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ABSTRACT Spiking Neural Networks (SNNs) are promising candidates for low-power and low-latency
embedded artificial intelligence. However, those networks require event-based data produced by
neuromorphic sensors which are not widely available, except for a few specialized devices like neuromorphic
retinas. For other data types, a solution lies in the use of conventional sensors in conjunction with encoding
layers. However, when performed in software, this solution can be detrimental to energy consumption or
latency. Here we introduce a flexible design methodology for efficiently implementing, optimizing, and
evaluating digital architectures of spike encoding integrating algorithms available in the literature. In order
to quickly evaluate different hardware architectures and to tailor the solution to the application needs, our
approach relies on High-Level Synthesis (HLS) tools and Python scripting. We illustrate the methodology by
generating various digital architectures of two encoding algorithms taken from the literature and we evaluate
their energy consumption and timing performances on Field Programmable Gate Arrays. This work could
overcome the lack of neuromorphic sensors and accelerate the development of lower-power hardware SNNs.

INDEX TERMS Spiking neural networks, data encoding, high level synthesis, spike sorting, edge
computing.

I. INTRODUCTION
Machine learning revolutionized many fields such as health-
care, industry, automotive, and smart home. Artificial Neural
Networks (ANNs) are approaching human performances
when addressing sound recognition [1] and object detec-
tion [2]. To do so, the complexity of those networks has been
continuously increasing for the last 40 years leading to what
is now called deep learning [3], [4] due to the many layers
required to perform more and more complex tasks.

Until now, ANNs have been mostly implemented on
traditional Von-Neumann architectures. However, sequential
processing, as done on traditional computers, is not suited
for those networks which process data in a parallel manner,
leading to extreme amounts of power consumption and
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processing time. As a result, dedicated hardware accelerators
have been developed to improve parallelism and lead to even
more efficient systems.

Other types of neural networks, like Spiking Neural
Networks (SNNs) [5], benefit greatly from these architec-
tural improvements, paving the way for very low energy-
consuming designs. SNNs are energy-efficient bio-inspired
systems, making them candidates of choice for future
embedded systems [6], [7]. SNNs typically need fewer layers
than their Deep or Convolutional Neural Networks (DNNs
or CNNs) counterparts [8], reducing the energy consumption
and the required processing power, which makes them a
promising approach to building systems better suited for
embedded use.

The theoretical scope of application for neuromorphic
systems is large but their real-world use cases are currently
limited by the lack of sensors able to communicate directly
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with bio-inspired neural networks which are event-driven
and thus communicate through spikes. Only a few sensors
natively output spikes and they are often dedicated and
optimized for a particular type of signal, e.g., retinomorphic
sensors for event-based vision processing [9], [10]. The
scarcity of event-based sensors leads developers to use
regular data output by conventional sensors and to add
dedicated encoding layers to generate spikes from frame-
based data. Such conversion systems have been studied by
simulation means in the literature [11], [12] or have reached
hardware implementations for some of them [13], [14], [15].
The latter, however, remain difficult to easily and quickly
adapt to an application different from the one used during
their specific design.

This work introduces a methodology to generate, optimize
and evaluate digital spike encoding architectures targeting
FPGAs and paving the way for ASIC design. The workflow
can implement many different encoding algorithms and adapt
them to a broad panel of time series (or 1D data types).
For demonstration purposes, we applied this methodology
to a cost-optimized FPGA using a framework based of
High-Level Synthesis tools and automated Python scripts.
We chose to illustrate the methodology using two encoding
algorithms taken from the literature and we evaluated
their performances in terms of resource utilization, timing
performances, and energy consumption.

This paper is organized as follows: in Section II, recent
approaches for spike encoding are detailed. Section III
describes the implementation methodology. The generated
architectures are evaluated on FPGA devices in Section IV
and conclusions are drawn in Section V.

II. RELATED WORKS
A. SPIKING NETWORKS
Spiking Neural Networks (SNNs) [5] are an alternative
to now widely spread Deep Neural Networks which per-
form state-of-the-art pattern recognition and classification
tasks [3], [4] but at the cost of a significant amount
of hardware resources and energy consumption, despite
optimizations like pruning [16], [17] and reduced-precision
operations [18], [19], [20], [21].

SNNs take inspiration from the biology [22], [23], [24],
[25], [26], [27], with a broad range of neuron models
ranging from the most bio-realist to the least computationally
demanding [28], [29], [30]. For example, they are especially
suited for unsupervised learning: one of the main challenges
of future artificial intelligence systems [31], e.g., when cou-
pled to the bio-inspired Spike Timing-Dependent Plasticity
(STDP) learning rule [32]. The key advantage of SNNs lies
in their event-based nature contrary to conventional neural
networks which consume and produce data on a regular time
period. This data scarcity leads to fewer data movements
and thus is the key to reducing the energy consumed by
transmissions to and from the outside of the systems [33].
However, their event-based nature also prevents SNNs from

FIGURE 1. a) Existing methods for pattern recognition using CNNs and
SNNs b) Pattern recognition flow using an SNN and data from a
conventional sensor. The encoding layer is required to convert continuous
digital data into events.

being able to directly process data generated by most sensors
on the market. It is thus necessary to either use inherently
event-based sensors [34] which are limited in terms of
application or to pre-process data acquired by conventional
sensors and convert them into spikes.

To the best of our knowledge, despite being promising
for building such a generic interface between non-spiking
sensors and SNNs, no generic hardware implementation of
the bio-inspired spike-encoding methods presented in the
next subsection has been reported in the literature so far.

B. CONVENTIONAL AND BIO-INSPIRED SENSORS
Electronic sensors are devices that monitor physical phenom-
ena and translate information so electronic systems can use
them. Conventional sensors used by CNNs output data in the
form of continuous frames as shown in Figure 1. However,
unlike CNNs, SNNs use an asynchronous flow of spikes that
differ from frame-based data.

To process data using SNNs, a solution lies in the use
of sensors that integrate bio-inspired hardware, such as
neuromorphic cameras (see Figure 1a) implementing delta-
modulation encoding, i.e., each pixel emits a spike when it
receives a pre-determined change of brightness. To the best of
our knowledge, video, audio streams, and olfactory data are
the only data types to be addressed by such sensors as there
is no spike-producing sensor for continuous streams of data
such as space position or bio-signals acquired by electrodes
for example.

The approach we chose to adapt frame-based sensor
outputs to SNN consists in adding an encoding layer between
the sensor and the network, as shown in Figure 1b.

For demonstration purposes, two algorithms taken from
the literature are integrated into the methodology developed
in this paper as they seem promising to encode time
series generated by conventional 1D sensors and convert
them into spikes suited for SNN processing. Both of these
algorithms can be adapted to various dynamic ranges.
The first algorithm is frequency-based and allows various
neural encodings such as temporal coding, rate-based coding,
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FIGURE 2. Theoretical bode magnitude plot of the different band-pass
filters used in the frequency encoding algorithm.

FIGURE 3. Generic frequency encoding with Nc channels. Each channel is
composed of a band-pass filter, a rectification stage, and a spiking
neuron.

or delta modulation [11] (see section II-B1. The second
algorithm is amplitude-based [12] (see section II-B2).

1) FREQUENCY-BASED ENCODING
Frequency encoding [11] is a type of vector embedding used
to transform time series (audio, biophysical recordings. . . )
into vectors as done for image embedding but using a time-
frequency representation. The frequency-based encoding
relies on the fact that, in the case of neural networks used
for clustering, the patterns to discriminate exhibit unique
frequency identities and thus can be identified through a
frequency representation rather than their amplitude span.

To perform this encoding, after normalizing the signal if
needed, the first step consists in injecting the input signal
through a bank of band-pass filters with central frequencies
gradually increasing through a predefined frequency range,
as illustrated in Figure 2.

To translate the signal into spikes that encode the density
of information in different frequency ranges, the filter outputs
are full-wave rectified and sent to spiking neurons, e.g., leaky
integrate and fire neurons [29] as shown in Figure 3. The
association of a band-pass filter, a rectification stage, and a
spiking neuron forms a channel.

To obtain an encoding that suits the data, filters are
designed to fit the frequency range of interest, and a trade-off
between frequency and temporal resolution has to be found.
The union of all the filter bandwidths must cover the
frequency range of the signal. Consequently, a large number
of filters will lead to a high-frequency description but it
will also require more bio-inspired neurons to process the
information. Infinite and Finite Impulse Response (IIR and
FIR) filter models can be used depending on the precision,
timing, and hardware constraints. The neuron layer in charge
of encoding the signal into spikes is composed of bio-inspired
neurons such as Leaky Integrate and Fire (LIF) neurons

Algorithm 1 Pseudocode for Frequency Encoding
mpk [0]← mpresting
for n = 1 to Number of input samples do
for i = 0 to M do
yFk [n]← yFk [n]+ b[i]× x[n− i]

end for
for j = 1 to N do
yFk [n]← yFk [n]+ a[j]× yFk [n− j]

end for
yRk [n]← abs(yFk [n])
mpk [n]← mpk [n− 1]+ yRk [n]− Lk
if mpk [n] > Thr then
mpk [n]← mpresting
yk [n]← 1

else
yk [n]← 0

end if
end for

which mimic the biological behavior without being too
computationally demanding. LIF neurons are defined by
parameters such as their threshold value, a high threshold
leading to fewer spikes for instance.

In order to be energy efficient while transmitting as much
information as possible through spikes, a trade-off must be
found between the neuron spiking rate and the impact on the
result of the downstream SNN.

The pseudocode for the frequency encoding using LIF
neurons and IIR filters is given in Algorithm 1 where:

• n is the input sample index;
• x[n] is the frame-based input signal;
• k is the channel index;
• yk [n] is the channel output (spike);
• M is the feedforward filter order;
• b[i] are the feedforward filter coefficients;
• N is the feedback filter order;
• a[j] are the feedback filter coefficients;
• mpk is the membrane potential of the k th neuron;
• mpresting is the resting potential of the neuron;
• Thr is the neuron threshold;
• Lk is the leak rate of the neuron.

2) AMPLITUDE-BASED ENCODING
The amplitude-based encoding algorithm [12] can be used
to convert any type of continuous time series into a spike
train. It relies on population neural coding and it is similar to
position coding as the core units are ‘‘comparator neurons’’
that spike at a predefined rate if the input is within their
sensitivity range, which is defined by a central value, and a
range as shown in Figure 4.

Sensitivity centers are typically regularly spaced and
neurons’ sensitivity ranges can overlap so that for each
input value, a fixed predetermined number of neuronsNoverlap

120656 VOLUME 11, 2023



C. Gillet et al.: High-Level Methodology to Evaluate and Optimize Digital Architectures

FIGURE 4. Illustration of the amplitude-based encoding algorithm. The
input is a sine wave at 500 Hz and sampled at 80 kHz. The comparator
neurons have a sensitivity range of dVs and the space in between
sensitivity centers is equal to dVc .

FIGURE 5. Algorithm of the amplitude encoding with NL comparator
neurons and NR delays.

emits spikes. Consequently, the union of all sensitivity ranges
covers all possible signal values. Neurons’ sensitivity range
dVs is chosen depending on the noise level in the input signal.
To target SNNs that perform pattern recognition, a solution

lies in ensuring that the entire waveform of a pattern to
recognize is considered. That is why this algorithm does not
only encode the current sample but also outputs the spikes
corresponding to the encoding of the previous sample within
a sliding time window fitting the pattern length as shown
in Figure 5.

Various spiking behaviors can be chosen to encode the
signal. For instance, the most naive behavior, called binary
spiking is to have a neuron that emits a single spike every time
its input is within its sensitivity range. Rate-based coding can
also be integrated with neurons emitting spikes whose density
depends on the difference between the input sample and the
sensitivity center of the neuron. The closer the sample is to the
neuron’s sensitivity central value, the higher the spike density.

The pseudocode for the amplitude encoding is given in
Algorithm 2 where:

• n is the input sample index;
• x[n] is the frame-based input signal;
• NR is the number of delays;
• NL is the number of comparator neurons;

Algorithm 2 Pseudocode for Amplitude Encoding (binary
Spiking version)
for n = 1 to Number of input samples do
for i = 1 to NL included do
for j = 0 to NR excluded do
if LowThr[i] < x[n−j× kDS ] < UpThr[j] then
yi,j[n]← 1

else
yi,j[n]← 0

end if
end for

end for
end for

• kDS is the optional (integer) down-sampling factor
within the time window;

• dVc is the amplitude difference between two comparator
centers;

• dVs is the sensitivity range of a comparator neuron;
• i is the neuron index;
• j is the delay index;
• LowThr is the list of neuron lower thresholds;
• UpThr is the list of neuron upper thresholds.
The algorithm can be viewed as a grid of NL × NR

sensory neurons, where NL is the number of neurons that
are responsive to the same amplitude range but receive data
corresponding to different processing delays of the input
signal. On the other hand,NR is the number of neurons within
a row that have different sensitivity ranges but receive the
same input.

The number of neurons NL with different sensitivity
centers (i.e., the number of lines) depends on:
• the upper and lower values sigmin and sigmax that can be
reached by the signal;

• the number of neurons Noverlap whose sensitivity ranges
are overlapping (i.e., number of neurons that will spike
at the same time for the same value);

• the sensitivity range of each neuron dVs.
The number of lines NL is given by the following formula:

NL = ⌈(sigmax − sigmin + dVs)× Noverlap/dVs⌉ + 1

The value between two sensitivity centers dVc is:

dVc = dVs/Noverlap.

The number of neurons NR with the same sensitivity
centers and ranges but that see different delayed input values
depends on the duration of the waveform to discriminate. For
spike sorting applications, it has been shown that choosing a
window duration Twindow slightly shorter than the pattern of
interest yields the best results [12].

For the time window, a good trade-off consists in choosing
a downsampling frequency fds that is an integral multiple
of the original frequency fs, i.e., a downsampling factor
kds = fs/fds ∈ N.
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FIGURE 6. Various architectures to implement a frequency encoding algorithm as described in Algorithm 1 on FPGA through different HPU
re-use rates.

A trade-off must be found regarding the number of spikes
emitted. If there are too few spikes produced, it will result
in a less accurate description of the signal. But on the other
hand, generating too many spikes will be counterproductive
in terms of data scarcity. Despite this encoding method being
less computationally demanding than frequency encoding,
it produces a large number of spikes as for each new input
sample kds × NR × Noverlap neurons fire. The encoding
algorithm must thus be chosen and adapted to the system
constraints.

C. MOTIVATIONS
MATLAB implementations of both of these algorithms have
been integrated into SNNs applied to spike sorting [11], [12].
Additionally, [11] explored hardware implementations that
integrate analog components and nano-devices by simulation
means that yielded satisfying results. Nano-devices lack
maturity however and may suffer from a drift of performance
which is why, no hardware implementation has been reported
so far.

In this article, we propose a generic methodology to gener-
ate efficient hardware digital encoding layers implementing
existing algorithm behavior, tackling the lack of hardware
spiking sensors.

For demonstration purposes, the performances of differ-
ent hardware implementations of the previously described
algorithms are evaluated on Field Programmable Gate
Arrays (FPGAs).

The advantage of FPGAs lies in their design flow that
allows relatively easy programmability while achieving high
performances at low power costs. FPGAs are chips that use
configurable logic blocks and programmable interconnects.
This enables updating the encoding layer and modifying
the required model. Our methodology allows an exact
determination of the optimal number of resources for a given
encoding layer. Once optimized, the encoding architecture
could be converted into an ASIC to further reduce energy
consumption if needed.

III. METHODOLOGY / TARGETED ARCHITECTURE
A. INTRODUCTION
Encoding layers for SNNs can be used in various contexts
that may require hundreds of channels for some and

only a few in other cases with the same latency and/or
throughput constraints. Additionally, a majority of systems
require reduced energy consumption. Consequently, different
kinds of digital architectures and optimization strategies are
possible depending on the constraints.

A solution lies in the use of a system based on what
we call Hardware Processing Units (HPUs). An HPU is
composed of the digital hardware implementation of a core
cell adapted from the targeted algorithm. In the case of
frequency encoding, an HPU can be composed for instance
of a band-pass filter, a rectification function, and a spiking
neuron (Figure 6a). In the case of amplitude encoding,
an HPU is a single ‘‘comparator’’ neuron and the encoding
is done by sending the input vector composed of the latest
samples to the HPU as well as the upper and lower bound of
the neuron.

A naive approach consists in using as many HPUs as
channels in the algorithmic description (Figure 6b). However,
this approach results in a complex hardware system with a
low hardware utilization rate, especially if the input data rate
is slow compared to the latency of an HPU.

The opposite strategy consists in implementing a single
HPU and reusing it as many times as needed to apply the
encoding in a sequential manner (Figure 6c). In this case, the
hardware complexity is drastically reduced, but a single HPU
might not be fast enough to process all the channels one after
the other under real-time constraints.

To determine which configuration better suits the con-
straints, virtually every HPUs combinations can be tested
using the methodology (Figure 6d).

The optimal strategy consists in developing a hardware
system that uses the smallest amount of resources tominimize
its usage but with a latency that satisfies the real-time
constraints. For instance, the implementation of the filters
used in the frequency-based encoding can be sequential,
semi-sequential, parallel, or pipeline depending on the timing
and resource constraints [35], [36].

The number of possible solutions to develop and compare
increases quickly leading to the need for an automatic
methodology to explore the design space depending on the
application targeted. We introduce in the rest of the paper
a workflow based on HLS to address that problem by
producing hardware architectures from behavioral models in
an automated manner.
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FIGURE 7. Workflow developed to generate the encoding IPs (f) using Python scripts (➊), Xilinx Vitis HLS tool (➋), and Xilinx Vivado software (➌).

B. HIGH LEVEL SYNTHESIS
To efficiently produce a large variety of digital architectures
from algorithmic models, we chose to use HLS tools, which
are especially well suited for the task [37], [38] and are widely
used by academics and in the industrial community in other
fields [39], [40]. HLS tools take an algorithmic description
written in a high-level language like C/C++ and generate an
architecture at register-transfer level (RTL). This hardware
description of the architecture can then be integrated into
more complex designs and can be processed by conventional
logic synthesis tools to program FPGAs or design ASICs.
We introduce an HLS-based methodology that provides an
easy assessment of energy use and hardware complexity.
As opposed to describing directly the architecture using
conventional hardware description languages such as VHDL
or Verilog which requires a long development process and
thus limits the design-space exploration possibilities.

However, achieving acceptable performances in terms
of timing and resource utilization requires well-written
high-level behavioral models and finely-tuned directives to
guide the HLS tool to meet the desired performance goals.
Consequently, architectural optimizations were identified
to structure the encoding algorithms and to focus on
fine-grained microlevel architectural optimizations to reach
the targeted performances. These optimizations are described
in part III-D2.

C. DETAILED WORKFLOW
Our methodology analyzes, identifies possible architec-
tures, optimizes quantification format, and then generates
an architecture of a spike encoding algorithm according
to application constraints, such as sensors’ output data
types, timing requirements, energy consumption targets,
and the downstream SNN. The workflow is reported in
Figure 7 where a Xilinx FPGA is used to demonstrate

the abilities of this methodology relying on the use of
Xilinx Vivado 2022.2 for implementation (➌) and Xilinx
Vitis HLS 2022.2 for high-level synthesis and design space
exploration (➋). However, the methodology could be adapted
to other HLS software or even apply to ASIC development
flow. To improve flexibility and genericity, a Python layer
(➊) is added before the HLS layer and generates high-level
models.

Virtually every encoding algorithm can be implemented
using our methodology provided that a high-level behav-
ioral description is available. For demonstration purposes,
we implemented and reviewed the models described in
section II-B1 and II-B2.

1) PARAMETER COMPUTATION AND HIGH-LEVEL MODEL
GENERATION
The starting point of the methodology are the user’s
specifications (➀) which include the parameters for the
chosen encoding algorithm and the targeted performances in
terms of timing and resource utilization. Generic models (➁)
for both encoding algorithms described above are used to
generate HLS models that fit the user’s needs.

The Python framework (➊) is used to:

• compute the most suitable data format (➂);
• generate an HLS encoding model (➃);
• produce the suitable HLS directives (➄);
• generate synthetic data to test the system in simulation
and on the hardware target (here, an FPGA).

The testing methodology is described in Section III-C3.
Another goal of this phase is to evaluate the impact of the
data format.

2) AUTOMATED DESIGN SPACE EXPLORATION
To obtain an estimation of the hardware complexity and
timing performances of the system, we automatized design
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space exploration using Vitis HLS tools (Figure 7B). This
allows a quick and efficient evaluation of multiple digital
architectures’ ability to satisfy the constraints.

Generic HLS models (➃) are selected and refined using
HLS directives(➄) and suitable data formats (➂) to optimize
memory usage, parallelism level, and architecture interfaces.

Once the design has met the timing constraints and the
resource constraints (e.g., after having specified a suitable
parallelism level), one can then try to further optimize it using
finer-grain directives (to improve data access using a more
suitable memory partitioning for instance) in order to explore
more in depth the trade-offs in the design space around the
previous hardware solution. One should note that such a
tuning process is easier to iterate as the high-level description
does not need heavy rewriting for further optimization (but
rather minor changes in terms of HLS macros instead)
contrary to what a more conventional RTL-based design
approach relying directly on writing (lower-level) hardware
description with languages like VHDL or Verilog would
require.

3) ON BOARD TESTING ENVIRONMENT
The next step instantiates the generated architecture of the
encoding layer (➅) in a testing environment to observe the
performances in a real environment. Testing tools are added
to the system and integrate test data and communication
interfaces (➆). The energy consumption and the behavior of
the system can be precisely obtained at this step enabling
validation of the encoding architecture and the constraints.

Though energy consumption can be estimated by Vivado,
we chose to use a Nordic Semi Power Profiler Kit 2 (PPK2)
in order to get real-world values of the static and dynamic
currents consumed by the board. Thus we can precisely
evaluate if the energy consumption of the circuit matches the
constraints if required [41], [42].

As shown in Figure 8, our testing environment is tailored
to measure or validate 4 main parameters:

• energy consumption;
• latency and throughput;
• resource utilization;
• precision and accuracy.

D. SATISFYING THE CONSTRAINTS USING VITIS HLS
Spike generation depends on the chosen encoding algorithm.
However, various levels of hardware optimization can be
explored depending on the hardware and timing constraints.

1) DATA FORMAT OPTIMIZATION
In order to produce more efficient architectures, a fixed-point
data format is used throughout the entire workflow instead
of a floating-point data format. The latter may allow for a
higher resolution but is not hardware friendly as it necessi-
tates dedicated architecture and floating operations require
significantly more clock cycles and hardware resources than
fixed point data format. This latter, however, inherently leads

FIGURE 8. Testing environment for the encoding architectures.

to a loss in precision which has an impact on the entire
data flow, especially in the case of an encoding algorithm
that includes IIR filters where numerical instability may
often be an issue. Before hardware generation, the Python
framework computes the smallest data format factor for
all the variables while keeping an acceptable precision
loss through simulation. Floating point conversion into
fixed-point format is done using the Vitis HLS ap_fixed
library. This tool automatically converts floating point data
into fixed point representation when given a word length,
a number of bits used to represent the integer part, the
quantization mode and the saturation mode.

Sections IV-B2 and IV-C2 provide the results of the data
format optimization process for both encoding algorithms
under test.

One can also note that other data formats, such as Residue
Number System (RNS) or posit data format, could also
be integrated into the methodology as long as one provides
the relevant high-level model descriptions.

2) ARCHITECTURE OPTIMIZATIONS
In order to obtain the best implementation of the archi-
tectures, different strategies are applied. Architectures are
tuned depending on application constraints and operations
may be done in parallel if timing constraints require it.
To make the best out of it, fine-grain-level parallelism is
used. A rigorous description of the behavior is essential and
the use of directives, such as the unroll directive emphasizes
the architectures’ parallel organization. In this case, memory
partitioning is mandatory to allow parallel access to the data.
Architectures are also pipelined to improve throughput and
latency in order to mask memory access time and high-
latency operations. All processing steps are finally put in
parallel by dataflow directives.

IV. METHODOLOGY EVALUATION
A. HARDWARE DESIGN
To illustrate the flexibility of the methodology and to eval-
uate the performances of generated hardware architectures,
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FIGURE 9. Frequency-based encoding layer: Left panel: resource usage on an Artix-7 FPGA embedded on a Digilent Cmod A7-35T board
regarding the amount of hardware processing units, going from 1 to 8, for a layer composed of 32 channels. The results are produced with the
proposed flow and the figures are post-place-and-route results. NB: LUTs stands for Look-Up Tables and FFs for Flip-Flops. Middle panel: static
and dynamic current consumption of the architectures. Experimental results are measured by the Nordic Semiconductor Power Profiler Kit II
(PPK2), and the estimated consumption is obtained using Vivado Power Estimator. Right panel: timing summary for 1, 2, 4, and 8 hardware
processing units. The targeted clock frequency is 12 MHz and the sample rate is 25 kHz.

both encoding algorithms reported in the II-B related work
section were considered.

Xilinx 2022.2 suite (Vitis HLS and Vivado) was used
to perform logic synthesis, place-and-route, and bitstream
generation. Timing performances were evaluated by Vitis
HLS and hardware resource utilization was obtained after
implementation by Vivado.

The architectures under study have been synthesized and
deployed on a cost-optimized Xilinx Artix 7 35T FPGA
(on a Digilent Cmod A7 board). The hardware complexity is
given in real-world conditions and the current consumption
is experimentally evaluated using a Nordic Semiconductor
Power Profiler Kit II.

B. FREQUENCY ENCODING RESULTS AND OPTIMIZATION
1) MODEL PARAMETERS
To evaluate the efficiency of the frequency encoding,
different trade-off architectures are designed and evaluated
to encode biological neuron recordings similarly to what is
reported in [11].

To match the work of [11], NL = 32 channels are
implemented. Butterworth band-pass filters are used to
decompose the signal. Gammatone filters are also suitable to
perform a similar frequency decomposition, but have not been
selected for demonstration purposes in this work. The range
of central frequencies spans from 100Hz to 2 kHz and the
bandwidth is 60Hz. To limit latency and instability, the filter
order is fixed at 2. Leaky Integrate-and-Fire neuron model
is used to convert the rectified filtered data into spikes. The
target input data rate is 25 kHz which is a good representation
of typical biological recording data rates. Parameters are
summed up in Table 1.

TABLE 1. Frequency encoding parameters.

2) OPTIMIZING DATA FORMAT
Digital infinite impulse response filters require high-precision
data and coefficients to avoid instability. Data format was
studied by comparing theoretical filter outputs using floating
point data format to the behavior when using fixed point data
format. In order to ensure a Root Mean Square Error (RMSE)
smaller than 10−2 (a suitable threshold based on empirical
observations) between fixed point format and floating point
format filter output, coefficient data width is set at 32 bits and
input data width is set at 8 bits.

3) ARCHITECTURE AND HARDWARE UTILIZATION
To evaluate different architectures, PHPU = 1, 2, 4, and
8 are instantiated, with a reuse rate NL/PHPU of 32, 16, 8,
and 4 respectively. The timing, resource utilization, and
current consumption are reported in Figure 9.

The resource utilization linearly increases until 8 HPUs
are used. For 16 HPUs, the internal data become too large
to fit in BlockRAMs (BRAMs) and the number of Look-Up
Tables (LUTs) needed exceeds the amount available on the
board. Consequently, an architecture instantiating 16 or more
HPUs cannot be implemented on the cost-optimized targeted
FPGA.
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When taking timing performances into consideration, the
design clock frequency must be adapted depending on the
latency and the input sampling frequency (25 kHz in this
example). For instance, with 8 HPUs implementing a total
of 32 channels, 42 clock cycles (3.5µs at 12MHz) are
needed to process one input signal sample. Consequently, the
targeted clock period should be at most 40 µs / 42 ≈ 952 ns
(1.05MHz), which allows satisfying the real-time constraints
as the critical path is up to 11.79 ns. On the opposite,
using 1 HPU to process 32 channels requires 322 clock cycles
(26.8 µs at 12MHz) to encode one sample. If the data input
rate is 25 kHz, the targeted clock period should be at least
40 µs / 322 ≈ 124 ns which is still enough to satisfy the
constraints as it is longer than the critical path.

4) ENERGY CONSUMPTION AND TIMING PERFORMANCES
In addition to the throughput and resource utilization,
energy consumption can be evaluated for each architec-
ture under test. Depending on the application constraints,
a suitable trade-off must be found between for instance
low resource-consuming architectures that need a high clock
frequency and more complex architectures running slower.
As demonstrated in Figure 9, middle panel, experimental
static current consumption measured on the target varies
only slightly (by less than 2%) between an architecture
with 1HPU and an architecturewith 8HPUs though hardware
resources are multiplied by 8. Additionally, experimental
dynamic current consumption remains around 0.75mA for
every architecture. However, a higher number of HPUs leads
to a higher throughput, which allows for a higher input data
rate if needed. For instance, given a processing latency of
PLHPU=1 = 324 cycles and an FPGA clock of fFPGA =
12MHz, 1 HPU allows for at most an input frequency of
fFPGA/PLHPU=1 = 37 kHz whereas 8 HPUs can process data
arriving 8 times faster, i.e., at fFPGA/PLHPU=8 =285 kHz.
Estimations using Vivado Power Estimator are not always
reliable [41], [42]. Here, the dynamic consumption is highly
overestimated whereas the static current is underestimated
by 27%. Those results show the benefits of such a framework
capable of efficiently generating many architectures to
evaluate them in real conditions.

C. AMPLITUDE ENCODING RESULTS AND OPTIMIZATIONS
1) MODEL PARAMETERS
Similar to frequency encoding, amplitude encoding requires
the design and evaluation of multiple trade-off architec-
tures, utilizing parameters similar to those outlined in [43]
(see Table 2).

Instead of processing the delayed input NR times with
different values to encode a pattern’s behavior through a
sliding time window, the result of the encoding of the current
input sample is stored for a time Twindow equal to the sliding
window. That way, only fs × Twindow × NL bits are stored
instead of NR data that have to be processed again, with fs
being the input sampling frequency.

TABLE 2. Amplitude encoding parameters.

The signal amplitude range defines the number of neurons
NL that is necessary within a row of the encoding layer. The
center of each neuron’s sensitivity range depends directly
on the span of the signal to encode, the number of neurons
necessary, and the overlapping factor.

In the case of this encoding algorithm, an HPU consists
in a simple fixed point precision comparator that takes three
values: the current signal input and two bounds.

2) OPTIMIZING DATA FORMAT
To optimize the design, the first step consists in processing the
most fitting data format factor for the input and the sensory
neuron bounds. The data format factor is given by:
• IDATA = ⌈log2 (Amax)⌉
• WDATA = ⌈IDATA + 1− log2 (dVc)⌉

with IDATA the number of bits dedicated to the integer part,
and WDATA the total bit length of the word.

This step optimizes memory utilization and operations are
thus done on the smallest data possible reducing the hardware
complexity of the processing.

3) ARCHITECTURE, HARDWARE UTILIZATION, AND TIMING
PERFORMANCES
The number of HPUs depends on the resources available,
the number of comparator neurons, and the input data rate.
As in [12], the input data rate fs is set at 80 kHz, and the
FPGA clock frequency fFPGA is fixed at 12MHz. The data
format is defined by the formula given in section IV-C2.
When done sequentially and given a safety margin ε and a
processing latencyPLHPU=1 = 1 cycle themaximum number
of comparator neurons per HPU (or re-use rate) is given by
fFPGA/fs − ε. With a safety margin of ε = 6 cycles being
enough to ensure a throughput higher than the input data rate,
the maximum HPU re-use rate is 144.

Resource usage and timing performances are displayed
in Figure 10 (left and right panels). In particular, one
can observe jumps in terms of BRAM usage, latency or
throughput, when exceeding the maximum HPU re-use rate
and thus switching from one to two HPUs.

4) ENERGY CONSUMPTION
Similar to what is done in IV-B4, Figure 10, middle panel,
shows that the experimental static current consumption
stays almost the same despite variations in the number
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FIGURE 10. Amplitude-based encoding layer: Left panel: resource usage on an Artix-7 FPGA embedded on a Digilent Cmod A7-35T board with
1 or 2 HPUs and 36, 72, 108, 144, 145, 181, 217, and 288 comparator neurons. The results are produced with the proposed flow and the figures
are post-place-and-route results. NB: LUTs stands for Look-Up Tables and FFs for Flip-Flops. Middle panel: static and dynamic current
consumption of the architectures. Experimental results are measured by the Nordic Semiconductor Power Profiler Kit II (PPK2), and the
estimated consumption is obtained using Vivado Power Estimator. Right panel: timing summary for 36 to 288 comparator neurons. The
targeted clock frequency is 12 MHz and the sample rate is 80 kHz.

of comparator neurons and HPUs used. The experimental
dynamic current consumption, on the other hand, tends
to decrease when the number of HPUs and comparator
neurons increases. Those results being very different from the
estimation obtained through the Vivado power consumption
evaluation tool, it reinforces the value of a complete
framework able to evaluate a large amount of architectures
in real conditions as non-linearities and resource usage may
make optimal architectures difficult to anticipate.

V. CONCLUSION
We proposed a methodology to produce and evaluate digital
architectures to convert data produced by conventional
sensors into spikes to feed SNNs. To illustrate our work,
we implemented two encoding algorithms available in
the literature (with a frequency-based approach and an
amplitude-based approach respectively). We integrated them
into our High-Level Synthesis C/C++ framework which
allows to identify leverages to optimize the RTL design
in terms of resource utilization and energy consumption
while ensuring real-time processing. The methodology auto-
matically generates many digital architectures with various
levels of parallelism and various quantification formats.
All architectures were implemented on FPGAs and had
their current consumption monitored as well as their timing
performances (latency and throughput) evaluated.We showed
that for each algorithm, various hardware architectures were
possible depending on the application requirements. As an
example, in the situation and hardware that we studied,
the encoding architecture with the highest throughput is a
frequency-based approach that can process 285,000 samples
per second using 8 HPUs and requiring more than 70% of
the DSPs available on the board. This throughput is however

reached at the cost of a slight increase of the dynamic current
consumption (9.7%).

The methodology can be used to benchmark various
architectures in real-world conditions on FPGAs before
converting the RTL into an ASIC to reduce even more
the overall energy consumption. This preliminary work
also brings hope for complete hardware SNNs systems
designed with this methodology. It would allow designing
and implementing more efficient event-based architectures
and perform fairer comparisons with CNNs.
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