Step 3: Find a, ζ . For V = [xp] with p ≥ 1, we pick a real number a such that

a < min
{
2p−1pβ − θ, b

}
.

Using the first inequality in (15) and distinguishing if 2p−1pβ − θn is larger than a or not,
we can write

L
[
xp]

(n) ≤ anp + (
2p−1pβ − θn − a

)
np1{2p−1pβ−θn≥a}

≤ a
[
xp]

(n) + ζψ(n),

with ζ ∈ (0,∞). The above result holds because ψ is bounded and there exist only finitely
many n satisfying 2p−1pβ − θn ≥ a. This ends the proof of (i) for p ≥ 1. Besides, for any
large R, the set K is finite and nonempty. The combination of growth, fragmentation and
isolation ensures the irreducibility of (Xt)t≥0 which allows one to end the proof of (ii). So
both (i) and (ii) are proved for V = [xp] with p ≥ 1.

Now we treat the case V ∈ S and verify the condition (i) and (ii) with ψ given in Step 1. For
condition (ii), we only have to show that K is nonempty and finite, which is straightforward
to see since V is increasing to infinity while ψ is a bounded function. For condition (i), we
only have to show the first half of (21). We calculate LV and use the decomposition in (14).
Note that V (n+1)

n+1 ≤ V (n)
n

implies for the growth term that

I = βn
(
V (n + 1) − V (n)

) ≤ βn

(
n + 1

n
V (n) − V (n)

)
≤ βV (n).
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Then the fact that V increases and CV in (20) is finite yields for the fragmentation term III:

γ (n − 1)

n−1∑
j=1

n

n − 1

1

j (j + 1)

(
V (j) + V (n − j) − V (n)

) ≤ γ n

n−1∑
j=1

V (j)

j (j + 1)
< CV γn.

The above two displays entail that

LV (n) ≤ (β − θn)V (n) + CV γn.(28)

Now we pick a real number a such that a < min{β − θ, b}. Using limn→∞ V (n) = ∞, we
notice that E := {n ∈ N+ : (β − θn)V (n) + CV γn > aV (n)} is a nonempty finite set. Then
distinguishing the cases whether n belongs to E or not in (28) yields

LV (n) ≤ aV (n)1{n∈Ec} + (
(β − θn)V (n) + CV γn

)
1{n∈E}

= aV (n) + (
(β − a − θn)V (n) + CV γn

)
1{n∈E}

≤ aV (n) + ζψ(n).

Here the constant ζ is defined by

ζ := max
n∈E

(β − a − θn)V (n) + CV γn

ψ(n)
∈ (0,∞).

We conclude that both conditions (i) and (ii) are verified. The whole proof is complete and
finished. �

Now we come to the main result of this subsection which gives the existence of eigenele-
ments and asymptotic behaviour of the semigroup, based on Theorem 2.1 in [7].

PROPOSITION 4.1. There exists a unique triplet (λ,π,h) where λ ∈ R and π =
(π(n))n∈N+ is a positive vector of probability distribution and h : N+ → (0,∞) is a posi-
tive function, such that for all t ≥ 0,

πMt = eλtπ, Mth = eλth,

and 0 < infn≥1 h(n) ≤ supn≥1 h(n) < ∞ and
∑

n≥1 π(n) = ∑
n≥1 π(n)h(n) = 1.

Besides, for every p > 0 there exists C,ω > 0 such that for any n,m ≥ 1, t ≥ 0,∣∣e−λtMt(n,m) − h(n)π(m)
∣∣ ≤ Cnpm−pe−ωt ,

∑
n≥1

π(n)np < ∞.(29)

PROOF. Lemma 4.2 together with Lemma 4.1(iii) ensures that the semigroup M satisfies
the drift and irreducibility conditions given in [7] (Propositions 2.2 and 2.3 therein). More
precisely, these conditions are met with V = [xp] for p > 0 and ϕ = ψ (defined in (23)),
while ψ ≤ V is guaranteed by the fact that ψ ≤ 1. Using these conditions, we can apply
Theorem 2.1 in [7], which yields the proposition, except the boundedness of h. In particular,
(29) is obtained by specifying the initial condition μ = δn and using the test function 1m.

We prove at first that h is upper bounded. Lemma 3.4 in [7] ensures that h is upper bounded
by V times a constant (i.e., h � V in their notation). Adding that Lemma 4.2 guarantees that
we can pick a V ∈ S that increases arbitrarily slowly, we obtain that h is upper bounded.
Finally, we justify that h is lower bounded. Indeed h(n) = eλM1h(n) ≥ ch(1) for all n ≥ 1,
where c > 0. This is because, due to (8), the probability that a cluster of size n produces (by
fragmentation) a cluster of size one before unit time 1 and that this latter stays unchanged in
the remaining time within the unit time is lower bounded by a positive constant independent
of its size n. �
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Equation (29) ensures that for any f ∈ Bp ,∣∣e−λtMtf (n) − h(n)〈π,f 〉∣∣ ≤ Cnp+2‖f ‖pe−ωt ,(30)

where ‖f ‖p := ∑
m≥1 m−(p+2)|f (m)| < ∞. This result will be useful later.

The fact that the eigenvector h is lower and upper bounded in (0,∞) ensures that the
impact of the size of the initial cluster on the first order approximation of the profile re-
mains bounded. Furthermore, we expect that restricting the set of test functions to bounded
functions, the current result (29) can be enhanced as uniform ergodic convergence. Indeed,
we may apply Theorem 3.5 in [6] with ν = δ1, using again that large clusters produce with
high probability clusters of small sizes at fragmentation and are fast isolated. The remaining
difficulty lies in controlling uniformly Mt1(n)/Mt1(1) in time and size.

At this point one may want to apply [2] to prove strong convergence using the asymptotic
behaviour of the first moment semigroup (Mt)t≥0. But [2] requires stronger assumptions
than what is obtained in (29), in particular in terms of the stationary distribution π . Besides,
we are interested in finer and more quantitative estimates, with motivations coming from
inference and epidemiology. We thus follow another approach via L2 estimates and control
of fluctuations.

4.3. L2 martingale. Using the first moment semigroup, we can compute the second mo-
ment of 〈Xt,f 〉 for f ∈ B, which consists in the so-called formula for forks or many-to-two
formula, see for example, [8, 29] and references therein. The idea is to use the most recent
common ancestor of two individuals to decouple their values.

LEMMA 4.3. For any x ∈N+ and f ∈ B, we have

Eδx

[〈Xt,f 〉2]
= Mt

(
f 2)

(x) + 2
∫ t

0

∑
n≥1

Ms(x,n)

( ∑
1≤j≤n−1

κ(n, j)Mt−sf (j)Mt−sf (n − j)

)
ds,

where κ(n, j) = γ n
j (j+1)

is the rate at which a cluster of size n breaks into two clusters of sizes

(n − j) (first child) and j (second child).

REMARK 1. Combining this identity with the estimates on the semigroup M obtained
in the previous subsection gives L2 convergence of the empirical measure of clusters, with
exponential speed and size dependency; see next section.

PROOF. Recalling notation in Section 3.1, we have

〈Xt,f 〉 = ∑
u∈Ut

f
(
Xu

t

)
.

Recall also that, for any u, v ∈ U , u ∧ v is the label of the most recent common ancestor of u

and v, and Ut (u) as the set of active clusters at t issued from u. We first notice that

〈Xt,f 〉2 = ∑
u,v∈Ut

f
(
Xu

t

)
f

(
Xv

t

) = ∑
u∈Ut

f 2(
Xu

t

) + ∑
w∈U

∑
u,v∈Ut ,

u�=v,u∧v=w

f
(
Xu

t

)
f

(
Xv

t

)

= ∑
u∈Ut

f 2(
Xu

t

) + ∑
w∈U

1{b(w)<t}It (w),

(31)
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where for any w ∈ U , b(w) is the time at which the cluster labelled by w branches (i.e., the
time when it splits into two clusters, labelled w1 and w2; potentially infinite if that does not
happen due to isolation) and

It (w) = ∑
i,j∈{1,2},i �=j

u∈Ut (wi),v∈Ut (wj)

f
(
Xu

t

)
f

(
Xv

t

) = 2
( ∑

u∈Ut (w1)

f
(
Xu

t

) × ∑
v∈Ut (w2)

f
(
Xv

t

))
.

Thus It (w) is the cross term between the active clusters on the two genealogical subtrees
rooted at w1 and w2.

Concerning the equation (31), we have first

Eδx

[ ∑
u∈Ut

f 2(
Xu

t

)] = Mt

(
f 2)

(x).

Second, we deal with Eδx [
∑

w∈U 1{b(w)<t}It (w)]. For any w ∈ U and for any i ∈ {1,2}, we
use strong Markov property to get

1{b(w)<t}Eδx

[ ∑
u∈Ut (wi)

f
(
Xu

t

)|b(w),Xwi
b(w)

]
= 1{b(w)<t}Mt−b(w)f

(
Xwi

b(w)

)
.

For any w ∈ U , the branching property then yields

1{b(w)<t}Eδx

[
It (w)|Fb(w), b(w)

] = 21{b(w)<t}Mt−b(w)f
(
Xw1

b(w)

)
Mt−b(w)f

(
Xw2

b(w)

)
.

Combining these identities, we obtain

Eδx

[ ∑
w∈U

1{b(w)<t}It (w)

]
= 2Eδx

[ ∑
w∈U

1{b(w)<t}Mt−b(w)f
(
Xw1

b(w)

)
Mt−b(w)f

(
Xw2

b(w)

)]

= 2Eδx

[ ∑
w∈U

1{b(w)<t}g
(
Xw

b(w)−, b(w)
)]

,

where we introduce

g
(
Xw

b(w)−, b(w)
) := Eδx

[
Mt−b(w)f

(
Xw1

b(w)

)
Mt−b(w)f

(
Xw2

b(w)

)|Xw
b(w)−, b(w)

]
.

This function involves the fragmentation event and can be written explicitly by recalling that,
when a cluster of size n splits, the probability that the size of the first child is (n − j) and the
second child in j is n/((n − 1) · j · (j + 1)). That is, we can obtain

g(n, s) = ∑
1≤j≤n−1

n

n − 1

1

j (j + 1)
Mt−sf (j)Mt−sf (n − j).(32)

Adding that the branching rate of a cluster of size n is γ (n − 1), we obtain

Eδx

[ ∑
w∈U

1{b(w)<t}g
(
Xw

b(w)−, b(w)
)]

=
∫ t

0

∑
w∈U,n≥1

g(n, s)Pδx

[
w ∈ Us−,Xw

b(w)− = n,b(w) ∈ ds
]

=
∫ t

0

∑
w∈U,n≥1

g(n, s)Pδx

[
w ∈ Us−,Xw

b(w)− = n
]
γ (n − 1)ds

=
∫ t

0

∑
n≥1

g(n, s)γ (n − 1)Ms(x,n)ds.

This equation and (32) give us the expression of κ . The proof is thus completed. �
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With the help of this L2 expression, we can deal with the martingale associated to the
harmonic function h.

PROPOSITION 4.2. The process (Mt )t≥0 defined as

Mt = e−λt 〈Xt,h〉,(33)

is a nonnegative martingale, which converges almost surely to a nonnegative finite random
variable W as t tends to infinity. Moreover, if λ > 0, (Mt )t≥0 converges in the L2 norm to W .

PROOF. The martingale property is classical and the proof is given for the sake of com-
pleteness. Recall the notation Ut and Xu

t introduced in Section 3.1. For any u ∈ Ut , recall that
Ut+s(u) is the set of labels of all the clusters active at time (t + s) issued from the cluster
labelled by u active at time t . Then we have

E[Mt+s |Ft ] = e−λ(t+s)
E

[ ∑
u∈Ut+s

h
(
Xu

t+s

)|Ft

]

= e−λ(t+s)
∑
u∈Ut

EδXu
t

[ ∑
v∈Ut+s (u)

h
(
Xv

t+s

)|Ft

]

= e−λ(t+s)
∑
u∈Ut

Msh
(
Xu

t

) = Mt ,

since Msh = eλsh. As M is nonnegative, it converges almost surely to a finite random vari-
able.

Let us now prove the L2 convergence. We apply Lemma 4.3 with x = 1 and obtain

E
[〈Xt,h〉2]
= Mt

(
h2)

(1) + 2
∫ t

0

∑
n≥1

Ms(1, n)

( ∑
1≤j≤n−1

κ(n, j)Mt−sh(j)Mt−sh(n − j)

)
ds

= Mt

(
h2)

(1) + 2e2λtJt ,

where

Jt =
∫ t

0

∑
n≥1

e−2λsMs(1, n)

( ∑
1≤j≤n−1

κ(n, j)h(j)h(n − j)

)
ds.

Using that κ(n, j) = γ n/(j (j + 1)) for all n ≥ 1 and 1 ≤ j ≤ n − 1 and that h is bounded
given in Proposition 4.1, we get that

∑
1≤j≤n−1 κ(n, j)h(j)h(n − j) grows at most linearly

with n. Moreover we can apply (30) to control the gap between e−λsMs(1, n) and h(1)π(n).
Combining these estimates ensures that for any p > 2, there exists C > 0 such that

0 ≤ Jt ≤ C

∫ t

0
e−λs

∑
n≥1

nγ
(
h(1)π(n) + n−p)

ds ∀n ≥ 1, t ≥ 0,

which is uniformly upper bounded for all n ≥ 1, t ≥ 0. Adding that π(n) decreases to 0 faster
than n−3 ensures that supt≥0 Jt < ∞. Finally

E
[
(Mt )

2] = e−2λt
E

[〈Xt,h〉2] = e−2λtMt

(
h2)

(1) + Jt ,

and we apply (30) to conclude that supt≥0 E[(Mt )
2] < ∞. Then by the martingale conver-

gence theorem, we obtain that E[W 2] < ∞ and (Mt )t≥0 converges in the L2 norm to W .
�
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REMARK 2. In fact, Proposition 4.2 holds for (Xt)t≥0 under Pδn for any n ≥ 1, with the
limit W depending on n. The proof is essentially the same as for n = 1. We state here the
result under P = Pδ1 so that the limit W is consistent with Theorem 2.2 and Corollary 1.

4.4. Proof of Theorem 2.1. With the help of Proposition 4.1 and Proposition 4.2, we are
now ready to prove our Theorem 2.1.

PROOF OF THEOREM 2.1. We use the classical notation lim and lim respectively for the
limit inferior and limit superior of a sequence defined on discrete or continuous time. We
notice that E[|Xt |] = E[〈Xt,1〉] = ∑∞

j=1 Mt(1, j) and we apply (30) with f ≡ 1 (constant
function) and n = p = 1. This ensures that limt→∞ log(E[|Xt |])/t = λ.

To study the limit of log(E[|Yt |])/t , we use Kolmogorov’s equation. More precisely,
following the localisation argument in the proof of Lemma 4.1 (ii)–(iii), we check that
Ff,g(μ, ν) = 〈ν,1〉 belongs to the domain of the extended generator of (Xt , Yt )t≥0 (see (9)).
Then we get

E
[|Yt |] = E

[〈Yt ,1〉] =
∫ t

0
E

[〈
Xs, θ

[
x

]〉]
ds =

∫ t

0
Ms

(
θ
[
x

])
(1)ds,

and we conclude using (30).
Lastly, we study the the survival probability P[τ = ∞].

• In the subcritical phase λ < 0, (30) and the classical first moment estimate prove that
extinction is almost sure.

• In the supercritical phase λ > 0, we use the L2 martingale of Proposition 4.2 and the
optional stopping theorem to get

h(1) = E

[
lim

t→∞ e−λ(t∧τ)〈Xt∧τ , h〉
]
= E[W1{τ=∞}].(34)

Adding that h > 0 from Proposition 4.1 implies that P[τ = ∞] > 0.
• In the critical phase λ = 0, we first observe that the probability of extinction starting from

one cluster, within a unit time, is greater than a positive constant (uniformly with respect to
the cluster size that we started with). Besides, limt→∞ |Xt | < ∞ a.s. since Fatou’s lemma
ensures that

E

[
lim

t→∞
|Xt |

]
= E

[
lim

t→∞
〈Xt,1〉

]
≤ lim

t→∞E
[〈Xt,h〉]/ inf

n≥1
h(n) = h(1)/ inf

n≥1
h(n) < ∞.

This ensures that extinction occurs a.s. in finite time by a classical argument for
Markov processes with accessible absorbing points. Indeed, for any K ≥ 1, on the event
limt→∞ |Xt | ≤ K , extinction occurs a.s. since we can construct an infinite sequence of
stopping times Tn (separated at least by a unit time) such that |XTn | ≤ K and for each n,
extinction occurs with a positive (lower bounded) probability during [Tn,Tn + 1]. �

5. Strong convergences. The Perron’s root λ ∈ R and associated eigenelements have
been characterised in Proposition 4.1. The sign of λ determines if the first moment semigroup
goes to 0 or infinity. We turn now to trajectorial results and find first an equivalent statement
of being extinct (Kesten–Stigum). Then we focus on the supercritical regime λ > 0 and prove
strong law of large numbers for the distribution of clusters.

5.1. Kesten–Stigum limit theorem. A fundamental and classical question is whether
{W > 0} coincides with survival event {τ = ∞} or not. This is one part of the Kesten–Stigum
theorem in branching processes; see, for example, [26, 27]. In our case, the L2 computation
ensures that P[W > 0] > 0 and we will get a positive answer to the question posed.
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PROPOSITION 5.1. Assume λ > 0. Then P[W > 0] > 0, and {W > 0} = {τ = ∞} a.s.

PROOF. The fact that P[W > 0] > 0 comes from the L2 martingale convergence in
Proposition 4.2. Indeed, given (34) and the comments below, we obtain that P[W > 0] > 0.
Besides, it is straightforward to see that {W > 0} ⊂ {τ = ∞}. Thus if P[W > 0] = P[τ = ∞],
the proof is done. The lines of the proof are classical, even though the sizes of clusters being
unbounded requires some specific arguments.

First, we use the fact that any cluster can be isolated (before any other event happening
to it) during a unit time interval, with the isolation probability lower bounded by a positive
value for all sizes. As a result, the number of clusters has to tend to infinity to survive:

{τ = ∞} =
{

lim
t→∞|Xt | = ∞

}
a.s.

Second, we deduce from the above result that the number of clusters of size 1 tends to infinity
on the survival event. Indeed, during a unit time interval, clusters of size one have a positive
probability to stay unchanged and other clusters have a positive probability to create (by frag-
mentation) one cluster of size one, and the latter probability is lower bounded uniformly with
respect to the size n ≥ 2. By independence of clusters and Markov inequality, this ensures
that

lim
t→∞Xt(1) = ∞ a.s. on {τ = ∞}.

On the event {τ = ∞}, we can thus define a sequence of stopping times for N ≥ 1

τN := inf
{
t : Xt(1) ≥ N

}
.

We obtain for t ≥ τN

e−λt 〈Xt,h〉 ≥ e−λτN
∑

u∈AN

e−λ(t−τN )
∑

v∈Ut (u)

h
(
Xv

t

)
,

where AN := {u ∈ UτN
: Xu

τN
= 1}. By Proposition 4.2, e−λ(t−τN ) ∑

v∈Ut (u) h(Xv
t ) converges

to a nonnegative random variable denoted by W(u) which is equal in law to W . Besides,
{W(u)}u∈AN

are i.i.d. random variables. Thus we have

P[W = 0, τ = ∞] ≤ P[W = 0, τN < ∞]
≤ P

[{τN < ∞} ∩ {
W(u) = 0,∀u ∈ AN

}] ≤ (
P[W = 0])N.

As a result, P[W = 0] = 1 or P[W = 0, τ = ∞] = 0 (by letting N → ∞). Only the latter is
possible since we know that P[W > 0] > 0. The proof is thus finished. �

5.2. Strong law of large numbers for the size process of active clusters. In this part, we
prove Theorem 2.2 using the estimates of the first moment semigroup, the L2 estimates and
the martingale associated to the harmonic function. The L2 estimates ensure weak conver-
gence, and the convergence speed obtained entails strong convergence of subsequences. The
strategy is then to control fluctuations to prove the strong convergence along t ∈ R+. To that
purpose, we follow the idea from [3]. We divide the proof into three steps.

PROOF OF THEOREM 2.2. Step 1: L2 convergence. We prove first the L2 convergence
of e−λt 〈Xt,f 〉 to W 〈π,f 〉 for any f ∈ Bp with p > 0. We develop the difference as follows

e−λt 〈Xt,f 〉 − W 〈π,f 〉
= e−λt 〈Xt,f 〉 − e−λt 〈Xt,h〉〈π,f 〉︸ ︷︷ ︸

I

+ e−λt 〈Xt,h〉〈π,f 〉 − W 〈π,f 〉︸ ︷︷ ︸
II

.(35)
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The second term II is nothing but (Mt − W)〈π,f 〉, which converges in L2 to 0 by
Proposition 4.2. We only have to prove the L2 convergence of the term I to 0. Denoting
g := f − 〈π,f 〉h, Lemma 4.3 yields

e2λt
E

[|I|2] = E
[〈Xt, g〉2] = Mt

(
g2)

(1) + Jt ,(36)

where

Jt := 2
∫ t

0

∑
n≥1

Ms(1, n)

( ∑
1≤j≤n−1

κ(n, j)Mt−sg(j)Mt−sg(n − j)

)
ds.

Recall that ‖f ‖p = ∑
m≥1 |f (m)|m−(p+2) ∈ (−∞,∞). Observe that g ∈ Bp and let

p′ > 2p + 8. By (30), there exists C′ > 0 such that for any n ∈ N+ and s, t ≥ 0,∣∣e−λtMtg(n) − h(n)〈π,g〉∣∣ ≤ C′np+2‖g‖pe−wt ,∣∣e−λsMs(1, n) − h(1)π(n)
∣∣ ≤ C′n−p′

e−ws.

Since 〈π,g〉 = 0 and κ(n, j) ≤ γ n, using the above two displays, there exists C1 > 0 such
that

|Jt | ≤ C1‖g‖pe2(λ−ω)t
∫ t

0
e(2ω−λ)s

∑
n≥1

n2p+6(
h(1)π(n) + n−p′)

ds.

Using the second statement in (29) and p′ > 2p + 8, the sum
∑

n≥1 n2p+6(h(1)π(n) + n−p′
)

in the above display is finite and there exists C2 > 0 such that

|Jt | ≤ C2‖g‖pe2(λ−ω)t
∫ t

0
e(2ω−λ)s ds ∀n ≥ 1, t ≥ 0.

Moreover, by (30), e−2λtMt(g
2)(1) ≤ 〈π,g2〉h(1)e−λt + C‖g2‖pe−(λ+ω)t , for any t ≥ 0.

Plugging in these estimates to (36), we see that there exists C3 > 0 such that

(37) E
[|I|2] ≤ C3

(〈
π,g2〉 + ∥∥g2∥∥

p + ‖g‖p

)
te−(λ∧2ω)t ∀t ≥ 0.

Note that C1, C2, C3 do not depend on f and t . Then Step 1 is finished.

REMARK 3. A byproduct of (37) and Proposition 4.2 is that, for the case λ > 0 there
exists a constant C0 > 0 and an exponent σ ∈ (0, λ), such that for any f ∈ Bp ,

E
[〈Xt,f 〉2] ≤ C0e

2λt (∣∣〈π,f 〉∣∣2 + (〈
π,g2〉 + ∥∥g2∥∥

p + ‖g‖p

)
e−σ t ) ∀t ≥ 0,(38)

with the notation g = f − 〈π,f 〉h.

Step 2: Almost sure convergence for one type. The main idea is to extend an elegant argu-
ment from [3] to our countable-type branching process.

First, we establish an almost sure convergence for a discrete scheme, using the speed of
convergence obtained from the L2 estimates. We can pick a step size � > 0 and apply the
decomposition (35). Then the martingale part II converges to 0 almost surely, and for the
term I, (37) yields

E
[∣∣e−λk�〈Xk�,f 〉 − e−λk�〈Xk�,h〉〈π,f 〉∣∣2] ≤ Ck�e−(λ∧2ω)k� ∀k ≥ 0.(39)

By the Borel–Cantelli lemma, we get

(40) e−λk�〈Xk�,f 〉 k→∞−−−→ W 〈π,f 〉 almost surely.
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Recall that on the event {W = 0}, by Proposition 5.1, the extinction occurs a.s. So we focus
on the event {W > 0}. Let us first prove that

e−λtXt (n)
t→∞−−−→ Wπ(n) almost surely.(41)

Given the almost sure convergence in discrete times, we need to control the fluctuations in
the intervals [k�, (k + 1)�). A nice observation in [3] is that we only need to prove the
following sufficient (and necessary) condition:

lim
t→∞

e−λtXt (n) ≥ Wπ(n) almost surely for all n ≥ 1.(42)

We first show that (42) implies (41) using that the martingale convergence controls the dis-
sipation of mass. To this purpose, for any fixed n ≥ 1, consider any sequence of (random)
times (tk)k∈N+ such that limt→∞ e−λtXt (n) = limk→∞ e−λtkXtk (n). Proposition 4.2 and Fa-
tou’s lemma and (42) ensure

lim
t→∞ e−λtXt (n)h(n) = lim

k→∞

(∑
i≥1

e−λtkXtk (i)h(i) − ∑
i≥1,i �=n

e−λtkXtk (i)h(i)

)

≤ W − ∑
i≥1,i �=n

lim
k→∞

e−λtkXtk (i)h(i)

≤ W − ∑
i≥1,i �=n

Wπ(i)h(i) = Wπ(n)h(n).

(43)

Then together with (42) we obtain (41).
We need now to prove (42) following the arguments in [3]. Recall � > 0 is the time step

size. The proof relies on the following lower bound:

∀t ∈ [
k�, (k + 1)�

)
, Xt (n) ≥ Xk�(n) − Nk,�(n),(44)

where Nk,�(n) is the number of active clusters of size n at time k� that will encounter at
least one event within (k�, (k + 1)�). Indeed, to prove (42), we can find a lower bound for
limt→∞ e−λtXt (n) using the above display. More precisely,

lim
t→∞

e−λtXt (n) ≥ lim
k→∞

e−λ(k+1)�Xk�(n) − lim
k→∞ e−λk�Nk,�(n).

Using (40) for the first term on the right-hand side, we obtain

lim
t→∞

e−λtXt (n) ≥ e−λ�π(n)W − lim
k→∞ e−λk�Nk,�(n).

It suffices to prove that limk→∞ e−λk�Nk,�(n) = 0 a.s. and then let � go to 0. We introduce

Dk = D�,n,k,ε := {
Nk,�(n) > εXk�(n),Xk�(n) > k

}
, k ≥ 1.

By branching property, we know that

Nk,�(n)
(d)=

Xk�(n)∑
i=1

ξi,

where {ξi}i≥1 are i.i.d. Bernoulli random variables, independent of Xk�(n) and

P[ξi = 0] = 1 − P[ξi = 1] = exp(−rn�), rn = (β + θ + γ )n − γ .

Indeed, rn is the total jump rate of an active cluster of size n. Choose � small such that
P[ξi = 1] < ε. Then,∑

k≥1

P[Dk] ≤ ∑
k≥1

P
[
Nk,�(n) > εXk�(n)|Xk�(n) > k

]
< ∞,
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using that P[∑k
i=1 ξi > εk] decreases exponentially as k grows thanks to the Hoeffding in-

equality. The Borel–Cantelli lemma then ensures that a.s. Dk happens a finite number of
times.

Recalling now from (40) that Xk�(n) grows exponentially on the event {W > 0}, so
{Xk� ≤ k} also happens a.s. a finite number of times. As a result, a.s. on the event {W > 0},
we have Nk,�(n) ≤ εXk�(n) for k large enough. We conclude that limk→∞ e−λk�Nk,� = 0
a.s. on the event {W > 0} since ε can be arbitrarily small. This ends the proof of (42) and we
obtain (41). We have thus also proved Theorem 2.2 for functions with bounded support.

Step 3: Almost surely convergence—general test function. It suffices to prove the results for
functions in Bp with p ≥ 1, thanks to the fact B = ⋃

p>0 Bp . For convenience, we consider
instead

Bp :=
{
f :N+ →R, sup

n≥1

∣∣f (n)
∣∣/np < 1

}
, p ≥ 1.(45)

Indeed, Bp ⊂ Bp and for any f ∈ Bp there exists g ∈ Bp and c ∈ R such that f = cg.
We define the cutoff operator at some level K ∈ N+

f≤K(n) := f (n)1{n≤K}, f>K(n) := f (n)1{n>K}.(46)

First, using (41), we obtain

sup
f ∈Bp

∣∣e−λt 〈Xt,f≤K〉 − W 〈π,f≤K〉∣∣ ≤ Kp
K∑

n=1

∣∣e−λtXt (n) − Wπ(n)
∣∣ t→∞−−−→ 0 a.s.

Second, recall the definition of [xp] and [x] introduced above (11). Then

sup
f ∈Bp

∣∣e−λt 〈Xt,f>K〉∣∣ ≤ e−λt 〈Xt,
[
xp]

>K

〉
, sup

f ∈Bp

∣∣W 〈π,f>K〉∣∣ ≤ W
〈
π,

[
xp]

>K

〉
.

Combining these estimates and∣∣e−λt 〈Xt,f 〉 − W 〈π,f 〉∣∣
≤ ∣∣e−λt 〈Xt,f>K〉∣∣ + ∣∣e−λt 〈Xt,f≤K〉 − W 〈π,f≤K〉∣∣ + ∣∣W 〈

π,
[
xp]

>K

〉∣∣,
it yields

lim
t→∞ sup

f ∈Bp

∣∣e−λt 〈Xt,f 〉 − W 〈π,f 〉∣∣ ≤ lim
t→∞ e−λt 〈Xt,

[
xp]

>K

〉 + W 〈π,f>K〉,

for any K ≥ 1. To show that the right-hand side in the above display goes to 0 as K goes to
infinity, it suffices to prove:

lim
K→∞ lim

t→∞ e−λt 〈Xt,
[
xp]

>K

〉 = 0.(47)

Since (40) ensures

lim
k→∞ e−λk�〈

Xk�,
[
xp]

>K

〉 = W
〈
π,

[
xp]

>K

〉
,(48)

we just need to control what happens on the time intervals [k�, (k + 1)�).
For that purpose, we use a coupling argument. On every interval [k�, (k + 1)�), we con-

sider a size process X̃t starting at time k� with the same value X̃k� := Xk�; we let the
rates of fragmentation and isolation be zero in X̃t , while for any cluster at k�, the growth
events occurring to it on (k�, (k + 1)�) are constructed by the common exponential clocks
in X̃t and Xt , until it gets isolated or fragmented in the latter. Notice that the isolation



A BRANCHING PROCESS ON RANDOM RECURSIVE TREES 5259

events make negative contribution to L([xp]),p ≥ 1, so are the fragmentation events because
(a + b)p ≥ ap + bp for all a, b > 0, p ≥ 1. Therefore, we obtain

sup
t∈[k�,(k+1)�)

〈
Xt,

[
xp]

>K

〉 ≤ sup
t∈[k�,(k+1)�)

〈
X̃t ,

[
xp]

>K

〉
.

The term on the right-hand side is monotone in t and we get

sup
t∈[k�,(k+1)�)

〈
Xt,

[
xp]

>K

〉 ≤ 〈
X̃(k+1)�−,

[
xp]

>K

〉
.

As a result, setting

Bk = BK
�,n,k := {〈

X̃(k+1)�−,
[
xp]

>K

〉
> 2

〈
Xk�,

[
xp]

>K

〉}
,

it suffices to prove

(49) P
[{i.o. Bk} ∩ {W > 0}] = 0,

to get that limt→∞ e−λt 〈Xt, [xp]>K〉 ≤ 2 limk→∞ e−λk�〈Xk�, [xp]>K〉 a.s. Together with
(48), we can conclude that (47) holds.

To this purpose, we use a truncation technique. Define

Ck = CK
�,n,k,ε := {

e−λk�〈
Xk�,

[
xp]

>K

〉 ≥ ε
} ∩ {

e−λk�〈
Xk�,

[
x2p]〉 ≤ 1/ε

}
,

for ε > 0. We do a split

P
[{i.o. Bk} ∩ {W > 0}] ≤ P

[{i.o. Bk ∩ Ck}] + P
[{

i.o. Bk ∩ (Ck)
c} ∩ {W > 0}].(50)

The second term on the right-hand side has the following upper bound thanks to (40) and
dominated convergence theorem:

P
[
W

〈
π,

[
xp]

>K

〉 ∈ (0,2ε)
] + P

[
W

〈
π,

[
x2p]〉

> 1/(2ε)
]
,

which converges to 0 as ε → 0.
We now deal with the first term on the right-hand side in (50). Defining

Zk,p,K := 〈
X̃(k+1)�−,

[
xp]

>K

〉 − 〈
X̃k�,

[
xp]

>K

〉
,

and using the Markov inequality,

P[Bk|Fk�] = P
[〈
X̃(k+1)�−,

[
xp]

>K

〉 − 〈
X̃k�,

[
xp]

>K

〉
>

〈
X̃k�,

[
xp]

>K

〉|Fk�

]
≤ var[Zk,p,K |Fk�]

(〈X̃k�, [xp]>K〉 −E[Zk,p,K |Fk�])2
.

(51)

We need now to evaluate the conditional expectation and variance. We will apply the follow-
ing lemma whose proof will be provided in the Appendix.

LEMMA 5.1. For any k,K ∈ N+ and p ≥ 1, we have

E[Zk,p,K |Fk�] ≤ C�

〈
Xk�,

[
xp]〉

,(52)

where C� = e2p−1pβ� − 1 + (1 − e−β�K)Kp and

var[Zk,p,K |Fk�] ≤ 2β�
(
4pp + K2p+1)〈

Xk�,
[
x2p]〉

.(53)

Plugging in the estimates (52) and (53) to (51), we obtain

1Ck
P[Bk|Fk�] ≤ 2β�(4pp + K2p+1) × ε−1eλk�

(εeλk� − β�(2pp + Kp+1) × ε−1eλk�)2 .

We pick � = ε2 with ε small enough. Then we obtain P[Bk|Fk�] ≤ Ce−λk� conditional
on Ck . Adding that P[Bk|Ck] = E[P[Bk|Fk�]|Ck], we obtain

∑
k≥1 P[Bk|Ck] < ∞. By the

Borel–Cantelli lemma, P[i.o. Bk ∩Ck] = 0 for ε small enough. Therefore we have proved the
term on the right hand side in (50) is equal to 0. This implies (49) and the proof for general
test functions is finished. �



5260 V. BANSAYE, C. GU AND L. YUAN

5.3. Strong law of large numbers for the size process of inactive clusters. We prove
Corollary 1 in this part. A heuristic argument to obtain the asymptotic limit is to use the
generator (9) and the convergence of Xt in Theorem 2.2:

lim
s↘t

E[〈Ys, f 〉 − 〈Yt , f 〉|Ft ]
s − t

= θ
〈
Xt,

[
x

]
f

〉 ∼t→∞ θeλtW
〈
π,

[
x

]〉〈π̃ , f 〉,

with π̃ defined in (5). In the sequel, we prove the result, with a suitable set of test functions
using in particular martingale analysis.

PROOF OF COROLLARY 1. Let f ∈ Bp for some fixed p > 0 throughout the proof. The
proof can be divided into 3 steps. In Step 1, we control the value 〈Yt , f 〉. In Step 2 we prove
the result with a specific function f = h/[x ] which gives us a martingale. In Step 3, we
generalise this result to general f ∈ Bp . Let C0 be a constant, independent of f , which may
change from line to line.

Step 1: L2 estimate. We will use again the estimation (38). We can check that Fg,f (μ, ν) =
〈ν,f 〉 belongs to the domain of the extended generator of (Xt , Yt )t≥0 (see (9)) using the same
localisation argument as in the proof of Lemma 4.1. So we get

d

dt
E

[〈Yt , f 〉2] = 2θE
[〈Yt , f 〉〈Xt,

[
x

]
f

〉] + θE
[〈
Xt,

[
x

]
f 2〉] ∀t ≥ 0.

Using Young’s inequality with α > 0 (to be chosen later),

θE
[〈Yt , f 〉〈Xt,

[
x

]
f

〉] ≤ αE
[〈Yt , f 〉2] +

(
θ2

α

)
E

[〈
Xt,

[
x

]
f

〉2]
.

Then we use Grönwall’s lemma to get

E
[〈Yt , f 〉2] ≤

∫ t

0
eα(t−s)

((
θ2

α

)
E

[〈
Xs,

[
x

]
f

〉2] + θE
[〈
Xs,

[
x

]
f 2〉])

ds.

Combining the L2 estimate of 〈Xs, [x ]f 〉 obtained in (38) and the L1 estimate of 〈Xt, [x ]f 2〉
in (30), we get

E
[〈Yt , f 〉2] ≤ C0

∫ t

0
eα(t−s)

(
θ2

α

)(〈
π,

[
x

]
f

〉2
e2λs + ‖f ‖pe(2λ−σ)s) ds

+
∫ t

0
eα(t−s)θ

(〈
π,

[
x

]
f 2〉

eλs + C‖f ‖pe(λ−w)s) ds.

We choose α ∈ (0, λ − max(σ/2,w)) and conclude that there exists C′ > 0 such that

E
[〈Yt , f 〉2] ≤ C′(〈π,

[
x

]
f

〉2
e2λt + 〈

π,
[
x

]
f 2〉

eλt + ‖f ‖p

(
e(2λ−σ)t + e(λ−w)t )).(54)

Step 2: A martingale for Y which tends to 0. We introduce the function

Fh,h/[x ](μ, ν) = 〈μ,h〉 −
(

λ

θ

)〈
ν,h/

[
x

]〉
.

We can again check that it belongs to the domain of the extended generator of (Xt , Yt )t≥0. It
turns out to be a harmonic function: AFh,g = 0. Then we obtain that

Ht := 〈Xt,h〉 −
(

λ

θ

)〈
Yt , h/

[
x

]〉
(55)

is a martingale with respect to (Ft )t≥0. Let us prove that e−λtHt converges to 0 as t → ∞
and thus Corollary 1 holds for the specific test function h/[x ]. This vanishing property is due
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to the fact that the two parts in H compensate each other. We prove first L2 convergence
using (9):

d

dt
E

[|Ht |2]
= E

[ ∞∑
n=1

Xt(n)βn
(∣∣Ht + h(n + 1) − h(n)

∣∣2 − |Ht |2)]

+E

[ ∞∑
n=1

Xt(n)θn

(∣∣∣∣Ht − h(n) −
(

λ

θ

)
h(n)/n

∣∣∣∣2 − |Ht |2
)]

+E

[ ∞∑
n=1

(
Xt(n)γ n

n−1∑
j=1

(
1

j (j + 1)

)(∣∣Ht + h(j) + h(n − j) − h(n)
∣∣2 − |Ht |2))]

.

We develop this equation and recognise the generator L defined in (14). As Lh = λh, we get

d

dt
E

[|Ht |2]
= E

[ ∞∑
n=1

Xt(n)

(
βn

∣∣h(n + 1) − h(n)
∣∣2 + θn

∣∣∣∣h(n) +
(

λ

θ

)
h(n)/n

∣∣∣∣2)]

+E

[ ∞∑
n=1

Xt(n)

(
γ n

n−1∑
j=1

(
1

j (j + 1)

)∣∣h(j) + h(n − j) − h(n)
∣∣2)]

.

Since h is bounded (see Proposition 4.1), we obtain

E
[|Ht |2] ≤ C0

∫ t

0
E

[〈
Xs,

[
x

]〉]
ds ≤ C0e

λt .(56)

This implies the L2 convergence of e−λtHt to 0 as t → ∞. For the almost sure convergence,
we set the step size � > 0. As (Ht)t≥0 is a martingale, for any ε > 0, we combine Markov’s
inequality, Doob’s inequality for Ht and the estimate (56) to obtain that

P

[
sup

t∈[k�,(k+1)�)

∣∣e−λtHt

∣∣ > ε
]
≤ P

[
e−λk� sup

t∈[k�,(k+1)�)

|Ht | > ε
]

≤ ε−2e−2λk�
E

[(
sup

t∈[k�,(k+1)�)

|Ht |
)2]

≤ 4ε−2e−2λk�
E

[|H(k+1)�|2]
≤ C0ε

−2e−λk�.

By the Borel–Cantelli lemma, we obtain the a.s. convergence of e−λtHt to 0.
Step 3: Convergence for general test functions. Now we need to obtain the result for a

general test function f ∈ Bp . The idea is similar: we define

H
f
t := 〈Xt,f 〉 −

(
λ

θ

)〈
Yt , f/

[
x

]〉 = 〈π,f 〉Ht + At + Bt,(57)

where At = 〈Xt,f − 〈π,f 〉h〉 and Bt = (λ
θ
)〈Yt , (f − 〈π,f 〉h)/[x ]〉. We apply L2 estimates

from (38) and (54) to ensure that

e−2λt
E

[
A2

t + B2
t

] ≤ C0

(
1 + sup

n≥1

|f (n)|
np

)2(
e−λt + e−σ t + e−(λ+σ/2)t ).



5262 V. BANSAYE, C. GU AND L. YUAN

Here C0 may depend on p but not on (the specific choice of) f . By the Borel–Cantelli lemma,
this implies the convergence of e−λtH

f
t along a subsequence {k�}k≥1 with � > 0

e−λk�H
f
k�

k→∞−−−→ 0 in L2 and almost surely.

We get

lim
k→∞ e−λk�〈

Yk�,f/
[
x

]〉 = lim
k→∞

(
θ

λ

)
e−λk�〈Xk�,f 〉 =

(
θ

λ

)
〈π,f 〉W in L2 and a.s.

Finally, to obtain the convergence along t ∈ R+, we decompose f as the difference of two
positive functions f = f + − f − and use that Yt is increasing in t :

∀t ∈ [
k�, (k + 1)�

)
, e−λ(k+1)�〈

Yk�,f +〉 ≤ e−λt 〈Yt , f
+〉 ≤ e−λk�〈

Y(k+1)�, f +〉
.

We obtain then

e−λ�

(
θ

λ

)〈
π,

[
x

]
f +〉

W ≤ lim
k→∞ e−λ(k+1)�〈

Yk�,f +〉 ≤ lim
t→∞

e−λt 〈Yt , f
+〉

≤ lim
t→∞ e−λt 〈Yt , f

+〉 ≤ lim
k→∞ e−λk�〈

Y(k+1)�, f +〉
= eλ�

(
θ

λ

)〈
π,

[
x

]
f +〉

W.

We take � ↘ 0 to get

lim
t→∞ e−λt 〈Yt , f

+〉 = (
θ

λ

)〈
π,

[
x

]
f +〉

W a.s.

A similar argument also works for f −. We combine these two terms and use π̃ to prove the
almost sure convergence in Corollary 1. The L2 convergence can be done similarly and we
skip the details. �

5.4. Limit on recursive trees. In this part, we prove the convergence of the empirical
measure on clusters.

PROOF OF THEOREM 2.3. We will prove only the convergence on active clusters Xt ,
as the proof for Yt follows in the same manner. The main idea is similar to the size process
(Xt , Yt )t≥0, which involves one type convergence and the cut-off argument. Without loss of
generality, we suppose that for any t ∈ T , |f (t)| ≤ |t|p for some p > 0.

Step 1: Cut-off argument. We do the following decomposition on the event Xt being not
empty:

1

|Xt |
∑
C∈Xt

f (C) −E
[
f (Tπ)

] =
∞∑

n=1

At(n)︸ ︷︷ ︸
I

+
∞∑

n=1

Bt(n)︸ ︷︷ ︸
II

,
(58)

where, if we write g(n) = E[f (Tn)],
At(n) = Xt(n)

〈Xt,1〉
(

1

Xt(n)

∑
C∈Xt ,|C|=n

f (C) − g(n)

)
, Bt (n) =

(
Xt(n)

〈Xt,1〉 − π(n)

)
g(n).

Theorem 2.2 implies the a.s. convergence of the second term II:

lim
t→∞

∞∑
n=1

Bt(n) = lim
t→∞

(〈Xt, g〉
〈Xt,1〉 − 〈π,g〉

)
= 0 on {τ = ∞}.
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For the first term I, we use a cut-off argument and |f (C)| ≤ |C|p:

(59)

∣∣∣∣∣
∞∑

n=1

At(n)

∣∣∣∣∣ ≤
∣∣∣∣∣

K∑
n=1

At(n)

∣∣∣∣∣ + 2

∣∣∣∣∣
∞∑

n=K+1

Xt(n)np

〈Xt,1〉
∣∣∣∣∣.

For the first term on the right-hand side in (59), we admit the following convergence (to be
proved in Step 2):

(60) ∀n ∈ N+, lim
t→∞

1

Xt(n)

∑
C∈Xt ,|C|=n

f (C) = E
[
f (Tn)

]
almost surely on {τ = ∞},

which can also be seen as a generalised law of large numbers. By Theorem 2.2, for
any n ∈ N+, Xt (n)

〈Xt ,1〉 converges a.s. as t → ∞. Then the above display ensures that

limt→∞ |∑K
n=1 At(n)| = 0, almost surely on {τ = ∞}. The second term on the right-hand

side in (59) also converges a.s. due to Theorem 2.2:

lim
t→∞

∣∣∣∣∣
∞∑

n=K+1

Xt(n)np

〈Xt,1〉
∣∣∣∣∣ = 〈

π,
[
xp]

>K

〉
almost surely on {τ = ∞},

where [xp]>K(n) = np1{n>K}. We put these results back into (58) and obtain that

lim
t→∞

∣∣∣∣ 1

|Xt |
∑
C∈Xt

f (C) −E
[
f (Tπ)

]∣∣∣∣ ≤ 2
〈
π,

[
xp]

>K

〉
almost surely on {τ = ∞}.

Then we let K → ∞ and prove Theorem 2.3.
Step 2: Convergence for one type. It remains to prove (60). We follow the same spirit as in

Step 2 in the proof of Theorem 2.2, with some minor technical differences. We recall Tn the
space of equivalence classes of RRT of size n, and denote by

∀t ∈ Tn, Xt(t) := ∑
C∈Xt

1{C∼t},

the number of active clusters of type t. Because the space Tn is finite (|Tn| = (n − 1)!), it
suffices to prove that

(61) ∀n ∈ N+,∀t ∈ Tn, lim
t→∞ e−λtXt (t) = W

π(n)

(n − 1)! a.s.,

and this can be dealt with using the same technique in the proof of Theorem 2.2: we only
need to prove the following:

∀n ∈ N+,∀t ∈ Tn, lim
t→∞

e−λtXt (t) ≥ W
π(n)

(n − 1)! .(62)

This is similar to proving (43). Let (tk)k∈N+ be any (random) time sequence such that
limt→∞ e−λtXt (t) = limk→∞ e−λtkXtk (t). Then we have

lim
t→∞ e−λtXt (t) = lim

k→∞

( ∑
t′∈Tn

e−λtkXtk

(
t′
) − ∑

t′∈Tn,t′ �=t

e−λtkXtk

(
t′
))

≤ Wπ(n) − ∑
t′∈Tn,t′ �=t

lim
k→∞

e−λtkXtk

(
t′
)

≤ Wπ(n) − ∑
t′∈Tn,t′ �=t

W
π(n)

(n − 1)! = W
π(n)

(n − 1)! .
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Here from the first line to the second line, we use Fatou’s lemma, and from the second line
to the third line we use (62). This equation controls the upper bound of limt→∞ e−λtXt (t).
Using also (62), we conclude that (61) is true.

Finally, we prove (62), which requires convergence along discrete time sequences and the
control of fluctuation. We calculate the L2 moment as follows

E

[(
e−λt

∑
C∈Xt ,|C|=n

(
1{C∼t} − 1

(n − 1)!
))2]

= e−2λt
E

[ ∑
C∈Xt ,|C|=n

E

[(
1{C∼t} − 1

(n − 1)!
)2∣∣∣Ft

]]

≤ e−2λt
E

[
Xt(n)

] = O
(
e−λt ) t→∞−−−→ 0.

In the first line, we use the fact that the clusters are i.i.d. RRTs of size n, see Proposition 3.2.
In the second line, we use (38). Notice that the L2 moment decreases at least exponentially,
we can thus take a discrete time sequence {k�}k≥1 with � > 0 and use the Borel–Cantelli
lemma to obtain that for any � > 0

∀n ∈N+,∀t ∈ Tn, lim
k→∞ e−λk�Xk�(t) = W

π(n)

(n − 1)! .

Let us now control fluctuations and let Nk,�(t) be the number of active clusters of type t at
time k�, on which occurs some event during (k�, (k + 1)�). Then like (44), we have

∀t ∈ [
k�, (k + 1)�

)
, Xt(t) ≥ Xk�(t) − Nk,�(t),

and it suffices to prove limk→∞ e−λk�Nk,�(t) = 0 to conclude (62). We skip the details as it
follows exactly the same lines starting from (44) in Step 2 in the proof of Theorem 2.2. �

6. Characterisation of phases and regularity. Recall the three parameters β , θ , γ

introduced when describing the GFI process in Section 1. The Malthusian exponent λ =
λ(β, θ, γ ) allows us to define the phases in terms of the sign of λ (i.e., λ > 0,= 0,< 0). So
far, we have not shown how many phases exist and how they are related. The main objective
of this section is to justify the phase diagram shown in Figure 3 and prove Theorem 2.4. The
proof strategy is organised as follows: in Section 6.1, we prove some regularity properties
about the mapping (β, θ, γ ) 
→ λ(β, θ, γ ). In Section 6.2, we justify Figure 3. In Section 6.3,
we give a brief proof for the change of monotonicity of β 
→ λ(β.θ, γ ) and finally prove
Theorem 2.4.

6.1. Regularity of Perron’s root. The occurrence of different phases relies on the parame-
ters (β, θ, γ ). We will study how the Perron’s root λ(β, θ, γ ) depends on the three parameters
in the following proposition. Recall that (β, θ, γ ) ∈ R

3+.

PROPOSITION 6.1 (Regularity of Perron’s root). For the Perron’s root λ associated to L
in (14), the mapping (β, θ, γ ) 
→ λ(β, θ, γ ) satisfies the following properties:

1. Monotonicity: λ(β, θ, γ ) is increasing on γ and decreasing on θ .
2. Regime:

• if θ ≥ β , or θ ∈ (0, β) and 0 < γ < θ(21− θ
β − 1)−1, then λ < 0;

• if θ ∈ (0, β) and γ > max{2θ(
1+ θ

β

1− θ
β

), 3
2θ(1 + θ

β
)}, then λ > 0.
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3. Homogeneity: for any ρ > 0, we have λ(ρβ,ρθ,ργ ) = ρλ(β, θ, γ ).
4. Continuity: λ(β, θ, γ ) is continuous with respect to the three parameters.

PROOF. Monotonicity. If the clusters split faster, then the number of active clusters will
increase. If the clusters become inactive faster, then the number of active clusters will de-
crease. This intuition is easy to prove by providing a coupling argument for each of the
parameters. Then we have the monotonicity property.

Regime. To find a regime where λ < 0, we make a test with f = [xp] with p ∈ (0,1).
Jensen’s inequality implies that

xp + yp

2
≤

(
x + y

2

)p

∀x, y ≥ 0.

This entails that

(j)p + (n − j)p − np ≤ (
21−p − 1

)
np.

We apply the above inequality into Lf and get that

Lf (n) ≤ βn
(
(n + 1)p − np) − θnp+1 + γ

(
21−p − 1

)
(n − 1)np

≤ (
pβ − (

21−p − 1
)
γ

)
f (n) + ((

21−p − 1
)
γ − θ

)
nf (n)

= (
pβ − θ + γ

(
21−p − 1 − θ

)
(n − 1)

)
f (n).

(63)

Now, we distinguish two situations. If θ ∈ (0, β), the condition γ < θ/(21− θ
β − 1) allows

us to find some p < θ/β such that Lf (n) ≤ (pβ − θ)f (n) for all n. Consequently Mtf ≤
exp((pβ − θ)t)f . Then Proposition 4.1 entails λ < 0. If θ ≥ β , it suffices to choose some p

close to 1 such that γ (21−p − 1) − θ < 0 and we get also λ < 0.
To find a regime where λ > 0, we consider the test function

f (n) = 1{n=1} + κ1{n≥2},

with constant κ ∈ (0,2) to be fixed. Recalling (14), it is clear that

n = 1, Lf (1) = β(κ − 1) − θ,

n = 2, Lf (2) = −2θκ + γ (2 − κ),

n ≥ 3, Lf (n) ≥ −nθκ + γ (n − 1).

For

γ > max
{

2θ

(1 + θ
β

1 − θ
β

)
,

3

2
θ

(
1 + θ

β

)}
,

we get Lf (n) > 0 for any n ≥ 1. Taking κ = 1
2((1 + θ

β
) + (

2γ
3θ

)), we obtain Lf (n) ≥ Cf (n)

for all n, with C > 0. It implies λ > 0.
Homogeneity. This is due to the fact that the generator L is linear with respect to the three

parameters. Let L̃ and (M̃t )t≥0 be respectively the generator and semigroup associated to
(ρβ,ρθ,ργ ), while we denote by λ, h, π the eigenelements associated to L. Then by the
definition of (Xt)t≥0, it is clear that L̃ = ρL, so M̃t = Mρt . This also implies

πL̃ = ρπL = ρλπ, L̃h = ρLh = ρλh,

so ρλ, h, π are eigenelements associated to L̃. Then by Proposition 4.1, ρλ is Perron’s root
for L̃= ρL.

Continuity. We will use three steps to prove it.
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Step 1: λ(β, θ, γ ) is locally bounded. For any ε > 0 such that

1

1 + ε
<

β0

β
< 1 + ε,

1

1 + ε
<

θ0

θ
< 1 + ε,

1

1 + ε
<

γ0

γ
< 1 + ε,

we have∣∣λ(β0, θ0, γ0)
∣∣

≤ (1 + ε)max
{∣∣λ(

β, (1 + ε)2θ, (1 + ε)−2γ
)∣∣, ∣∣λ(

β, (1 + ε)−2θ, (1 + ε)2γ
)∣∣}.

The above result is due to the homogeneity of λ on all parameters and the monotonicity of λ

on θ and γ . Then the local boundedness of λ is proved.
Step 2: 〈π(β, θ, γ ), [x]〉 is locally bounded. We prove it by contradiction. Assume that

(βn, θn, γn) converges to (β0, θ0, γ0). Let (β, θ, γ ) = (β0, θ0/2,2γ0). Let Mt , π , h, λ be
associated to (β, θ, γ ) and M̃t , π̃ , h̃, λ̃ to (βn, θn, γn). We assume that 〈π̃ , [x]〉 converges
to infinity as n → ∞. Due to homogeneity of λ on its parameters, we can assume βn = β0
without loss of generality.

By the assumption above, for any K > 0, let nK > 0 such that for any n ≥ nK , we have
〈π̃ , [x]〉 > K and θn > 3θ0/4 and γn < 7γ0/4. By Proposition 4.1, there exist 0 < c < C such
that c ≤ h(n) ≤ C for any n ≥ 1. Then using (iii) in Lemma 4.1, we have

d

dt
M̃th = M̃t (L̃h)

≤ M̃t (Lh) − c(θn − θ0/2)M̃t

([
x

]) + 2c(γn − 2γ0)M̃t

([x])
= λM̃th − c(θn − θ0/2)M̃t

([
x

]) + 2c(γn − 2γ0)M̃t

([x]).
(64)

Using again Proposition 4.1, as t → ∞,

(65) M̃th(n) ∼ h̃〈π̃ , h〉eλ̃t , M̃t

([x])(n) ∼ h̃
〈
π̃ , [x]〉eλ̃t .

Then for any fixed n ≥ nK , and t large enough, we have

M̃t

([x])(n) ≥ K

2C
M̃th(n).

Then we obtain that

d

dt
M̃th(n) ≤ λM̃th(n) − c(θn − θ0/2)M̃t

([
x

])
(n) + 2c(γn − 2γ0)M̃t

([x])(n)

≤
(
λ − cK

θ0 + 2γ0

8C

)
M̃th(n).

(66)

The above display implies that

λ̃ ≤ λ − cK
θ0 + 2γ0

8C
.

As K can be arbitrarily large, we obtain that λ̃ → −∞ as n → ∞, which is contradic-
tory to the fact that λ is locally bounded as proved in Step 1. Therefore we conclude that
〈π(β, θ, γ ), [x]〉 is locally bounded.

Step 3: λ is continuous with respect to the three parameters. The approach is very similar
to that in Step 2. Assume that (βn, θn, γn) converges to (β, θ, γ ). Let Mt , π , h, λ be associated
to (β, θ, γ ) and M̃t , π̃ , h̃, λ̃ to (βn, θn, γn). We use again that there exist 0 < c < C such that
c ≤ h(n) ≤ C for any n ≥ 1. Due to homogeneity, we can assume that γn = γ . We prove next
limn→∞ λ̃ = λ.
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By the assumption above, for any K > 0, let nK > 0 such that for any n ≥ nK , we have

|βn − β| ≤ β/K, |θn − θ | ≤ θ/K.

Since 〈π̃ , [x]〉 is locally bounded, using (65) and c ≤ h ≤ C, there exists l = l(β, θ, γ ) > 1
such that for fixed n ≥ nK and t large enough, we have

M̃th(n)/ l ≤ M̃t

([x])(n) ≤ lM̃th(n).

Then similar to (66), we have

d

dt
M̃t (h)(n) ≤

(
λ + Cl

β + θ

K

)
M̃t (h)(n).(67)

Since K can be arbitrarily large, we obtain that limn→∞ λ̃ ≤ λ. The other direction can be
proved similarly. Then the proof for continuity is finished. �

6.2. Existence of phases. The main objective of this part is to prove the following result,
which describes the phases and justifies Figure 3.

PROPOSITION 6.2 (Classification of phases). The regime of the three phases of the GFI
process depends on the parameters (β, θ, γ ) in the following way:

1. Critical phase: the regime is a critical surface defined as{
λ(β, θ, γ ) = 0

} = {
(β, θ, γ ) ∈ R

3+|0 < θ < β,γ = γc(β, θ)
}
.

Here γc(β, θ) is a function, such that for fixed β , the mapping θ 
→ γc(β, θ) is strictly in-
creasing, continuous and satisfies

lim
θ↘0

γc(β, θ) = 0, lim
θ↗β

γc(β, θ) = ∞.

2. Subcritical phase: the regime stays below the critical surface{
λ(β, θ, γ ) < 0

} = {
(β, θ, γ ) ∈ R

3+|θ ≥ β
}

∪ {
(β, θ, γ ) ∈ R

3+|0 < θ < β,0 < γ < γc(β, θ)
}
.

3. Supercritical phase: the regimes stays above the critical surface{
λ(β, θ, γ ) > 0

} = {
(β, θ, γ ) ∈ R

3+|0 < θ < β,γ > γc(β, θ)
}
.

The key step in the proof of Proposition 6.2 relies on some strict increment estimates which
are proved in the following two lemmas.

LEMMA 6.1. Perron’s root λ associated to the generator L in (14) satisfies the following
estimates:

∀δ > 0, λ(β, θ + δ, γ ) ≤ λ(β, θ, γ ) − δ,

∀δ ∈ (0, θ), λ(β, θ − δ, γ ) ≥ λ(β, θ, γ ) + δ.
(68)

PROOF. Let L̃ and (M̃t )t≥0 be the generator and semigroup associated to (β, θ + δ, γ ),
let h be the eigenvector associated to L of parameters (β, θ, γ ). Using a similar development
like (64) and using also [x] ≥ 1, we obtain

d

dt
M̃th = M̃t (Lh) − δM̃t

([
x

]
h
) = λM̃th − δM̃t

([
x

]
h
) ≤ (λ − δ)M̃th.

Using Grönwall’s inequality, the above display implies that M̃th ≤ e(λ−δ)th, which proves
the first statement in (68). For the second, the proof is similar and we skip it. �
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LEMMA 6.2. Let h be the eigenvector of Perron’s root associated to the generator L in
(14). Then in the critical phase λ = 0, h is subadditive, that is,

∀n,m ∈ N+, h(m + n) ≤ h(m) + h(n).(69)

PROOF. The proof relies on the probabilistic representation of h. Let Nn
t be the number

of clusters at time t with the initial state being a single cluster of size n. Then we have

E
[
Nn

t

] = 〈δnMt,1〉.
Using (30), in the case λ = 0, we have

lim
t→∞E

[
Nn

t

] = lim
t→∞〈δnMt,1〉 = h(n)〈π,1〉.(70)

Then we think of a coupling as follows: consider two processes of (Xt )t≥0, one with initial
state being a single RRT of size (m + n), and the other one with the same initial state but has
a uniformly selected edge removed which results in two smaller clusters of sizes respectively
m and n. By Proposition 3.1, these two clusters are independent RRTs with sizes respectively
m, n. Assume that the two processes have the same random events in their life times, except
that a splitting may happen in the particular edge that exists in the first process and does not
exist in the second process. In this coupling, it is easy to see that the number of clusters at
any time t > 0 in the first process will not be larger than the number in the second process.
Since the clusters evolve independently, we have

E
[
Nn+m

t

] ≤ E
[
Nn

t

] +E
[
Nm

t

]
.(71)

Combining (70) and (71), we obtain the desired result (69). �

REMARK 4. In the critical case, since Lh = 0h = 0, we solve Lh(1) = 0 to obtain that
h(2) = (1 + θ

β
)h(1). The criticality also implies β > θ . Therefore

h(1) + h(1) − h(2) =
(

1 − θ

β

)
h(1) > 0.

So the “=” in (69) is not always established.

PROOF OF PROPOSITION 6.2. We divide the proof into 4 steps. Steps 1–3 are about the
critical phase, and the Step 4 proves the regime of the other phases.

Step 1: Unique critical point. Fix β > 0 and 0 < θ < β . Using the regimes discovered for
subcritical and critical phases in Proposition 6.1 and also the continuity and monotonicity
property of λ therein, we know that {γ : λ(β, θ, γ ) = 0} is a nonempty closed interval. We
aim to prove that this interval is a single point by contradiction. Suppose that there exist
γ > 0, δ > 0 such that λ(β, θ, γ ) = λ(β, θ, γ + δ) = 0. Let L̃ and (M̃t )t≥0 be the generator
and semigroup associated to (β, θ, γ + δ), while we denote by L the generator and h the
eigenvector for Perron’s root associated to (β, θ, γ ). We also define the function G

G(n) :=
n−1∑
j=1

n

j (j + 1)

(
h(j) + h(n − j) − h(n)

)
.

Since h is subadditive (Lemma 6.2) and nonnegative (Proposition 4.1), we have

G(n) ≤
n−1∑
j=1

n

j (j + 1)

(
jh(1) + (n − j)h(1)

) ≤ n2h(1).
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Moreover by Remark 4, G is a nonzero positive function. Then by a similar argument like
(64) and using Lh = λh = 0, we have

d

dt
M̃th = M̃t (L̃h) = M̃t (Lh + δG) = M̃t (Lh) + δM̃tG = δM̃tG.(72)

By Proposition 4.1, there exist Perron’s eigenelements h̃, π̃ , and also a constant ω̃ > 0, cor-
responding to L̃, and the estimate (30) holds with the corresponding terms. Then we apply
(30) and G(n) ≤ n2h(1) to obtain

M̃tG ≥ 〈π̃ ,G〉h̃ − Ce−ωt .

Here C > 0 is a constant that does not depend on t . We plug in the above display to (72) and
obtain

d

dt
M̃th ≥ δ

(〈π̃ ,G〉h̃ − Ce−ωt ).
If λ(β, θ, γ + δ) = 0, then by (30), M̃th, as a vector, converges to 〈π̃ , h〉h̃ as t → ∞ for
every element. However since G is a nonzero positive function (which implies 〈π̃ ,G〉 > 0),
the above display shows that M̃th increases at least linearly to infinity as t → ∞ for every
element. This is a contradiction, so by the monotonicity of λ in γ , we have λ(β, θ, γ +δ) > 0.
We conclude that for fixed 0 < θ < β , there exists only one γ which makes λ(β, θ, γ ) = 0.
We denote it by γc = γc(β, θ).

Step 2: Strictly increasing and continuous function. Using Lemma 6.1 (first inequality),
we have

λ
(
β, θ + δ, γc(β, θ)

) ≤ λ
(
β, θ, γc(β, θ)

) − δ = −δ.

Since λ(β, θ, γ ) is increasing with respect to γ , we obtain that γc(β, θ + δ) > γc(β, θ).
Next we prove the continuity of θ 
→ γc(β, θ). By the monotonicity of λ in γ , we have

for any ε > 0, λ(β, θ, γc(β, θ) + ε) > 0. Then by the continuity of λ on θ , there exists some
δ0 > 0 such that for all δ ∈ (0, δ0), λ(β, θ + δ, γc(β, θ) + ε) > 0. This implies, using the
uniqueness of γc and monotonicity of λ on γ , that for any δ ∈ (0, δ0)

γc(β, θ + δ) < γc(β, θ) + ε,

which proves the right continuity of γc(β, θ) on θ . The left continuity can be proved exactly
in the same way.

Step 3: Asymptotic behaviour. By the monotonicity property of λ on γ and regimes for
subcriticality and supercriticality given in Proposition 6.1, we have:

θ
(
21− θ

β − 1
)−1 ≤ γc(β, θ) ≤ max

{
2θ

(1 + θ
β

1 − θ
β

)
,

3

2
θ

(
1 + θ

β

)}
.(73)

Then it suffices to let θ ↘ 0 and θ ↗ β to prove the asymptotic limits.
Step 4: Regime. Once we have proved that the critical phase is the single point for β , θ

fixed in an admissible domain, we apply the monotonicity about γ in Proposition 6.1 and
justify the regime for other phases. �

6.3. Monotonicity of h and λ. The dependence of λ on θ , γ has been discussed in the
previous subsections, while the dependence on β is more complicated. Indeed, in terms of
number of active clusters, isolation and fragmentation have the opposite effect and increasing
the cluster size accelerate both. This problem is closely related to the monotonicity of the
eigenfunction h. The main result in this part is the following one.
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PROPOSITION 6.3. The monotonicity of the mappings h(., θ, γ ) and λ(., θ, γ ) depends
on the values of γ , θ :

• if γ > θ , the two functions are increasing;
• if γ = θ , the two functions are constants;
• if γ < θ , the two functions are decreasing.

The case γ = θ is special: using (14), we find that h ≡ 1 is an eigenvector and λ = −θ .
The other cases are more delicate. Roughly, increasing β makes the infection progress faster
and accelerates the process. If γ > θ , this benefits the fragmentation more and thus makes the
number of clusters and λ increase. Otherwise, isolation is more impacted and the converse
happens.

This effect of acceleration due to the increase of β can be understood via the following
simplified problem. Let us consider a linear birth and death process (St )t≥0 starting from
a single particle: that is, each particle (representing a cluster) lives during an exponential
time of parameter 1/ρ and is replaced by two particles (resp. zero) with probability p2 =
γ /(θ +γ ) (resp. p0 = θ/(θ +γ )), corresponding respectively to fragmentation and isolation.
This birth and death process (St )t≥0 satisfies E[St ] = exp(λBDt) with

λBD = ρ(p2 − p0) = ρ

(
γ − θ

γ + θ

)
.

The monotonicity of λBD in function of ρ thus depends on the sign of (γ − θ), that is, on the
fact that the process is subcritical or supercritical.

Such a dichotomy also exists in our model, and will be clear in a modified process, which
is close to our original GFI process and the Malthusian coefficients are explicitly linked. This
modification yields a simpler process, since the probability for a cluster to be isolated or
fragmented does not depend on its size any longer and γ = θ provides the critical case for
this latter. This key property will allow us to make a coupling for the modified processes with
different β and then verify the monotonicities.

We divide the proof into three steps. First, we introduce a modified GFI process, by slightly
changing the isolation term. Second, we obtain coupling results for times and sizes of our
modified GFI process. Finally, we use this coupling to prove Proposition 6.3. We skip some
technical details in the second and the third step, which can be found in the Appendix B of
the long version [9] of this paper on arXiv.

6.3.1. A modified GFI process. In this part, we introduce our modified GFI process. Its
dynamic of growth and fragmentation is the same as the original one. For the dynamic of
isolation, we let each edge (instead of each vertex) have rate θ to be detected independently
and then the cluster is isolated. This minor modification of the isolation rate does not change
the splitting property, thus the study of the modified GFI process can also be reduced to its
size process (Xt , Y t )t≥0. For the parameters (β, θ, γ ), the associated generator L of the first
moment is defined as

Lf (n) = βn
(
f (n + 1) − f (n)

) − θ(n − 1)f (n)

+
n−1∑
j=1

γ n

j (j + 1)

(
f (j) + f (n − j) − f (n)

)
.

(74)

Compared to the generator L defined in (14) with the same parameters, the isolation rate is
θ(n − 1) instead of θn for a cluster of size n, and it is clear that we have

L = L− θ Id.(75)
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Therefore, Lemma 4.2 also applies to L. The couple (π,h) associated to L is also the
eigenelement of L, with the Perron’s root / Malthusian exponent

λh = Lh = (λ − θ)h =⇒ λ = λ − θ.(76)

For fixed γ, θ > 0, the mapping β 
→ λ(β, θ, γ ) shares the same monotonicity with
β 
→ λ(β, θ, γ ), so it suffices to study the the latter one.

The modified GFI process provides some advantages. We observe that for a cluster of size
n, the fragmentation rate and the isolation rate are respectively γ (n− 1) and θ(n− 1). So the
probability that isolation happens before fragmentation (and conversely) does not depend on
its size and is equal to θ/(γ + θ) (resp. γ /(γ + θ)). This nice property has inspired the idea
of coupling in the next step.

We finish this part by proving the following lemma.

LEMMA 6.3. The modified GFI process has the following criteria of phases: it is su-
percritical (λ > 0) when γ > θ , critical (λ = 0) when γ = θ and subcritical λ < 0 when
γ < θ .

PROOF. For the original GFI process, we know that the case γ = θ gives us λ = −θ .
Moreover, the monotonicity of the function γ 
→ λ(β, θ, γ ) in Lemma 6.1 tells us

γ > θ =⇒ λ > −θ, γ < θ =⇒ λ < −θ.

Combing this with (75) proves Lemma 6.3. �

6.3.2. Monotone coupling for the modified GFI processes. Let us fix the rates θ and
γ , and consider an initial cluster of size n in the modified GFI process with the infection
rate β . This cluster may grow by infection for a random time τ

β
n , called lifetime, when (inde-

pendently of this time) it makes fragmentation with probability γ /(γ + θ) or isolation with
probability θ/(γ + θ). When it splits, it leaves two child clusters whose sizes are distributed
as the random variable (Z

β
n,1,Z

β
n,2) following Proposition 3.1. That is, Z

β
n,1 is the size of the

first child, and Z
β
n,2 is for the second child. Here we write (Z

β
n,1,Z

β
n,2) = (0,0) by convention

if this cluster is isolated.
We say there is a coupling for two random variables A and B if we can find A′ distributed

as A, B ′ distributed as B , and A′, B ′ are defined in a common probability space. We some-
times skip the superscripts for these coupled random variables when the context of coupling
is clear. Then we have the following lemma for (Z

β
n,1,Z

β
n,2) and τ

β
n defined above.

LEMMA 6.4. For any 1 ≤ n ≤ n′ and 0 < β ≤ β ′, there exists a coupling for

(τ
β
n ,Z

β
n,1,Z

β
n,2) and (τ

β ′
n′ ,Z

β ′
n′,1,Z

β ′
n′,2) such that

τβ
n ≥ τ

β ′
n′ , Z

β
n,1 ≤ Z

β ′
n′,1, Z

β
n,2 ≤ Z

β ′
n′,2 a.s.,

and in this coupling the two clusters either both reach fragmentation or both reach isolation.

This lemma implies that the larger cluster size or infection rate will result in shorter life-
time and larger sizes for child clusters. Concerning the second statement, since the probabil-
ity of either event is independent of the cluster size, we can use a common Bernoulli random
variable to determine whether they split or are isolated in both processes. For (6.4), it is also
natural as larger cluster size or infection rate speed up the growth events.
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We now consider two modified GFI processes with common θ , γ but different infec-
tion rates β ≤ β ′ and initial cluster sizes n0 ≤ n′

0. We denote the active cluster processes

by (X
β

n0,t
)t≥0, (X

β ′
n′

0,t
)t≥0 and their size processes by (X

β

n0,t
)t≥0 and (X

β ′
n′

0,t
)t≥0.

We can construct a coupling of the two modified GFI processes in a common probability
space as follows. Notice that Lemma 6.4 allows us to couple the lifetimes and cluster sizes
of any two clusters. In particular, the lemma tells us that either fragmentation or isolation
occurs to both of them. We can continue to apply the coupling to their first child clusters
and second child clusters if the fragmentation takes place. If we start from the initial clusters
of both process, we can couple the whole processes in a common probability space denoted

by (�,G,P
β,β ′
n0,n

′
0
). In particular, we can use the UHN labelling to describe the one-to-one

mapping or coupling between clusters from the two processes. For instance, the label 12, if
it exists, maps the second child of the first child of the initial cluster from one process to
another.

In this coupling, due to Lemma 6.4, any active cluster in (X
β

n0,t
)t≥0 has a longer life-

time and smaller child cluster sizes (if they exist) compared to the corresponding cluster in

(X
β ′
n′

0,t
)t≥0, almost surely.

6.3.3. Proof of Proposition 6.3. Let us prove the monotonicity result on the modified
GFI, which will immediately give the result on the original process using the link (76) be-
tween the maximal eigenvalues.

To compare the Malthusian exponent and the eigenfunction, it suffices to compare

E[〈Xβ

n0,T
,1〉] and E[〈Xβ ′

n′
0,T

,1〉] for a large T thanks to the Malthusian behaviour in (29).

We compare them in the common probability space (�,G,P
β,β ′
n0,n

′
0
) constructed previously.

It can be done using a stopping line as follows. Let us write Uβ

T the set of UHN labels of

the active clusters in X
β

n,T . The corresponding clusters in (X
β ′
n′

0,t
)t≥0 labelled by Uβ

T are
active or have been active before time T due to the coupling. Conversely, the active clusters

in X
β ′
n′

0,T
are issued from active clusters whose labels are in Uβ

T , which allows us to use the
branching property (see Figure 7):〈

X
β ′
n′

0,T
,1

〉 = ∑
u∈Uβ

T

N
β ′
T (u).

Here N
β ′
T (u) is the number of active clusters in X

β ′
n′

0,T
that are issued from the cluster labelled

by u (either its descendants, or itself if it is still alive up to T ) in (X
β ′
n′

0,t
)0<t≤T , and we also

notice that 〈Xβ

n0,T
,1〉 = ∑

u∈Uβ
T

1.

The comparison of 〈Xβ ′
n′

0,T
,1〉 and 〈Xβ

n0,T
,1〉 is reduced to that between the mean of

N
β ′
T (u) and 1. For any active cluster labelled by u that has evolved to time T in (X

β

n0,t
)t≥0,

the coupled evolution of the corresponding active cluster in (X
β ′
n′

0,t
)t≥0 is at a random time

τT (u) < T . Thus N
β ′
T (u) is the number of clusters issued from the cluster labelled u in

(X
β ′
n′

0,t
)t≥0 that evolves for the extra time (T − τT (u)). We recall that each active cluster

either fragments or be isolated with fixed probabilities whose difference is (γ − θ)/(γ + θ).

Then, if γ > θ (resp. γ < θ ), N
β ′
T (u) as the mean number of clusters issued from the cluster

labelled by u during the extra time (T − τT (u)) is larger than 1 (resp. smaller than 1). This
finishes the proof of Proposition 6.3.
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FIG. 7. An illustration of the monotone coupling argument and the proof of Proposition 6.3. The blue crosses

represent isolation. The figure on the left is for (X
β
n0,t

)0≤t≤T , and the one on the right is for (X
β ′
n′

0,t
)0≤t≤T .

With a monotone coupling, the evolution on the right is quicker than the one on the left, so each cluster at time T

on the left can find its coupled one on the right at a random moment before T . The rest of the evolution on the right
(the green cones) is not coupled with the left up to time T , thus the monotonicity depends on whether the extra
time will make the population grow or diminish. That is, the monotonicity depends on the phase (supercricial,
critical and subcritical) that the population belongs to.

6.3.4. Proof of Theorem 2.4. We combine Proposition 6.1, Proposition 6.2 and Proposi-
tion 6.3 to obtain Theorem 2.4.

7. Examples and simulations. In this part, we give some examples about how our
model and theorems can be applied to perform the numerical simulation of epidemics. The
key quantity of our model is the Malthusian exponent λ. It dictates whether the infection
will grow or vanish, and moreover serves as the growth or decay rate. We described how λ

depends on (β, θ, γ ) in Proposition 6.1 and 6.3. However, the function λ(β, θ, γ ) is not ex-
plicit, so it is useful to investigate its values numerically. We use the finite difference method
applied to (13) to approximate Mt and then use (29) to approximate λ.

We simulated λ for different values of the three parameters in Figure 8. Figure 8a gives
a surface of the function λ with β = 1, which confirms the monotonicity of λ on θ and γ

(see also Figure 8b and Figure 8c). Thus to reduce infection, we should conduct more contact
tracing (increase θ ) and avoid loss of contact information (decrease γ ). These two approaches
are natural and intuitive.

Figure 8d confirms the monotonicity of λ on β , see Proposition 6.3. When θ =
0.03,0.06,0.09 (thus θ < γ ), λ is increasing on β; when θ = 0.12,0.15 (thus θ > γ ), λ

is a decreasing function of β .

8. Complementary results and further discussions. In this part, we discuss some other
properties and generalisations of our model.

8.1. Fragmentation by removing vertices. One can also consider a similar GFI process
where the fragmentation is generated by removing vertices. We call the new process v-GFI
process for short. More precisely, this process has the same dynamics of growth and iso-
lation, but every vertex rings independently with an exponential clock of parameter γ , and
once it rings, the associated vertex is removed from the cluster to generate several subclus-
ters.

For the model of fragmentation by removing vertices on RRT (without isolation), some
interesting properties about the size distribution have been discussed in [24]. Especially, a
generalised splitting property should hold for our v-GFI process, so we can also follow the
same strategy to study its size process (Xt , Yt )t≥0. Moreover, by [24], eq.(7), we deduce that
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FIG. 8. The dependence of λ on (β, θ, γ ).

the generator for the first moment semigroup of (Xt)t≥0 is

L•f (n) = βn
(
f (n + 1) − f (n)

) − θnf (n)

− γ nf (n) + γ n

n−1∑
j=1

(
1

j (j + 1)
+ 1

(n − j)(n − j + 1)

)
f (j).

(77)

Compared to (14), we have L•f = Lf − γf , which implies that eL•t = e−γ t eLt = e−γ tMt .
Therefore we conclude that, quite surprisingly, L and L• have exactly the same eigenelements
(π,h) given in Proposition 4.1, with a modification of Perron’s root λ 
→ λ − γ . We can
expect to recover other similar properties for the v-GFI process.

8.2. Role of the initial condition. Although the main results are proved with the initial
condition G0 = {0} (a patient zero), the proofs and results will not change much if the initial
cluster is a RRT of any size. Indeed the reduction of the study to a growth-fragmentation-
isolation process for sizes works similarly.

Besides, extension of the results to an initial condition given by a collection of RRTs can
be achieved using that each initial cluster evolves independently by branching property.

Finally, one may wish to start from one (or a collection of) deterministic finite tree(s). We
believe that our work can be adapted or used in that purpose, for instance, using the stopping
line when the clusters have size 1 to exploit the results of this paper.
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8.3. Model generalisations. We can use the same method to deal with generalisations
such as allowing a cluster to lose several edges at the same time, or infect several individuals
at the same time. More delicate generalisations could be interesting too:

• Adding recovering;
• Breaking the Markov property (adding an age would register the time for infection and

would affect the individual rates in the epidemics: contamination, loss of contact informa-
tion, and recovery);

• Improving and enriching the tracing procedure;
• Adding heterogeneity within the population (for tracing and infection).

The reduction we have exploited (from collections of trees to collection of sizes, due to
the nice splitting property of RRT) should fail in general. We hope there is still some nice
probabilistic constructions (even if more complex) to find out but it is still speculative. We
are confident on the extension of asymptotic results on the Malthusian growth and empirical
measures. It could be achieved without going through a reduction of the state space and
without describing the distribution of clusters at fixed times, but rather exploiting the general
statement on semigroups that we have used here on a more complex state space (space of
trees). In particular, the Lyapunov functions that we have exhibited here may still be relevant
to deal with processes in more general state spaces.

8.4. Finite-distance contact tracing. In our model, the contact tracing is implemented for
the whole cluster despite of its size, which is very rare in reality. It is natural to ask whether
the properties observed in our model also hold for the finite-distance contact tracing. The
answer is probably true, but the justification requires some new mathematical techniques.

APPENDIX: CONDITIONAL EXPECTATION AND VARIANCE

We prove here Lemma 5.1 for the conditional expectation and variance estimates of

Zk,p,K := 〈
X̃(k+1)�−,

[
xp]

>K

〉 − 〈
X̃k�,

[
xp]

>K

〉
,

used in (51). Here (X̃t )t∈[k�,(k+1)�), containing only growth and no fragmentation nor isola-
tion, is a coupling of (Xt)t∈[k�,(k+1)�).

PROOF OF LEMMA 5.1. For the conditional expectation, we decompose it using the
genealogy of clusters

(78) E[Zk,p,K |Fk�] = ∑
u∈Uk�

E
[[

xp]
>K

(
X̃u

(k+1)�

) − [
xp]

>K

(
X̃u

k�

)|Fk�

]
.

We observe that for any 0 < a ≤ b,[
xp]

>K(b) − [
xp]

>K(a) = (
bp − ap)

1{b>K} + ap1{a≤K<b}1{a≤K} + ap1{a≤K<b}1{a>K}.
On the right-hand side, the second term can be bounded by Kp1{a≤K<b} and the third term
is zero, so we have[

xp]
>K(b) − [

xp]
>K(a) ≤ (

bp − ap) + Kp1{a≤K<b}.(79)

Since there is only growth in the process X̃t on [k�, (k + 1)�), X̃u
(k+1)�− ≥ X̃u

k� for any
u ∈ Uk�. So we can apply (79) with a = X̃u

k� and b = X̃u
(k+1)�− to obtain that

E[Zk,p,K |Fk�] ≤ E
[〈
X̃(k+1)�−,

[
xp]〉 − 〈

X̃k�,
[
xp]〉|Fk�

]
+ Kp

∑
u∈Uk�

E[1{X̃u
k�≤K<X̃u

(k+1)�}|Fk�].(80)
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For the first term on the right-hand side in (80), we follow the proof of Lemma 4.1(i) to get

E
[〈
X̃(k+1)�−,

[
xp]〉 − 〈

X̃k�,
[
xp]〉|Fk�

] ≤ (
e2p−1pβ� − 1

)〈
X̃k�,

[
xp]〉

.

For the second term in (80), we can control it by the total number of active clusters of size
smaller than K at k� that grow within [k�, (k + 1)�):

Kp
∑

u∈Uk�

E[1{X̃u
(k+1)�>K} − 1{X̃u

k�≤K}|Fk�]

≤ Kp
∑

u∈Uk�

E[1{X̃u
k�≤K, the cluster labelled by u grows in X̃t within [k�,(k+1)�)}|Fk�]

≤ (
1 − e−β�K)

Kp〈X̃k�,1〉.
Plugging in the two inequalities to (80) yields (52).

For the conditional variance, we have

var[Zk,p,K |Fk�] = var
[ ∑
u∈Uk�

([
xp]

>K

(
X̃u

(k+1)�−
) − [

xp]
>K

(
X̃u

k�

))|Fk�

]
.

By branching property,

var[Zk,p,K |Fk�] = ∑
u∈Uk�

var
[([

xp]
>K

(
X̃u

(k+1)�−
) − [

xp]
>K

(
X̃u

k�

))|Fk�

]
≤ ∑

u∈Uk�

E
[([

xp]
>K

(
X̃u

(k+1)�−
) − [

xp]
>K

(
X̃u

k�

))2|Fk�

]
≤ ∑

u∈Uk�

E
[[

xp]2
>K

(
X̃u

(k+1)�−) − [
xp]2

>K

(
X̃u

k�

)|Fk�

]
= E

[〈
X̃(k+1)�−,

[
x2p]

>K

〉 − 〈
X̃k�,

[
x2p]

>K

〉|Fk�

]
.

From the second line to the third line we use (a − b)2 ≤ a2 − b2 for any a > b > 0. The rest
is the same as in the computation of conditional expectation and we obtain (53). �
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[34] TOMAŠEVIĆ, M., BANSAYE, V. and VÉBER, A. (2022). Ergodic behaviour of a multi-type growth-
fragmentation process modelling the mycelial network of a filamentous fungus. ESAIM Probab. Stat.
26 397–435. MR4516847 https://doi.org/10.1051/ps/2022013

https://mathscinet.ams.org/mathscinet-getitem?mr=4011569
https://doi.org/10.1051/ps/2018029
https://mathscinet.ams.org/mathscinet-getitem?mr=3426519
https://doi.org/10.1016/j.spa.2015.08.006
https://mathscinet.ams.org/mathscinet-getitem?mr=1234295
https://doi.org/10.2307/1427522
https://mathscinet.ams.org/mathscinet-getitem?mr=3489637
https://doi.org/10.1016/j.anihpc.2015.01.007
https://mathscinet.ams.org/mathscinet-getitem?mr=4516847
https://doi.org/10.1051/ps/2022013
https://doi.org/10.2307/1427522
https://doi.org/10.1016/j.anihpc.2015.01.007

	Introduction
	Main results
	Preliminaries
	Ulam-Harris-Neveu labeling of clusters
	Random recursive trees
	Reduction to the size process

	First moment semigroup of (Xt)t>=0 and Perron's root
	Semigroup and generator
	Perron's root and eigenvectors
	L2 martingale
	Proof of Theorem 2.1

	Strong convergences
	Kesten-Stigum limit theorem
	Strong law of large numbers for the size process of active clusters
	Strong law of large numbers for the size process of inactive clusters
	Limit on recursive trees

	Characterisation of phases and regularity
	Regularity of Perron's root
	Existence of phases
	Monotonicity of h and  lambda
	A modiﬁed GFI process
	Monotone coupling for the modiﬁed GFI processes
	Proof of Proposition 6.3
	Proof of Theorem 2.4


	Examples and simulations
	Complementary results and further discussions
	Fragmentation by removing vertices
	Role of the initial condition
	Model generalisations
	Finite-distance contact tracing

	Appendix: Conditional expectation and variance
	Acknowledgments
	Funding
	References

