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Context
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HIT

HIT (Heparin-Induced Thrombocytopenia) is a rare and potentially fatal
pathology.

The aim is to be able to create clusters of HIT and non-HIT patients using
Flow cytometry data from patient blood tubes.

The perspective is to use the results for diagnostic purposes to help the
doctor make decisions.
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Flow Cytometry Data

With flow cytometry we measure a data set of p quantitative variables on
N cells .

Here an example of a dataset consisting on 8 variables measured on 10000
cells that can be extracted from a patient blood sample.

FSC.A FSC.H SSC.A SSC.H FL1.H FL1.A FL2.H FL2.A

2,38 2,29 2,93 3,31 0,82 1,12 3,21 3,31
2,23 2,43 2,87 2,74 1,67 1,32 3,02 3,28
3,01 2,98 2,63 2,83 3,03 2,8 2,98 3,04
2,78 2,89 3,02 3,01 2,42 2,2 3,43 3,50
2,67 2,47 3,01 2,87 2,89 2,6 3,28 3,29
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FINE Algorithm

The Fisher Information non-parametric embedding (FINE1 consists of
these three steps :

1st step Compute the estimated multidimensionnals densities for
each patient tube dataset (n datasets).

2nd step Compute the dissimilarity matrix D (nxn), where D(i , j)
represent the distance between the ith and the j ith densities.

3rd step Use a classical Multi-Dimensional Scaling2on D to obtain
our projection in a reduced space.

1
Carter, K.M., Raich, R., Finn, W.G. and Hero III, A.O., (2009). Fine: Fisher information nonparametric embedding. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31(11), 2093-2098.
2
Saeed, N., Nam, H., Haq, M. I. U., Muhammad Saqib, D. B. (2018). A survey on Multidimensional Scaling. ACM

Computing Surveys (CSUR), 51(3), 1-25.
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Fisher Information

During the second step of the FINE algorithm the distance is based on the
Fisher Information between two multiparametric distributions p(x |θ1) and
p(x |θ2) :

Multiparametric Fisher Information

DF (θ1, θ2) = min
Θ:Θ(0)=θ1,Θ(1)=θ2

∫ 1
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Approximation

In most cases we don’t know the parameters of our distributions, but we
can approximate it with the Kullback-Leibler divergence :

Kullback Leibler formula

KL(p||q) =
∫

p(x)log(
p(x)

q(x)
)dx

Hence we can compute a dissimilarity matrix between all of our patient
sample.
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Alternatives of the FINE algorithm
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First step alternative

1st step Compute the n estimated densities of each patient tube.

2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergeance.

3rd step Use a classical Multi-Dimensional Scaling (cMDS) on D to
obtain our projection in a reduced space.
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Gaussian assumption

1st step Assume that our tube data are distributed as multivariate
Gaussian distributions.

2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergence under the gaussian assumption.

3rd step Use a classical Multi-Dimensional Scaling (cMDS) on D to
obtain our projection in a reduced space.
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Gaussian Hypothesis and KL Divergence

For two multidimensional normal distributions f1 = Nd(µ1, Σ1) and
f2 = Nd(µ2, Σ2) the Kullback-Leibler divergence3 is :

Gaussian Kullback Leibler

IKL(f1||f2) =
1

2
{(tr(Ω2Σ1)+ (µ2−µ1)

TΩ1(µ2−µ1)− d − ln|Σ1|+ ln|Σ2|}

with Ω = Σ−1.

3
Kullback, S., Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathe- matical Statistics, 22(1), 79-86.
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KNN alternative

1st step Compute the n estimated densities of each patient tube with
a gaussian kernel.

2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergeance.

1st & 2nd step Compute the dissimilarity matrix D directly from the
data with a Kullback Leibler divergence using k-nearest neighbors
using the package RANN on R.

3rd step Use a classical Multi-Dimensional Scaling (cMDS) on D to
obtain our projection in a reduced space.
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Gaussian Wasserstein

1st step Assume that our tube data are distributed as multivariate
Gaussian distributions.

2nd step Compute the dissimilarity matrix D with a distance based
on the Wasserstein distance under the gaussian assumption.

3rd step Use a classical Multi-Dimensional Scaling (cMDS) on D to
obtain our projection in a reduced space.
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Wasserstein distance

For two multidimensional normal distributions f1 = Nd(µ1, Σ1) and
f2 = Nd(µ2, Σ2), the formula for Wasserstein’s distance is :

Gaussian Wasserstein

W2(f1, f2)
2 = ||µ1 − µ2||22 + tr((Σ1 +Σ2)− 2× (Σ

1/2
2 Σ1Σ

1/2
2 )1/2).
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Alternative on the dimension reduction

1st step Compute the n estimated densities of each patient tube.

2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergeance.

3rd step Use the ISOMAP algorithm4 on D to obtain our projection
in a reduced space.

4
Tenenbaum, J. B., Silva, V. D., Langford, J. C. A global geometric framework for nonlinear dimensionality reduction

(2000).
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Alternative on the dimension reduction

1st step Compute the n estimated densities of each patient tube.

2nd step Compute the dissimilarity matrix D with a distance based
on the Kullback-Leibler divergeance.

3rd step Use the UMAP algorithm5 on D to obtain our projection in
a reduced space.

5
McInnes, Leland, John Healy, and James Melville. ”Umap: Uniform manifold approximation and projection for dimension

reduction.” (2018).
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Applications on data
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Control sample

Our dataset consists of 48 tubes:

12 HIT-positive control tubes POS

12 HIT-negative control tubes NEG

12 healthy patient tubes QCB

12 patient tubes with a priori HIT QCM

Our aim is to separate these groups into well-defined clusters.
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Dataset

We’re now going to test a few approaches on a new dataset based on a
HIT study. The aim is to obtain clusters on our 141 patients.

0 If the patient is healthy.

1 If the patient has HIT.

For each of the n = 141 patients, we have a dataset containing 8 variables
for 10000 cells

The goal is to project our 141 tubes in a reduced space and to
visualize two differents clusters of patients
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Visualisation classic FINE
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Visualisation FINE + ISOMAP
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Visualisation Wasserstein + ISOMAP
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Visualisation Wasserstein + UMAP
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Performance

Using a SVM algorithm on our projections we measured the performances
of our differents methods.

Performance of FINE
Method Sensitivity Specificity Precision Time
Classical FINE 52% 58% 55% 30 mn

FINE+ ISOMAP 75% 81% 69% 30 mn

KNN + cMDS 65% 66% 64% 100h

Wass - G + ISOMAP 87% 84% 86% 3 mn

Wass - G + UMAP 86% 84% 85% 3 mn
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Perspective

Test our versions of FINE on other data.

To be able to project a new tube into the reduced space to observe
where it fits in relation to the clusters already created.
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Thank you for your attention
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