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Context
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HIT (Heparin-Induced Thrombocytopenia) is a rare and potentially fatal
pathology.

The aim is to be able to create clusters of HIT and non-HIT patients using
Flow cytometry data from patient blood tubes.

The perspective is to use the results for diagnostic purposes to help the
doctor make decisions.
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Flow Cytometry Data

With flow cytometry we measure a data set of p quantitative variables on
N cells .
Here an example of a dataset consisting on 8 variables measured on 10000
cells that can be extracted from a patient blood sample.

H FSCA FSCH SSC.A SSCH FL1H FL1.A FL2H FL2A H

2,38 2,29 2,93 3,31 0,82 1,12 3,21 3,31
2,23 2,43 2,87 2,74 1,67 1,32 3,02 3,28
3,01 2,98 2,63 2,83 3,03 2,8 2,98 3,04
2,78 2,89 3,02 3,01 2,42 2,2 3,43 3,50
2,67 2,47 3,01 2,87 2,89 2,6 3,28 3,29
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FINE Algorithm

The Fisher Information non-parametric embedding (FINE! consists of
these three steps :

o 1st step Compute the estimated multidimensionnals densities for
each patient tube dataset (n datasets).

e 2nd step Compute the dissimilarity matrix D (nxn), where D(i, j)
represent the distance between the ith and the jith densities.

@ 3rd step Use a classical Multi-Dimensional Scaling?on D to obtain
our projection in a reduced space.

1Carter, K.M., Raich, R., Finn, W.G. and Hero Ill, A.O., (2009). Fine: Fisher information nonparametric embedding. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(11), 2093-2098.
2
Saeed, N., Nam, H., Haq, M. I. U., Muhammad Saqib, D. B. (2018). A survey on Multidimensional Scaling. ACM
Computing Surveys (CSUR), 51(3), 1-25.
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Fisher Information

During the second step of the FINE algorithm the distance is based on the
Fisher Information between two multiparametric distributions p(x|6;) and

p(x|02) :

Multiparametric Fisher Information
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In most cases we don't know the parameters of our distributions, but we
can approximate it with the Kullback-Leibler divergence :

Kullback Leibler formula

KL(pll9) = [ plxiog(2D)ox

q(x)

Hence we can compute a dissimilarity matrix between all of our patient

sample.
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Alternatives of the FINE algorithm
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First step alternative

o 1st step Compute the n estimated densities of each patient tube.

@ 2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergeance.

@ 3rd step Use a classical Multi-Dimensional Scaling (cMDS) on D to
obtain our projection in a reduced space.
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Gaussian assumption

@ 1st step Assume that our tube data are distributed as multivariate
Gaussian distributions.

@ 2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergence under the gaussian assumption.

@ 3rd step Use a classical Multi-Dimensional Scaling (cMDS) on D to
obtain our projection in a reduced space.
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Gaussian Hypothesis and KL Divergence

For two multidimensional normal distributions f; = Ny(u1, £1) and
fo = Ny(po, £2) the Kullback-Leibler divergence? is :

Gaussian Kullback Leibler

1
Ik (fillf2) = 5{(”(9221) + (2 — 1) "Qu(p2 — p1) — d — In|Zy| + In| X[}

with Q = ¥ 1.

3Ku|lback, S., Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathe= matical Statistics, 22(1), 79-86.
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KNN alternative

o1 c : | densities of cacl : ol
a-gaussian-kernel

o N : : .

o 1st & 2nd step Compute the dissimilarity matrix D directly from the
data with a Kullback Leibler divergence using k-nearest neighbors
using the package RANN on R.

@ 3rd step Use a classical Multi-Dimensional Scaling (cMDS) on D to
obtain our projection in a reduced space.
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Gaussian Wasserstein

@ 1st step Assume that our tube data are distributed as multivariate
Gaussian distributions.

@ 2nd step Compute the dissimilarity matrix D with a distance based
on the Wasserstein distance under the gaussian assumption.

@ 3rd step Use a classical Multi-Dimensional Scaling (cMDS) on D to
obtain our projection in a reduced space.
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Wasserstein distance

For two multidimensional normal distributions i = Ny(u1, £1) and
fr = Ny(p2, £2), the formula for Wasserstein's distance is :

Gaussian Wasserstein

Wa(fi, £)2 = |l — g3 + tr((Z1 + X) — 2 x (4251 55/%)172).
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Alternative on the dimension reduction

@ 1st step Compute the n estimated densities of each patient tube.

@ 2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergeance.

@ 3rd step Use the ISOMAP algorithm* on D to obtain our projection
in a reduced space.

4Tenenbaum, J. B, Silva, V. D., Langford, J. C. A global geometric framework for nonlinear dimensionality reduction
(2000).
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Alternative on the dimension reduction

@ 1st step Compute the n estimated densities of each patient tube.

@ 2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergeance.

@ 3rd step Use the UMAP algorithm® on D to obtain our projection in
a reduced space.

5Mc|nnes, Leland, John Healy, and James Melville. "Umap: Uniform manifold approximation and projection for dimension
reduction.” (2018).
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Applications on data
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Control sample

Our dataset consists of 48 tubes:
@ 12 HIT-positive control tubes POS
@ 12 HIT-negative control tubes NEG
@ 12 healthy patient tubes QCB
@ 12 patient tubes with a priori HIT QCM

Our aim is to separate these groups into well-defined clusters.
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We're now going to test a few approaches on a new dataset based on a
HIT study. The aim is to obtain clusters on our 141 patients.

@ 0 If the patient is healthy.
@ 1 If the patient has HIT.

For each of the n = 141 patients, we have a dataset containing 8 variables
for 10000 cells

The goal is to project our 141 tubes in a reduced space and to
visualize two differents clusters of patients
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Visualisation classic FINE

Nuage de points FINE
Distance de Kuliback Leibler + Réduction par cMDS
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Visualisation FINE + ISOMAP

Nuage de points FINE

Distance de Kullback Leibler + Réduction par Isomap
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Visualisation Wasserstein + ISOMAP

Nuage de points FINE
Distance de Wasserstein + Réduction par ISOMAP
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Visualisation Wasserstein + UMAP

Nuage de points FINE
Distance de Wasserstein + Réduction par UMAP
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Performance

Using a SVM algorithm on our projections we measured the performances
of our differents methods.

Performance of FINE
Method Sensitivity | Specificity | Precision | Time
Classical FINE 52% 58% 55% 30 mn
FINE+ ISOMAP 75% 81% 69% 30 mn
KNN + cMDS 65% 66% 64% 100h
Wass - G + ISOMAP | 87% 84% 86% 3 mn
Wass - G + UMAP 86% 84% 85% 3 mn
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@ Test our versions of FINE on other data.

@ To be able to project a new tube into the reduced space to observe
where it fits in relation to the clusters already created.
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Thank you for your attention
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